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Abstract. Various sequences of polynomials by the names of Fibonacci and Lucas polynomials occur in the literature

over a century. Generalization of the Fibonacci polynomial has been done using various approaches. One usually found in

the literature that the generalization is done by varying the initial conditions. In this paper we study the so-called

generalized Fibonacci polynomials: u_ (x)=xu,_(X)+U,,(x), n>2 with u (x)=a andu, (x)=2a+1 where a is any

integer. Further we give some fundamental properties about the generalized Fibonacci polynomials.
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1. Introduction

Various sequences of polynomials by the names of Fibonacci
and Lucas polynomials occur in the literature over a century.
Many works dealt with different properties of these
polynomials and their applications. Fibonacci polynomials
appear in different frameworks. Fibonacci polynomials are
special cases of Chebyshev polynomials and have been
studied on a more advanced level by many mathematicians.

Fibonacci polynomials were studied in 1883 by the Belgian
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mathematician Eugene Charles Catalan and the German
mathematician E. Jacobsthal. The polynomials studied by
Catalan are defined by the recurrence relation
F(X)=xF (x)+F,(x),n>3with F (x)=1,F (x)=x

(1.1)
The Fibonacci polynomials studied by Jocobstral are defined

by
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J (x)=3,,(x)+x3_,(x), n=3with J (x)=1,J,(x)=1
(1.2)

He first gave the name “Fibonacci polynomials”.

The Fibonacci polynomials studied by P. F. Byrd are defined
by
@, (X)=2xp,, (X)+0,,(X) . n=2 with ¢ (x)=0,,¢(x)=1
(1.3)
The Lucas polynomials originally studied in 1970 by Bicknell
and they are defined by
L (x)=xt, (x)+L,,(x). n=2with L (x)=2,L(x)=x [4].
(1.4)
Basin show that Q matrix generates a set of Fibonacci
Polynomials satisfying the recurrence relation
f(X)=xt (x)+f,(x),n>2with f(x)=0,f(x)=1 [8]
(1.5)
He derives the explicit forms and generating function by
matrix method. Equation (1.5) is now the accepted form of
Fibonacci polynomials. The first few polynomials of (1.5) are
L(x)=1 f,(xX)=x

f,(x) = x* +3x% +1,

f,(x) = x> +1,

f,(x) = x*> +4x> +3x and so on.

f,(x) = x* +2x,

The Fibonacci numbers are recovered by evaluating the

polynomials at x=1

f. (1) =F,, where F, is Fibonacci numbers (1.6)
Generating function of Fibonacci polynomials is
S (0t =t(1-xt—t?) . (L.7)
n=0
Explicit sum formula for Fibonacci polynomials is
[%1} n-k-1
f(x)= Z( jx"“k, (1.8)
k=0 k

The Lucas polynomials [3] are defined by the recurrence

formula:
L. (X)=x (x)+L(x), n>2 withl (x)=2,1(x)=x
(1.9)

Generating function of Lucas polynomials is

S () =(2-xt)(1-xt-t?) "

n=0

(1.10)

17

Explicit sum formula for Lucas polynomials is given by
[ZZ}: n n_k Xn—Zk,
=n-k\ k

n
where [kj a binomial coefficient and [x] is define as the

L ()

(1.11)

greatest integer less than or equal to x.
The Fibonacci and Lucas polynomials possess many
fascinating properties which have been studied in [2-8], [11],
[13-19] and [21-22].

Generalized Fibonacci polynomials have been intensively
studied for many years and have become an interesting topic
in Applied Mathematics. Hoggatt and Bicknell introduced a
generalized Fibonacci polynomials and their relationship to
diagonals of Pascal’s triangle [20]. Also after investigating the
generalized Q-matrix, lvie introduced a special case [12].
Nalli and Haukkanen introduced h(x) Fibonacci polynomials
that generalize both Catalan’s Fibonacci polynomials and
Byrd’s Fibonacci Polynomials and the k-Fibonacci number.
Also they provided properties for these h(x) Fibonacci
polynomials where h(x) is a polynomial with real coefficients
[4]. In this paper we study some properties of generalized

Fibonacci polynomials.

2. Generalized Fibonacci Polynomials

Generalization of the Fibonacci polynomial has been done
using various approaches. Mainly, two certain recursive
schemes are observed, which associated with generalization of
Fibonacci polynomials: (1) By changing the recurrence
relation while preserving the initial terms, (2) By changing the

initial terms but recurrence relation is preserved. Generalized

Fibonacci polynomials u, (x) are defined as

u, (x) =xu,_, (X)+U,_,(x), n>2.with u,(x)=aand

U, (x)=2a+1, where a is integer. (2.1

The first few terms of (2.1) are as follows:



u(x)=a,
u(x)=2a+1
u,(x) =

u,(x) = (2a+1)x* +ax+(2a+1),

(2a+1)x+a,

U, (x) = (2a+1)x® +ax’ +2(2a+1)X +a,
U, (x) = (2a+1)x* +ax’ +3(2a+1) X* + 2ax+(2a+1), and so on.

The characteristic equation of (2.1) is A* —x4-1=0, which has

two real roots

XX +4 X -y X
a=———and g=———
2 2

Also,

af=-1 a+f=x a-B=NX+4, &+ =X +2.
2.2)

Binet’s formula

2 " . y2 "
un(x):Aa”+B,B":A{X+\/X +4J +B[X X +4J .

2 2
2.3)
Here, A:Mand B:w_
a-— a-p
Also, AB = w nd A+B=u,(x) =a.
(a=p)
(2.4)

Generating function

>0, (00" =

a+(2a+l—ax)t
1-xt—t?

(2.5)

Hypergeometric representation of generating function

By generating function (2.5), we have
DU, (0" =
n=0

=[a+(2a+1-ax)t][1- (X+t)t]7l

a+(2a+l—ax)t
1-xt—t?

=[a+(2a+1- ax)t]i(xﬂ)”t”

=[a+(2a+1-ax)t] it Z[ j Nk
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n

=[a+(2a+1-ax)t] nZ:;k i ;kl nokgnek
:[a+(2a+1—ax)t]zz X" 2K
:[a+(2a+1—ax)t]2(%§:n:—:(lt2k

iu"n('x) [a+(2a+1—ax)t]ex‘ij:anrlk!(tz)k
=[a+(2a+1-ax)t e“i}n:!k'(tk)! :
:[a+(2a+1—ax)t]e“i +k+1(t) ,
:[a+(2a+1—ax)t]e“k2(n+l)k%%.

Hence,

iun(x)%z a+(2a+l-aqt]e’ ,F(n+1 L L t*). (26)

3. Some Fundamental Properties of Generalized Fibonacci
Polynomials

In this section we present some fundamental properties of
generalized Fibonacci polynomials which are described in [8]
and [14].

sum formula have been used to establish the results.

Generating function, binet’s formula and explicit

Theorem 3.1. Prove that
U,y (X)—U, , (X) =xu,(x), n>1. 3.1)

Proof. By generating function of generalized Fibonacci

polynomials, we have

> 0,000

Differentiating both sides with respect to t, we get

=[a+(2a+1-axt](1-xt—t* )71.

inun(x)t”‘l
=[a+(2a+1-ax)t](x+ 2t)(l— xt —tz)_2

+(2a+1—-ax) (1— xt—t? )71.



(1— xt—tz)inun ("t

n=0

=[a+(2a+1-ax)t](x+2t)(1-xt —tz)f1 +(2a+1-ax),

= (x+2t) S u, (" + (22 +1-ax),

n=0

> nu, (" - Z nxu, (" =" nu, (0"
n=0 n=0 n=0

= xu, (0" = D" 2u, ()™ + (22 +1-ax).
n=0 n=0

Now equating the coefficient of t" on both sides we get,

(n +1)un+1(x) - nXUn (X) - (n _l)un—l(x) = Xun (X) + 2un—1(x)l

(n+Du,,(X)—(n+Du,_,(X) = (n+Dxu,(x),

n+l

un+1(x) - un—l(X) = Xu, (X)

Theorem 3.2. Prove that

Up,y (X) = XU, (X) +U, (X) +U; (), n>1.

Proof. By (3.1), we have

un+1(x) _un—l(x) = Xun (X)! n= 1

Differentiating both sides with respect to X, obtain

U3 (X) = Uy 5 (X) = XU, (X) +U, (X),

u;Hl(X) = Xu'n (X) +U, (X) + unlwf1(x)-

Theorem 3.3. Prove that
nu, (x) = xu, (x)—2u,_,(x), n>1and

Xu;wl(x) = (n +l)un+1(x) - 2un (X)! n>1

Proof. By generating function of generalized Fibonacci-Like

polynomials, we have

iun (t" =[a+(2a+1- ax)t](l— xt —t? )71 .

Differentiating both sides with respect to t, we get

(3.2)

19

> nu, ()"
n=0

= (2a+1-ax)(l-xt—t2)" (33)

+[a+(2a+1—ax)t](x+2t)(1—xt—t2)72.

Differentiating both sides with respect to X, we get

Su (0t =[a+ (2a+1-at](1-xt—t?) " t-at(1-xt-t?)
iu;](x)t"’1 =[a+(2a+1- ax)t](l— xt—tz)f2 —a(l— xt—tz) ,

iu;,(x)t”’1 +a(1— Xt —t2 )71 =[a+ (2a+1—ax)t](l— xt —tz) .

(34)

Using (3.4) in (3.3), we get

> nu, (™
= (2a+1-ax)(1-xt —tz)f1

+(x+ 2t){iu; (Ot +a(l—xt —tz)‘l},

n=0
=(2a+1- ax)(l— xt —t? )71

+(x+ ZI)ZOO:U;](X)t”’1 +a(x+2t)1-xt—t*)™

Now equating the coefficient of "t

on both sides, we get
nu, (X) = xu, (X) +2u, , (x).

(3.9)

Again equating the coefficient of t" on both sides, we get
(N+DU, 5 (X) = XUy,1 (X) + 20, (X),
Xu,,,(x) = (n+2u,, (X) —2u, (X). (3.6)
Theorem 3.4. Prove that

(n+Yu,(¥) =u,,(x) +u, ,(x), n>1.

Proof. By (3.1), we have

un+l(x) - un—l(x) =Xu, (X), nx1

-1

-2



Differentiating both sides with respect to X, we get
Unaz () = Uy (X) = XU, (%) +U, (),

XUy (X) + Uy (X) = Uy (X) = Uy 5 (X)-

Using (3.5) in (3.7), we get
nU, (X) =20, 5 (X) +U, (X) = Uy, (X) = U, 4 (X).
nun (X) + un (X) = u;1+1(x) + 2url1—1(x) - u;w—l(x)v

(n +l)un (X) = u;1+1(x) + url1—l(x)'

Theorem 3.5. Prove that
xu, (x) =2u, ,,(x)—(n+2)u_(x), n>0.

Proof. Using (3.5) in (3.8), we get

. 1 .
(n+2)u, () =y, () + = nu, (0 = xu, (9 ],
2(n+1)u, (x) =2u, ,(X) + [nun (X)—xu,, (x)]
xu, (x) =2u,,,(X) +nu, (x) — (2n+2)u, (x),

xu, (X) = 2u,,,(X) +(n—2n-2)u, (x), (3.9)

Theorem 3.6. Prove that

(n+Dxu, () =nu,,(X)—(n+2)u, ,(x), n>1.

Proof. Using (3.8) in (3.2), we get
(n+1) {up.1 () = xu, () —u, , (X)} =

(n+2)u,., (%) = (n+Dxu, (x) = (n+Du, , (X)

= uln+1(x) + U;H(X)a

Uy (X) +Uy 4 (%),

(n +1)U;H1(X) - (n +1)u;1—1(x) - u;wl(x) - u;m-l(x)
= (n+2)xu, (X),

U, () = (n+2)u, , () = (N +Dxu, (x),
(n+Dxu, (x) =nu,,(X) —(n+2u. _, (X). (3.10)

Theorem 3.7. (Explicit Sum Formula) Prove that

2 no
u (x) = aZ[n y ij”"

(3.11)

3.7

(3.8)

Proof. By generating function (2.5), we have
iun(x)t” =[a+(2a +1—ax)t](l—xt—t2)7l \b? —4ac
n=0

= [a+(2a+1—ax)t][1—(x+t)t]’l

=[a+ (2a+1—ax)t]i(xﬂ)“tn

=[a+(2a+1- ax)t]it” Zn:[zjx”‘kt"

n=0 k=0

a+(2a+1 ax)t :
nzz(; —KIn —kl

n tn+k

ZU (" =

n+2k

Ms

=[a+(2a+1-ax)t]

S n+k! «t
Z k'n'

k=0

.|
=[a+(2a+1-ax)t] >’

n=0 k=l

=
I
o

NS
i

n-k!
Tkin— 2kI

n2kn

Equating coefficients of t" on both sides, we get
[g} n—-k

u,(x)=a)’ X"2K
Pl

Theorem 3.8. For positive integer n >0, prove that

-n -n+1. —4)

> T 7 ) (3.12)

Un(X):aanFl(

Proof. By explicit sum formula (3.11), it follows that
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-n —n+l1 —4
Hence, u_(x)=ax" ,F | —, D -n; — |
n( ) 2 l[ 2 2 ij

Theorem 3.9. For positive integer n >0 , prove that
n=
2
:a(l—xt)’°3F2 E’c+l,n+1;n+1;n+2; t |
2 2 2 2 (1-xt)
(3.13)

Proof. Multiplying both sides of the explicit sum formula by

n

t . -
(c). — and summing between the limit n=0 to n=co, we

n!
obtain
i(c)u(x)ﬂ—aim S
n=0 nr n!_ n:()k:ok'n—Zk! n n!

e n+k! ens
:""Z“Zk!n!nuk!(C)MkXt :

n+k! x
k|n+2k'( Jac

s

> ~(e+2k) N+k! 2K
1-—xt _—
akz::?( <) k!n+2k!(c)2k

x
o

e 615 A
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Hence,
S () ()5

— c c+l n+l n+2 P
=a(l-xt) 3F{§,—2 , n+1; BT ZJ.

(1-xt)
Theorem 3.10. (Catalan’s Identity) Let U_(X) be the n"

term of generalized Fibonacci-Like polynomials, then

u?(x)-u,,, (x)u,_, (x)

_ (-1’ r_[(2a+1)u () -au , ()], n>r>1. (3.14)
a’+3a+1 ' e T

Proof. Using Binet’s formula (2.5), we have

l'Inz (X) —Upr (X)un—r (X)
_ (A(Zn + Bﬂn)z _(Aarwr + Bﬂnu)(Aan—r + Bﬂn—r)

= AB(ap)' (2-a'B " ~a ' B")
=—AB(-)"" (a" - p')

(@+3a+L), o/ . 0\2
== () |« -8

@y V@A)
=(a*+3a+1)(-1)"" w

(a@=5)

Since
a' _ﬁr — (2a+1)ur(x)_aur+1(x) :(2a+1)ur(x)_aur+1(x)
a-f  (2a+1)° -a(2a+1)-a’ (a*+3a+1)

ur? (X) - un+r (X)un—r (X)

(0"

= m[(Zaﬂ)u,(x) —au,,, (], n>r>1



Theorem 3.11. ( Cassini’s Identity) Let u_(x) be the n" term
of generalized Fibonacci polynomials, then
ul(x)-u,,(x)u,_(x)=(-1)"*(a’+3a+1),n>1.

(3.15)

Proof. If r = 1 in the Catalan’s Identity, then obtained
required result.

Theorem 3.12. ( d’Ocagne’s Identity) Let u (x) be the n™"
term of generalized Fibonacci polynomials, then

Up, (XU (X) =g (XU, (X)

= (—l)n |:(2a+1)um2”( X)_aum—ml( X)
a“+3a+1

]mzl,nzo,m>n.

(3.16)
Proof. Using Binet’s formula (2.5), we have

Un (X)un+1(x) - um+1(x)un (X)

— (A(Zn + Bﬂm)(Aa”” + Bﬁnﬂ)_(Aaerl + Bﬂmﬂ)(Aan + Bﬂn)
— AB(amﬂn+1+an+lﬂm _anﬂm+l _am+l n)

— AB(aﬁ)” |:ﬁ<am—n _’Bm—n)a(am—n _ﬂm—n ):|

= AB(-1)"(B-a)(a™" - ")

— (a2 +3a+1) _l n _ m-n _ m-n
S D" (a-p)(a"" = p"")
— (% +3a+1)(-1)" (a(aiﬁ) )
Since,
am—n _ﬂm—n
a-p

— (2a +1)um—n (X) B aum—n+1(x) — (2a +1)um—n (X) - aum—n+1(x) ’
(2a+1)" ~a(2a+1)-a’ (@®+3a+1) ’

we obtain

Uy, OOU (X)) =y, (XU, (X)
= (_l)n |:(2a+1)um”( X)_aum—nﬂ( X)

a’+3a+1
Theorem 3.13. (Generalized ldentity) Let u,(x) be n™ term

]mzl,nzo,m>n.

of generalized Fibonacci polynomials, then

Uy, (U, (X) = Uy, (XU, (X)
=@ +3a+1)(-1)"" x

[(2a+1)u, (x)—au,,(x)][(2a+Du,_,,, (X) —aU,_p.r.: ()],
n>m>rx>1
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(3.17)

Un, (X)un(x)_umfr(x)unﬂ (X)
= (A" +BA")(Aa" +BA") - (Aa™" +BS™ ) (A" +BS™)

amﬂn_anﬂm:|

:AB(ar_ﬂr){ Olr ﬁr
= AB(_l)*f (ar _ﬂr)(amﬂmr _an+rﬂm)

= AB(_l)—r (amIBm)(ar _ﬂr)(an—pH _anfp”)
—AB(—]_)7r ((Zmﬂm)(ar _'Br)(an—pw _ﬁn—p+r)
gy U Y

Proof. Using Binet’s formula (2.5), we have

Using subsequent results of Binet’s formula, we get

a' _ﬂr — (2a+l)ur (X) _aur+1(x) n

Since, 5 and
a-p (@ +3a+l)

o g _ (2a+Du,_,.. (x)—au, . ..(X)
a—p (a*+3a+1)

Uy, (XU, (X) = U, (U, (X)

=@ +3a+1)(-1)" " x

[(2a+1)u, (x)—au,,(x)][(2a+Du,_,., (X) —aU, ... ()],
n>mzxrzx1

The identity (3.13) provides Catalan’s identity, Cassini’s and

d’Ocagne and other identities.

4. Conclusion

In this paper, we have introduced generalized Fibonacci
polynomials by variation of initial conditions and presented
some basic results. Finally explain some fundamental
properties with derivations by standard methods.
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