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Abstract. Various sequences of polynomials by the names of Fibonacci and Lucas polynomials occur in the literature 

over a century. Generalization of the Fibonacci polynomial has been done using various approaches. One usually found in 

the literature that the generalization is done by varying the initial conditions. In this paper we study the so-called 

generalized Fibonacci polynomials:       1 2 , 2
n n nu x xu x u x n     with   

0
au x   and  

1
2 1,au x   where a  is any 

integer. Further we give some fundamental properties about the generalized Fibonacci polynomials. 
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1. Introduction 

Various sequences of polynomials by the names of Fibonacci 

and Lucas polynomials occur in the literature over a century. 

Many works dealt with different properties of these 

polynomials and their applications. Fibonacci polynomials 

appear in different frameworks. Fibonacci polynomials are 

special cases of Chebyshev polynomials and have been 

studied on a more advanced level by many mathematicians. 

Fibonacci polynomials were studied in 1883 by the Belgian 

mathematician Eugene Charles Catalan and the German 

mathematician E. Jacobsthal. The polynomials studied by 

Catalan are defined by the recurrence relation 

     
1 2

, 3
n n n

xF F nF x x x
 

   with  
1

1F x  ,  
2

.xF x 

      
(1.1) 

The Fibonacci polynomials studied by Jocobstral are defined 

by 

SCIREA Journal of Mathematics 
 

http://www.scirea.org/journal/Mathematics 

 
October 17, 201 

 
Volume 1, Issue1, October 2016 

 
 
 
 
 
 

mailto:opbhsikhwal@rediffmail.com
http://www.scirea.org/journal/Mathematics


17 

 

     
1 2

, 3
n n n

J xJ nJ x x x
 

   with  
1

1J x  ,  
2

1.J x 

      
(1.2) 

He first gave the name “Fibonacci polynomials”. 

 

The Fibonacci polynomials studied by P. F. Byrd are defined 

by 

     
1 2

2 , 2
n n n

x nx x x
 

      with  
0

0,x  ,  
1

1.x 

         
(1.3) 

The Lucas polynomials originally studied in 1970 by Bicknell 

and they are defined by 

     
1 2

, 2
n n n

xL L nL x x x
 

   with  
0

2L x  ,  
1

[4].xL x 

                     
(1.4) 

Basin show that Q matrix generates a set of Fibonacci 

Polynomials satisfying the recurrence relation 

     
1 2

, 2
n n n

xf f nf x x x
 

   with  
0

0f x  ,  
1

1. [18]f x 

                                   (1.5) 

He derives the explicit forms and generating function by 

matrix method. Equation (1.5) is now the accepted form of 

Fibonacci polynomials. The first few polynomials of (1.5) are 

2 3

1 2 3 4

4 2 5 3

5 6

( ) 1,       ( ) ,       ( ) 1,          ( ) 2 ,

( ) 3 1,          ( ) 4 3    .

f x f x x f x x f x x x

f x x x f x x x x and so on

     

     
 

 

The Fibonacci numbers are recovered by evaluating the 

polynomials at x=1 

(1) ,n nf F where nF  is Fibonacci numbers               (1.6) 

Generating function of Fibonacci polynomials is  

   
1

2

0

1 .n

n

n

f x t t xt t






          (1.7) 

Explicit sum formula for Fibonacci polynomials is  

 

1

2
1 2

0

1
,

n

n k

n

k

n k
f x x

k

 
 
 

 



  
  

 
      

(1.8) 

The Lucas polynomials [3] are defined by the recurrence 

formula:  

     
1 1

, 2
n n n

xl L nl x x x
 

  
 
with  

0
2l x  ,  

1
xl x 

                         (1.9) 

Generating function of Lucas polynomials is  

    
1

2

0

2 1 .n

n

n

l x t xt xt t






          
(1.10) 

Explicit sum formula for Lucas polynomials is given by  

 
2

2

0

,

n

n k

n

k

n kn
l x x

kn k

 
 
 





 
  

  
   

     (1.11) 

 

where 
n

k

 
 
 

a binomial coefficient and  x  is define as the 

greatest integer less than or equal to x. 

 

The Fibonacci and Lucas polynomials possess many 

fascinating properties which have been studied in   [2-8], [11], 

[13-19] and [21-22].  

 

Generalized Fibonacci polynomials have been intensively 

studied for many years and have become an interesting topic 

in Applied Mathematics. Hoggatt and Bicknell introduced a 

generalized Fibonacci polynomials and their relationship to 

diagonals of Pascal‟s triangle [20]. Also after investigating the 

generalized 𝑄-matrix, Ivie introduced a special case [12]. 

Nalli and Haukkanen introduced h(x) Fibonacci polynomials 

that generalize both Catalan‟s Fibonacci polynomials and 

Byrd‟s Fibonacci Polynomials and the 𝑘-Fibonacci number. 

Also they provided properties for these h(x) Fibonacci 

polynomials where h(x) is a polynomial with real coefficients 

[4]. In this paper we study some properties of generalized 

Fibonacci polynomials. 

 

2.  Generalized Fibonacci Polynomials 

Generalization of the Fibonacci polynomial has been done 

using various approaches. Mainly, two certain recursive 

schemes are observed, which associated with generalization of 

Fibonacci polynomials: (1) By changing the recurrence 

relation while preserving the initial terms, (2) By changing the 

initial terms but recurrence relation is preserved. Generalized 

Fibonacci polynomials  
n

u x  are defined as 

     1 2 , 2.
n n nu x xu x u x n    with  

0
au x  and 

 
1

2 1au x   , where a  is  integer.       (2.1) 

 

The first few terms of (2.1) are as follows: 
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0
,( ) au x   

1
2 1,( ) au x    

2
(2 1) ,( ) a x au x     

   
3

2
2 1 2 1( ) ,a x ax au x      

   2

4

3
2 1 2 2 1 ,( ) a x a au x ax x    

 

   
5

4 3 2
2 1 3 2 1 2 (2 1),( ) a x ax a ax au x x        and so on. 

The characteristic equation of (2.1) is
2

1 0,x    which has 

two real roots  

2

4

2

x x 
 and 

2

4

2

x x 
  

Also,  

2 2 2 21, , 4, 2.x x x               

                           (2.2) 

Binet’s formula  

2 24 4
( ) .

2 2

n n

n n

n

x x x x
u x A B A B

      
      
   
   

   

             (2.3) 

Here, 
(2 1)a a

A
 






 
and 

(2 1)
.

a a
B

 






 
 

Also,
 

2

2

( 3 1)a a
AB

  


 
and 0 ( ) .A B u x a                                                               

             (2.4) 

Generating function 

2
0

(2 1 )
( ) .

1

n

n

n

a a ax t
u x t

xt t





  


 
                                                  

           (2.5) 

 

Hypergeometric representation of generating function 

 

By generating function (2.5), we have 

2
0

(2 1 )
( )

1

n

n

n

a a ax t
u x t

xt t





  


 
    

                  
1

(2 1 ) 1 ( )a a ax t x t t


       

                

 
0

(2 1 ) ( )n n

n

a a ax t x t t




    
 

                

 
0 0

(2 1 )
n

n n k k

n k

n
a a ax t t x t

k




 

 
     

 
   

                

 
0 0

!
(2 1 )

! !

n
n k n k

n k

n
a a ax t x t

k n k


 

 

   



  

               

  2

0 0

!
(2 1 )

! !

n n k

n k

n k
a a ax t x t

k n

 


 


      

               

 
  2

0 0

!
(2 1 )

! !

n

k

n k

xt n k
a a ax t t

n k

 

 


     

  

  2

0 0

( ) !
(2 1 ) ( )

! !

n xt kn

n k

u x n k
t a a ax t e t

n k

 

 


      

                 

 
2

0

! ( )
(2 1 ) ,

! !

k
xt

k

n k t
a a ax t e

n k






      

                 

 
2

0

1 ( )
(2 1 ) ,

!1

k
xt

k

n k t
a a ax t e

kn





 
   


  

                 

 
2

0

(1) ( )
(2 1 ) ( 1) .

(1) !

k
xt k

k

k k

t
a a ax t e n

k





      

Hence, 

   2

2 1

0

( ) (2 1 ) 1,  1;  1;  .
!

n
xt

n

n

t
u x a a ax t e F n t

n





    
    

(2.6) 

3. Some Fundamental Properties of Generalized Fibonacci 

Polynomials 

In this section we present some fundamental properties of 

generalized Fibonacci polynomials which are described in [8] 

and [14].  Generating function, binet‟s formula and explicit 

sum formula have been used to establish the results. 

 

Theorem 3.1. Prove that 

1 1( ) ( ) ( ), 1.n n nu x u x xu x n             (3.1) 

Proof.  By generating function of generalized Fibonacci 

polynomials, we have  

  
1

2

0

( ) (2 1 ) 1 .n

n

n

u x t a a ax t xt t






       

Differentiating both sides with respect to ,t we get 

   

 

1

0

2
2

1
2

( )

(2 1 ) 2 1

(2 1 ) 1 .

n

n

n

nu x t

a a ax t x t xt t

a ax xt t
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2 1

0

1
2

1 ( )

(2 1 ) 2 1 (2 1 ),

n

n

n

xt t nu x t

a a ax t x t xt t a ax








 

         


 

 
0

2 ( ) (2 1 ),n

n

n

x t u x t a ax




      

1 1

0 0 0

1

0 0

( ) ( ) ( )

( ) 2 ( ) (2 1 ).

n n n

n n n

n n n

n n

n n

n n

nu x t nxu x t nu x t

xu x t u x t a ax

  
 

  

 


 

 

    

  

 

 

Now equating the coefficient of 
nt on both sides we get, 

1 1 1( 1) ( ) ( ) ( 1) ( ) ( ) 2 ( ),n n n n nn u x nxu x n u x xu x u x         

1 1( 1) ( ) ( 1) ( ) ( 1) ( ),n n nn u x n u x n xu x       

1 1( ) ( ) ( ).n n nu x u x xu x    

 

Theorem 3.2. Prove that  

' ' '

1 1( ) ( ) ( ) ( ), 1.n n n nu x xu x u x u x n                  

          (3.2) 

Proof. By (3.1), we have 

1 1( ) ( ) ( ), 1.n n nu x u x xu x n     

 

Differentiating both sides with respect to ,x obtain 

' ' '

1 1( ) ( ) ( ) ( ),n n n nu x u x xu x u x     

' ' '

1 1( ) ( ) ( ) ( ).n n n nu x xu x u x u x     

Theorem 3.3. Prove that  

' '

1( ) ( ) 2 ( ), 1n n nnu x xu x u x n   and    

' '

1 1( ) ( 1) ( ) 2 ( ), 1.n n nxu x n u x u x n       

Proof. By generating function of generalized Fibonacci-Like 

polynomials, we have 

 

  
1

2

0

( ) (2 1 ) 1 .n

n

n

u x t a a ax t xt t






       

 

Differentiating both sides with respect to t, we get 

 

   

1

0

1
2

2
2

( )

(2 1 ) 1

(2 1 ) 2 1 .

n

n

n

nu x t

a ax xt t

a a ax t x t xt t










    

      



       (3.3) 

 

Differentiating both sides with respect to ,x  we get 

    
2 1

' 2 2

0

( ) (2 1 ) 1 1 ,n

n

n

u x t a a ax t xt t t at xt t


 



        

 

    
2 1

' 1 2 2

0

( ) (2 1 ) 1 1 ,n

n

n

u x t a a ax t xt t a xt t


 




        

 

    
1 2

' 1 2 2

0

( ) 1 (2 1 ) 1 .n

n

n

u x t a xt t a a ax t xt t


 




        

  

            (3.4) 

Using (3.4) in (3.3), we get 

 

 

 

1

0

1
2

' 1 2 1

0

( )

(2 1 ) 1

2 ( ) (1 ) ,

n

n

n

n

n

n

nu x t

a ax xt t

x t u x t a xt t









 



    

 
     

 





 

 

   

1
2

' 1 2 1

0

(2 1 ) 1

2 ( ) 2 (1 ) .n

n

n

a ax xt t

x t u x t a x t xt t




 



    

     
 

Now equating the coefficient of 
1nt 

on both sides, we get 

' '

1( ) ( ) 2 ( ).n n nnu x xu x u x     

         (3.5) 

Again equating the coefficient of 
nt on both sides, we get 

' '

1 1( 1) ( ) ( ) 2 ( ),n n nn u x xu x u x     

' '

1 1( ) ( 1) ( ) 2 ( ).n n nxu x n u x u x                                    (3.6) 

Theorem 3.4. Prove that  

' '

1 1( 1) ( ) ( ) ( ), 1.n n nn u x u x u x n         

 

Proof. By (3.1), we have 

1 1( ) ( ) ( ), 1.n n nu x u x xu x n     
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Differentiating both sides with respect to ,x  we get 

' ' '

1 1( ) ( ) ( ) ( ),n n n nu x u x xu x u x     

' ' '

1 1( ) ( ) ( ) ( ).n n n nxu x u x u x u x                  (3.7) 

 

Using (3.5) in (3.7), we get 

' ' '

1 1 1( ) 2 ( ) ( ) ( ) ( ).n n n n nnu x u x u x u x u x       

' ' '

1 1 1( ) ( ) ( ) 2 ( ) ( ),n n n n nnu x u x u x u x u x       

' '

1 1( 1) ( ) ( ) ( ).n n nn u x u x u x   
                           

(3.8) 

 

Theorem 3.5. Prove that  

' '

1( ) 2 ( ) ( 2) ( ), 0.n n nxu x u x n u x n        

 

Proof. Using (3.5) in (3.8), we get 

' '

1

1
( 1) ( ) ( ) ( ) ( ) ,

2
n n n nn u x u x nu x xu x

       

' '

12( 1) ( ) 2 ( ) ( ) ( ) ,n n n nn u x u x nu x xu x
       

' '

1( ) 2 ( ) ( ) (2 2) ( ),n n n nxu x u x nu x n u x     

' '

1( ) 2 ( ) ( 2 2) ( ),n n nxu x u x n n u x   
                

(3.9) 

 

Theorem 3.6. Prove that  

' ' '

1 1( 1) ( ) ( ) ( 2) ( ), 1.n n nn xu x nu x n u x n          

 

Proof. Using (3.8) in (3.2), we get 

 ' ' ' ' '

1 1 1 1( 1) ( ) ( ) ( ) ( ) ( ),n n n n nn u x xu x u x u x u x         

' ' '

1 1

' '

1 1

( 1) ( ) ( 1) ( ) ( 1) ( )

( ) ( ),

n n n

n n

n u x n xu x n u x

u x u x

 

 

    

 
 

' ' ' '

1 1 1 1

'

( 1) ( ) ( 1) ( ) ( ) ( )

( 1) ( ),

n n n n

n

n u x n u x u x u x

n xu x

       

 
 

' ' '

1 1( ) ( 2) ( ) ( 1) ( ),n n nnu x n u x n xu x      

' ' '

1 1( 1) ( ) ( ) ( 2) ( ).n n nn xu x nu x n u x    
          

(3.10) 

Theorem 3.7. (Explicit Sum Formula) Prove that 

2
2

0

( ) .

n

n k

n

k

n k
u x a x

k

 
 
 





 
  

 
                 (3.11) 

 

Proof.  By generating function (2.5), we have  

  
1

2 2

0

( ) (2 1 ) 1 4n

n

n

u x t a a ax t xt t b ac






        

  
1

(2 1 ) 1 ( )a a ax t x t t


     

      

 
0

(2 1 ) ( )n n

n

a a ax t x t t




      

                

 
0 0

(2 1 )
n

n n k k

n k

n
a a ax t t x t

k




 

 
     

 
   

                

 
0 0 0

!
( ) (2 1 )

! !

n
n n k n k

n

n n k

n
u x t a a ax t x t

k n k

 
 

  

   


   

        2

0 0

!
(2 1 )

! !

n n k

n k

n k
a a ax t x t

k n

 


 


                   

                 
2

2

0 0

!
(2 1 ) .

! 2 !

n

n k n

n k

n k
a a ax t x t

k n k

 
 

  


 


   




 

Equating coefficients of 
nt on both sides, we get

 
2

2

0

( ) .

n

n k

n

k

n k
u x a x

k

 
 
 





 
  

 
        

 

 
Theorem 3.8. For positive integer 0n  , prove that 

2 1 2

1 4

2 2

n

n

n n
u ( x ) ax F , ;  n;  .

x

    
  

 
     (3.12) 

Proof.  By explicit sum formula (3.11), it follows that  

 2

2

0
2

n

n k
n

k

n k !
u ( x ) ax x

k ! n k !











 

          

     

     

2 2
2

2
0

1 1

1 1

n
k

k
n n k

k
k k n

n x
ax

k !n

 
 
  



 


 
   

          

 

   

2
2 2

2
0

1
1 2

2 2

1

n k k

k
n k k

k
k k

n n

x
ax

k !n

 
 
  



     
    

   


 
  



21 

 

          
 

2 2

0

1 4

2 2

k
n

n k k

k k

n n

x
ax .

n k !

 
 
 



       
     
     




  

2 1 2

1 4
Hence,    

2 2

n

n

n n
u ( x ) ax F , ; n; .

x

    
  

 
 

Theorem 3.9. For positive integer 0n   , prove that  

   

 
 

0

2

3 2 2

1 1 2
1 1

2 2 2 2 1

n

nn
n

c

t
c u x

n!

c c n n t
a xt F , ,n ; ; ; .

xt






   
   
  



 

                     (3.13) 

Proof. Multiplying both sides of the explicit sum formula by 

 
n

n

t
c

n!
 and summing between the limit 0n   to n   , we 

obtain 

     
2

2

0 0 0 2

n

n n
n k

nn n
n n k

t n k ! t
c u x a c x

n! k !n k ! n!

 
 

   


  





    

                      

  2

2
0 0 2

n n k

n k
n k

n k !
a c x t

k !n!n k !

 



 





       

                      

 
 

  2

2
0 0

2
2

n

k

n k
n k

xt n k !
a c k c t ,

n! k !n k !

 

 

   
  

  
                           

   

 
 

 

0

2 2

2
0

1
2

n

nn
n

c k k

k
k

t
c u x

n!

n k !
 a xt c t

k ! n k !






 




 







            

 

   
 

2

22
0

1
2 1

k

c

k
k

n k ! t
 a xt c

k !n k ! xt






 
   

   
       

 
 

2
2

2
0

1
1 2

2 2 2 1

k

c k

k k k

n k ! c c t
a xt k !

n k ! xt






     
      

       


                       

 
 

   

2
2

2
0 2

1 1
1 2

1 2 2 1

k

c kk

k k kk

n c c t
a xt k ! ,

n xt






     
      

       
           

 
 

 

2

2
0

1
1

2 2
1

1 2 1

2 2

k
k

c k k

k

k k

c c
n

t
a xt k ! .

n n xt






   
        

  
          

   

  

Hence, 

   

 
 

0

2

3 2 2

1 1 2
1 1

2 2 2 2 1

n

nn
n

c

t
c u x

n!

c c n n t
a xt F , , n ;  ;  ;  .

xt






   
   
  


 

Theorem 3.10. (Catalan’s Identity) Let ( )nu x be the n
th

 

term of generalized Fibonacci-Like polynomials, then 
 
 

                

(3.14)
   

 

Proof. Using Binet‟s formula (2.5), we have  

   

   

 
   

 
 
 

2

2

2

2
2

2

2

2

2

( ) ( ) ( )

( ) ( )( )

2

= 1

( 3 1)
1

 =( 3 1) 1 .

n n r n r

n n n r n r n r n r

n r r r r

n r r r

n r r r

r r

n r

u x u x u x

A B A B A B

AB

AB

a a

a a

 

   

 









    

  

  

 
  




  



     

    

 

 
 

 

 

 

Since  

 
1 1

2 22

(2 1) ( ) ( ) (2 1) ( ) ( )
.

( 3 1)2 1 (2 1)

r r

r r r ra u x au x a u x au x

a aa a a a

    
 

     

 

 

 

 
 

2

2

12

( ) ( ) ( )

1
(2 1) ( ) ( ) , 1.

( 3 1)

n n r n r

n r

r r

u x u x u x

a u x au x n r
a a

 








    

 

 

 
 

2

12

( ) ( ) ( )

1
(2 1) ( ) ( ) , 1.

3 1

n n r n r

n r

r r

u x u x u x

a u x au x n r
a a
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Theorem 3.11. ( Cassini’s Identity) Let ( )nu x be the n
th

 term 

of generalized Fibonacci polynomials, then 

2 1 2

1 1 1 3 1 1n

n n nu ( x ) u ( x )u ( x ) ( ) ( a a ), n .

        

         (3.15)

 

                                     

Proof.  If r = 1 in the Catalan‟s Identity, then obtained 

required result.   

Theorem 3.12. ( d’Ocagne’s  Identity)  Let ( )nu x be the n
th

 

term of generalized Fibonacci polynomials, then 

1 1

1

2

2 1
1 1 0

3 1

m n m n

n m n m n

u ( x )u ( x ) u ( x )u ( x )

( a )u ( x ) au ( x )
( ) , m ,n ,m n.

a a

 

  



  
       

                                                  (3.16)

 

                                         

Proof. Using Binet‟s formula (2.5), we have  

 

   

  

 
  

1 1

1 1 1 1

1 1 1 1

2

2

2

( ) ( ) ( ) ( )

( )( ) ( )( )

( )

( 1)

( 3 1)
( 1)

( 3 1)( 1)

m n m n

n m n n m m n n

m n n m n m m n

n m n m n m n m n

n m n m n

n m n m n

n

u x u x u x u x

A B A B A B A B

AB

AB

AB

a a

a a

 

   

   

   

 

 



     

   

   
 

   

 
   



   

       

       

      

   

   
 

 
 

.

m n m n 





 

Since,

 
1 1

2 22

(2 1) ( ) ( ) (2 1) ( ) ( )
,

( 3 1)2 1 (2 1)

m n m n

m n m n m n m na u x au x a u x au x

a aa a a a

 

     





   
 

    

 

 
, 

we obtain 

1 1

1

2

2 1
1 1 0

3 1

m n m n

n m n m n

u ( x )u ( x ) u ( x )u ( x )

( a )u ( x ) au ( x )
( ) , m ,n ,m n.

a a

 

  



  
       

 

Theorem 3.13. (Generalized  Identity) Let ( )nu x be n
th

 term 

of generalized Fibonacci polynomials, then 

 
 

                                                                         (3.17) 

Proof. Using Binet‟s formula (2.5), we have 

Using subsequent results of Binet‟s formula, we get 

Since, 1

2
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The identity (3.13) provides Catalan‟s identity, Cassini‟s and 

d‟Ocagne and other identities. 

4. Conclusion 

In this paper, we have introduced generalized Fibonacci 

polynomials by variation of initial conditions and presented 

some basic results. Finally explain some fundamental 

properties with derivations by standard methods.  
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