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ABSTRACT 

In past many years, biomathematics population models are constructed based on plausible 

explicit and implicit biological assumptions. In the case that not enough analysis is carried out 

for a well-motivated and plausible model, the result is no or minimum insights gained. In this 

study, existence of Hopf bifurcations of a nonautonomous delayed predator-prey system with 

stage-structure for predator is proposed. Furthermore, conditions of linearized stability and 

Hopf bifurcations for this system are established. Numerical simulations are presented it 

illustrate the feasibility of our main result. 
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1. Introduction 

The predator-prey system is a major mathematics concern in biomathematics field. Over the 

past year, a few studies were undertaken to address in predator-prey system [1-3, 6-8]. It is 

assumed in the model that each individual predator admits the same ability to attack prey. 

However, they did not classified individuals of predator as belonging to either the immature 

or the mature and supposed that the immature population does not feed on prey. This seems 

reasonable for a number of mammals, where immature predators are raised by their parents, 

the rate they attack at prey and the reproductive rate can be ignored. This study is an 

extension of previous efforts, emphasizing on the development of predator-prey system. 

Stage-structured models have also been studied by several authors [4, 5, 9-11]. The model of 

[11] considered was a stage-structured model of one species’ growth consisting of immature 

and mature individuals was analyzed. And the model of [11] considered further assumed that 

the time from immaturity to maturity is itself state dependent. An equilibrium analysis and 

eventual lower bound and eventual upper bound of positive solutions for that model were 

given. In [9], the authors considered the following predator prey system with stage-structure 

for predator: 
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         (1) 

where x(t) is the density of prey of prey at time t; y1(t) is the density of immature predator at 

time t; y2(t) is the density of mature predator at time t; r is the intrinsic growth rate of prey, v1 

is the death rate of immature predator and v2 the death rate of mature predator, constant k > 0 

denotes the coefficient in conversing prey into new immature predator, constant D > 0 

denotes the rate of immature predator becoming mature predator. It is assumed that this rate is 

proportional to the density of immature predator. In [9], the authors studied the asymptotic 

behavior of system (1). When time delay due to gestation of predator and time delay from 

crowding effect of prey are incorporated, they establish the condition for the permanence of 

populations and sufficient conditions under which positive equilibrium of system (1) is 

globally stable. 

However, the effect of prevention functions from predator itself on its growth in number and 

changing environment is not considered in system (1). For more complication conditions, 

such as nonautonomous delayed predator-prey system with stage-structure for predator are 
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desired: 

1 2
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       (2) 

where all parameters are position constants. 

In this paper, our objective is to derive the existence conditions for Hopf bifurcation 

when 1 0  . Linearized stability and Hopf bifurcations for a three-dimensional system are 

scarcely studied. Therefore, linearized stability and Hopf bifurcation of system (2) is based on 

environmental factors in theory and application. 

 

2. The existence of Hopf bifurcation 

Let * * *

1 2( , , )x y y is a positive equilibrium of system (2) with 1 0  .Then * * *

1 2( , , )x y y  satisfies 

the following equations: 

2

2
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2

1 2 2 2 2

,

( ) ,

.

r ax by

kbxy D v y k y

Dy v y k y

 
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
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              (3) 

When system (3) has a unique positive solution, system (2) has a unique positive equilibrium. 

Lemma 2.1. Assume that 

(H1): 1 2( )D v vr

a kbD


                                      (4) 

Then system (2) has a unique positive equilibrium. 

Proof. Form (3), we have 

2 2 2 3 2 2

1 2 1 2 2 1 2 1 2 2 2 1 2[ ( ) ] 2 ( ) 0aD D v k D kb ak v y ak y ak v k y aD D v v rD kb          

Let 

2 2 2 3 2 2

1 2 1 2 2 1 2 1 2 2 2 1 2( ) [ ( ) ] 2 ( )F y aD D v k D kb ak v y ak y ak v k y aD D v v rD kb         , 

for 0y  . 

Since 
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2
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then 

there exists a point (0, )
r

b
  such that ( ) 0F   . By derivatives, it shows that '( ) 0F y  for 

y > 0. Hence F(y) has a unique positive zero point, that is (3) has a unique positive 

solution *

2y . Thus from 2

1 2 2 2 2Dy v y k y  , we obtain *

1 0y  . From r = ax + by2, we have 

*

2 0
r by

x
a


  . Therefore, system (2) has a unique positive equilibrium. 

Then consider the existence conditions of Hopf bifurcation when 1 0  . 

Taking *x x x  , *

1 1 1y y y  , *

2 2 2y y y   and replacing 1 2, ,x y y  by x, y1,y2, respectively, 

and taking 2 =  , then system (2) with 1 0  , it becomes: 
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2
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We assume that 

(H2): 2

1 22 ,B B  

(H3): 4 5 ,B B B4 > B5; 
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(H4): 2 2 2 2

1 2 2 1 5 3( 2 ) 3( ).B B B B B B     

Then the characteristic equation of (5) is 

3 2

1 2 3 4 5 0B B B e B e B                    (6) 

Letting ,  ( 0)i    ,we obtain 

2

1 3 4 5

3

2 3 4

sin cos 0,

cos sin 0.

B B B B
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         (7) 

From (7), we obtain 

6 2 4 2 2 2 2 2

1 2 2 1 5 3 4 5( 2 ) ( 2 ) .B B B B B B B B            (8) 

Let 2 z  , then 

       3 2 2 2 2 2 2
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5 4(0) 0,F B B    ( ) 0,F   then there exists a point (0, )  such that ( ) 0F   . 

Assume that 2

1 2( )( ) ( ),z z A z A F z    where A1, A2 are two constants determined later. 

Then from (H3) and (H4), we have 2

1 1 22 0A B B    and 
2 2

4 5
2 0.

B B
A




  Therefore 

F(z) has a unique positive zero point z  , that is equation (9) has a unique positive root 

z  . From (7), we have
2

1 5

2 2 2

3 4

sin( ) ,
B B

H
B B


 




 


where 

4

3

tan
B

B



 . Thus

arcsin 2
n

n

H n 




  
 or

arcsin 2
,n

H n 




  
 1,2, .n   

Letting, ( ) ( ) ( )i       be the roof of Eq. (6), we have the following result. 

Lemma 2.2 Assume the (H2), (H3) and (H4) hold. Then the following transversally condition 

hold: 

( )

0.
n

dRe

d

 


 




 

Proof. By (6), differentiating with respect to , derive that 
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It is obvious that the value of 
Red

d




 at 

ni   is 

1 1

2 2
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AC BDd

d A B

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
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

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where 

2

2 3 33 cos cos sinn n n n n nA B B B              
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2
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B B B B

B B B B B B
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Therefore 

2 4 2 2 2 2
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B B B B B B

d
 


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Since 

2 2 2 2 2

1 2 2 1 5 34( 2 ) ) 12( 2 ].nB B B B B B     
 

Then 

2 2 2 2

1 1 2 5 1 5 2
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1 5 2 1 5
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                    [2 sin ( )][ ( )]

n n n n n

n n n n n n

AC BD B B B B B
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      

       
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Re
/ 0.

n

d
 




   

This completes the proof of Lemma 2.2. 

By above discussion,the Lemma below is derived. 

Lemma 2.3 If (H1)-(H4) hold, then there exists real sequence{ }n , n = 0, 1, 2, …, satisfying, 

1n n   ,and 
2 arcsin

, 0,1,2,...,n

n H
n

 




 
   

such that 

(i) all root of Eq (6) have strictly negative real parts for 
0(0, )  ; 

(ii) when 0  , Eq (6) has a pair of pure imaginary root 0i which are simply, and all other 

roots have negative parts; 

(iii) when 0  , Eq (6) has at least one root with strictly positive position real part. 

Applying Lemma 2.3 above and Theorem 1.1 in [5], we have 

Theorem 2.1 If (H1)-(H4) hold, then system (2) when 1 0  has a Hopf bifucation at 

n  ; n = 0,1, 2,…. 

Theorem 2.2 In system (2) with 1 0  , let (H1)-(H4) hold. 

(1) If 00    , then * * *

1 2( , , )x y y is asymptotically stable. 

(2) If 0  , then * * *

1 2( , , )x y y is unstable. 

Moreover, the characteristic equation (6) always has a root i     such 0  . 

 

3. Conclusions 

In this study, predator-prey system with stage-structure for predator has been developed. It 

has been combined with the effect of prevention functions from predator itself on its growth 

in number and changing environment on the nonautonomous delayed predator-prey system. 

Then existence of Hopf bifurcations of the system (2) is proposed. Furthermore, conditions of 

linearized stability and Hopf bifurcations for this system are established. 

We would like to mention here that an interesting but maybe challenging problem associated 
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with the study of system (2) should be the uniqueness and global stability of positive solution. 

We leave this to future work. 
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