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Abstract 

An estimation procedure for Ornstein–Uhlenbeck process drift and volatility coefficients is given. 

The procedure is based on the maximum likelihood principle andplug-in-estimator.  
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Ornstein-Uhlenbeck processes are known to play a significant part in such fields as quant 

mechanics, neuron theory, stochastic control, chemical reactions, financial mathematics, etc. ([1-

4]). This process and its extensions have been studied in detail  (see, e.g., [5–7] and references 

given in these publications).  
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It should be noted, however, that the problems of statistical parameter estimation have not been 

thoroughly investigated yet. Steps made in this direction can be found in [8–12]. A general 

analysis of the obtained results is given in monograph [13]. 

The aim of the present work is to develop methods for statistical estimation of  drift and volatility 

coefficients of Ornstein–Uhlenbeck type statistical differential equations. Drift coefficients will 

be estimated using the maximum likelihood method while for volatility coefficients we use the 

least squares method. Moreover the equation itself (and Ornstein–Uhlenbeck process, 

respectively) will be considered in infinite space. In this case an estimation technique from [14-

15] will be used. Such estimators, as it results from the above-mentioned works, are consistent 

and asymptotically normal. Before we state the given problem consider the necessary concepts 

and results of the above-mentioned works.  

Let *     + denote a fixed complete probability space. Let    be a separable reflexive Banach 

space,           ,   beBorel –algebra in  –ში.  is also a separable Banach space, 

   is its subset, which plays the part of a parametric set. Consider a random element   

 (   )         taking values in the set  . Suppose we have identically, same as 

 distributed independent observations            . Let θ be an unknown parameter that we 

have to estimate on the basis of the given observation by means of a  statistics  

 ̂ (           ) . If we consider the sample               as the vector     (           ), 

we obtain a random vector taking values in    . Thus we have, respectively, a statistical structure 

of independent random elements. Naturally, on a *     +-measurable space the distribution of   

will be formed by the equality 

  ( )   (   ( ))       

As we can see,   ( )is a function of two variables: one variable takes set  values, while the other 

is a space parameter. In a number of cases the above function is smooth with respect to both 

variables. We will show what is ment. Let       ( )    (   )       We say that    ( )  is 

differentiable with respect to the set variable in the direction of the vector  if there exists an 

alternating measure    ,  such that for every    the following equality 

     ( )    ( )       ( )   ( ),      
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is true. It can be easily shown that        and thus there exists a Radon-Nikodym derivative  

    (  )

  (  )
   (   )  

Function    (   )  is called logarithmic derivative.  

We should note that we have defined the logarithmic derivative in the direction of constant 

vectors. This definition can be extended in the direction of the vector field as well. It is also 

interesting to see that the notion of logarithmic derivative is closely connected to the partial 

integration formula in infinite-dimensional spaces (see [16]).  

Let     be a separable Hilbert space and the plug-in-operator be of Hilbert-Schmidt type. 

Then we can consider a Hilbert-Schmidt structure (or, in other words, the Gelfand triple)   

     

If we view the function   ( )  asparameter function for a fixed  , then using a standard 

procedure we can define a derivative of this function by means of a parameter in a certain 

specific direction     . This derivative will be also denoted as     ( )    This is an 

alternating measure absolutely continuous with respect to    . The logarithmic derivative as the 

corresponding Radon-Nikodym derivative in the given class of measures   ( )   is called 

according to the parameter. It is denoted by the symbol   (   ). Hence 

  (   )  
    (  ) 

  (  )
  

Suppose we have a random element    with the distribution   ( ).  Obviouslythe value besides 

the random parameter also depends on –:    (   ) It is very important that there is a 

connection between the two above-defined types of logarithmic derivatives.In particular, it is true 

that. Theorems 1-3 are proved in reference ([15]), but I have changed their forms to use them 

more effectively to prove theorems 4-5. 

Theorem 1 ([15]).Let the following conditions be satisfied (the so called regularity conditions): 

1) For elements    (   ) there exists a derivative 
  

  
   in the direction of the vector 

   . This is a linear map    . Besides, suppose ‖   ‖    (   )  

2) The function ( )   *(  )     + is strictly continuous for each pair(   ); 
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3) The measure family *      + has a logarithmic derivative -   (   ) for a unity of 

parameter directions which constitute a dense linear subclass in the space    .  Besides, 

  (   )    (    )         ; 

4) The above family *      +  has a logarithmic derivative -   (   ) , for a class of 

directions the unity  of which constitutes a dense subspace of the space  .Besides,  (   )  

  (    )              

Then the following equality 

  (   )     .      ( )/  

is true, where      ( )   *(  )     +. 

It follows from the results of  [15]  that the parameter   can be estimated using the infinite-

dimentional version  of the maximum likelihood principle.  

Suppose we have        -measurable map (statistics) and   ( )     ( )  The infinite-

dimentional version of the Cramer-Rao inequality is true. In particular, 

Theorem 2 ([15]).Let Conditions 1-4 of Theorem 1be satisfied. Suppose the following equality 

  ∫  ( )  (  )

 

 ∫  ( )

 

    (  )  

is true. Then 

    ( )  
(  

 ( ))
 

    
 (   )

 
(  

 ( ))
 

    
 .   (  

    )/
  

Note that the expression  ( )      
 (   )      

 (   (  
    )) is called the Fisher 

information. 

Now consider the repeated statistical structure 

{      *      +}  {    *      +}
 
  

Theorem 3 [15]. Suppose in the statistical structure {    *      +}  the measure family  

*      + has a logarithmic derivative dense everywhere in the direction of the parameter   .  
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Then in the repeated statistical structure the class of measures*      +also has a logarithmic 

derivativewith respect to the parameter (       ) in the direction 

  ((       ) (       ))and 

  ((       ) (       ))  ∑   (    )

 

   

  ∑   (    *  
        +)

 

   

  

The given results allow us to establish the maximum likelihood principle for the general 

case.Since in the future we will only have to estimate a finite number of parameters we will show 

the principle in the case when the parametric space is finite-dimensional. 

Consider the equation 

∑   (    )

 

   

    

For every    . If this equation has a solution with respect to  , such that  

 

  
  (   ) 

is negatively defined, then the solution iscalled maximum likelihood estimation ofthe unknown 

parameter  . 

It follows from the results of [15] that maximum likelihood estimation is consistent and 

asymptotically normalparameter estimation.  

The basic point for the application of this technique is to find a logarithmic derivative for the 

given class of measures. We will present a simple tool helping to calculate the logarithmic 

derivative.  

Theorem 4.Let the class of measures*      + be dominated by a –finite measure and the 

Radon-Nikodym derivative 
   

  
( )   (   )be continuously differentiable with respect to     

Then the class of measures *      +has a logarithmic derivative with respect to the parameter 

  (   ) and the following equality  is true:  

  (   )  
     (   ) 

 (   )
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The proof is simple. It follows from an obvious implication 

   

  
( )   (   )  

     

  
( )       (   )   

Let *     + be a fixed probability space.        is a triple of Hilbert spaces with quasi-

kernel imbedding. In these spaces we write the index of the space itself as the index of the scalar 

product and norms. The plug-in-operator      is the Hilbert-Schmidt operator. Coupling of 

elements of spaces  and  can be expressed by a scalar product of the space  . Every space to 

be examined is assumed to be separable, so that         

Let be a linear, possibly unbounded operatorin   the domain  ( ) of which is dense in . 

Furthermore we assume that   represents a strictly continuous semigroup generator denoted in 

the following way:  ( )      Besides, let        be a Hilbert-Schmidt type operator  

and      be a Wiener process in   . 

In the Hilbert space triple        consider  an Ornstein–Uhlenbeck type stochastic 

differential equation 

                                                                                    ( ) 

where    is an unknown parameter. It is called the volatility parameter.Suppose we have 

            observations of the process    The observation vector is  

 ( )  (          )   where:                

Equation (1) should be understood as a symbolic representation of the following integral equality:  

         ∫   (   )     

 

 

                                                           ( ) 

Correspondingly,    is a Gaussian process in  . 

Let the operator    (we call it the drift operator) have the form : 

  ∑     

 

   

                                                                          ( ) 
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            are known linear operatorsand either all or some of the operators can be 

unbounded, but the domain of definition of each of them includes (or coincides with) ( ).In 

expression (3)             are unknown parameters to be estimated based onobservations 

 ( ). 

First we deal with the estimation of the drift parameters.We estimate them using the maximum 

likelihood method described above.It is well-known (see, e.g. [17])that this method is ineffective 

when volatility coefficientsare estimated, but we use it for the estimation of the 

parameters            . Then by means of the “plug-in-operator”we estimate volatility 

using the least squares method. 

Let  (          )  denote the vector of unknown parameters.Here and in the forthcoming 

the upper index denotesvector (matrix) transpose.The solution   of Equation (1) represents a 

continuous process and it belongs to the space of continuous functions  ,   -. In this space we 

take –algebra ,   - of Borel sets. The random process (Ornstein–Uhlenbeck process)   on a 

measurable space* ,   -  ,   -+is distributed by the following equality 

  ( )   *   ( )+    ,   -  

In order to apply the maximum likelihood principleit is necessary to calculate the logarithmic 

derivative of this class of measures.The logarithmic derivative can be calculated both with 

respect to the parameterand with respect to the set variable. It follows from the connection 

established by Theorem 1. In our case it is easier to show it using Theorem 4.So we calculate the 

logarithmic derivative with respect to the parameter.Since the parameter vector is an element of a 

finite-dimensionalspace it makes no difference in which direction we performderivation.We are 

goingt to use the Radon-Nikodym derivative. 

Integrate Equation (1) and rewrite it in the following way  

         ∫      

 

 

                                                                        ( ) 

where 
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  is the so called “white noise” in the space   (i.e. this is the corresponding measure of the 

Gaussian process in  , the correlation operatorof which is unit operator in  ). Obviously, the 

average of    is 0and the correlation operator equals                               

    operator. (4) is a transformation into the Hilbert space and it is possible to use the theorem of 

measure transformation theorem  (see [18])for it.According to this theorem, if the operator  is 

bounded, the measure  is equivalent to the measure ,  where  is the distribution of the 

process  .We can write the Radon-Nikodymderivative  : 

 (   )  
   

  
( )   

    { 
 

  
∫(         ) 

 

 

 
 

   
∫‖     ‖ 

   

 

 

}                                   ( ) 

In order to apply Theorem4  introduce the following notation. 

  (          )    (          )  (   )     

 
  

where 

   ∫(          ) 

 

 

            

    ∫〈        
     〉 

 

 

                

Consequently, 

 (   )   
 

  
  

 

  
    

It follows that 

  (   )

  
  

 

  
(

         
         
       
                    

)  
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As one can see, the latter is a negatively defined matrix. 

Since all conditions of Theorem 4 are satisfiedit is necessary to find the solution of the maximum 

likelihood equation: 

 {( 
 

  
  

 

  
  ̂ *   ( )}     

The solution of this equation is 

 ̂  ( {   ( )})
  

( {   ( )})                                                          ( ) 

As it follows from (6),the estimator of the operator can be written in the following way 

 ̂  ∑  ̂   

 

   

                                                                        ( ) 

The results of [15] imply that the estimator (7) is consistent. Moreover this work implies that the 

asymptotic normality theorem is also true and 

√ ( ̂   )   (     ( ))  

where   ( ) is Fisher information. 

So that the following theorem is true. 

Theorem 5.Let for Ornstein–Uhlenbeck Equation  (1) the following conditions be satisfied: 

1.  is a linear, possiblyunbounded, operator in , with the domain of definition ( )dense in 

 .  It has the form of (3). Besides,    is a strictly continuous semi group generator ( )       

2.       is a Hilbert-Schmidt type operator linear operator while   is bounded; 

Then estimator (7) is consistent for the drift parameter and asymptotically normal. 

Example. Let                              Then Formula (6) leads to a 

classical formula  (see [19]) 

 ̂  
 .∫      

 

 
  ( )/

 .∫   
     ( ) 

 
/

  



128 

 

When the consistent estimator   ̂ ,  of the operator  has been constructedwe can construct the 

estimator of the parameter . We will need the so called“plug-in-estimator”. 

Integrate Equation (1)  

      ∫  ̂   

 

 

         

Square both sides of itand apply conditional expectation operator.We have 

 ̂ 
  

 ‖      ∫  ̂   
 

 
    ( )‖

 

 

 ‖     ( )‖ 
   

Since ̂ is  a consistent estimator of the operator  ,  ̂ 
  is  a consistent estimator of the true value 

of    
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