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Abstract

This paper at first isolates a group of Monty Hall problems, in which all doors are

exhaustively chosen, swapped and revealed one by one, then introduces a new variant of

briefer tree diagrams for the conditional probability calculation of three-doors and four-doors,

and finally gives the recurrence form for n-doors and its closed generation function. Some

resulted defusing advantages and interesting properties have also been discussed.
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1. Introduction

The Monty Hall Problem, about which over 75 papers have been published in academic

journals and the popular press, is no doubt one of the most popular probabilistic or statistical

topics in mathematic classes of universities and colleges. It was originally posed in a letter by

Steve Selvin to the American Statistician (Selvin 1975), and then became famous as a

question from a reader's letter quoted in "Ask Marilyn" column in Parade magazine (vos

Savant 1990). The question is “Suppose you're on a game show, and you're given the choice

of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1,
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and the host, who knows what's behind the doors, opens another door, say No. 3, which has a

goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch

your choice?”

To plausibly describe and solve the problem, many assumptions have been made, for example

the door indexing, the ways of a contestant picking a door, and the ways of the host opening

another door (vos Savant 1991), and these assumptions in many textbooks and teaching

materials did contribute decently to statistic education. However, they have been at the same

time distracting quite a few clever minds to consume efforts in appreciating either the role of

the contestant or that of the host (Mlodinow 2008), and thus confused many people including

some of my students, colleagues and friends.

From the dozens of existing variant Monty Hall problems we isolated a special group of

exhaustive problems, including the very original three-door one, in which no doors are

indexed, no probabilities or preferences in picking or revealing doors are considered, and all

doors are simply chosen, swapped and revealed one after one. In details, for n-doors with one

car and n – 1 goats behind, first the player picks one door, second the host reveals another

door with a goat behind, third the player swaps her or his chosen door with one from the left

n – 2 doors, forth the second and the third steps iterate until there are only two doors left, and

finally after the last swap the host reveals the left door and the player’s chosen door to show

the result. This isolation surprisingly led to students’ much better understanding and some

numeric properties of further interests, as well as solutions of briefer tree diagrams to the

conditional probability calculation, the recurrence form for n-doors, and its closed generation

function.

2. Solutions to Three-doors and Four-doors

Tree diagrams similar to that in Figure 1 are often employed to explain the direct calculation

for conditional probability of three-doors Monty Hall Problem (Carlton 2005). Let C denote

the event that the car is behind Door #2; the a priori probability of C is P(C) = 1/3. Let D

denote the event that Monty opens Door #3; according to Figure 1.
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Hence, by Bayes’ Rule,
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Therefore, the car is hidden behind the remaining door two-thirds of the time.

Figure 1: Tree diagram for the three-door Monty Hall Problem

However, arguments remained among students about the probabilistic distribution of Monty

revealing the different goat doors even after my proof that Monty’s preferences makes no

differences if unknown to the contestant. All things turned much better when I attributed this

confusion to the door indexes, modified the problem to be an exhaustive version, and

introduced the briefer tree diagram in Figure 2, where the doors are not indexed, only the

player’s picking and swapping are shown, and the role of Monty’s revealing doors is simply

hidden.

After her or his first choice from a set of one car and two goats, the contestant either gets in

hand a car with the a priori probability of P(C) = 1/3 or a goat with the a priori probability of

P(G) = 2/3, then Monty removes one goat from the set with a fixed probability of P(M) = 1,

at last the contestant swaps for either the left goat with a conditional probability of P(S1G|C,M)

= 1 or the car with P(S1C|C,M) = 1. Hence, by always switching the player wins with a joint

probability of P(W) = P(G) * P(M) * P(S1C|C,M) = 2/3 * 1 * 1 = 2/3, and loses with P(L) =

P(C) * P(M) * P(S1G|C,M) = 1/3 * 1 * 1 = 1/3.
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Figure 2: Briefer tree diagram for 3-doors Figure 3: Briefer tree diagram for 4-doors

In the same way, we can construct the briefer tree diagram for the exhaustive four-door

Monty Hall Problem in Figure 3, and calculate the probabilities.
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3. Solutions to N-doors

We can now generalize exhaustive Monty Hall Problems from three and four doors to n doors,

the diagram tree for which is shown in Figure 4. Thanks to its conciseness, this tree could be

applied to five-nine doors easily, but the complexity increases exponentially when the door

number goes up. However, the tree shows such a clear recurrent structure, illustrated in Figure

4 with dashed and dotted closures, that induction by drawing another diagram tree for n+1

doors should lead to the simple proof for the existence of a Monty Hall recurrence.
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Figure 4: Briefer tree diagram for n-doors

For the convenience of further calculation, let’s denote the player’s losing probability in the

exhaustive n-door Monty Hall game P(L) as Mn, the player’s winning probability P(W) as 1 -

Mn, the probability of the player’s ending up with a goat in the dashed closure as An-2, and that

in the dotted closure as An-3, so that we have the Monty Hall recurrence of the form

�� � �t 㠵 ���t� � 㠵 ���t�

where �� � �t㠵 ���t㠵 � 㠵 ���t�.

From Figure 2 and Figure 3, we knowM3 = 1/3 and M4 = 3/8, hence we have
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and by the recurrence we have A2 = ½ * A1 + ½ * A0, so we can get the initial conditions for

the Monty Hall recurrence form as A0 = 1 and A1 = 0, and start to find the closed generating

function for An. First, multiplying both sides of �� � �t㠵 ���t㠵 � 㠵 ���t� by n! yields
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Hence the player’s winning probability � � � 㠵 t �� � 㠵 t ��′
� t㠵 �

�풸� .

4. Some Interesting Properties

There are quite a few interesting properties in exhaustive Monty Hall Problems, for example

the Fibonacci sequences of the nodes in the briefer tree diagram for n-doors. The numbers of

expanded nodes before each swap of the contestant form a Fibonacci sequences starting from

2, and the numbers of car nodes and goat nodes expanded for the same time form a pair of

adjacent numbers in the Fibonacci sequence. Two other properties especially interested us.

First, from the solution process above we simultaneously proved that Mn = An, which could

also be proved inductively.

Problem: Given �� � �t㠵 ���t� � 㠵 ���t� and �� � �t㠵 ���t㠵 � 㠵 ���t� , show

that Mn = An for all n > 2.

Basis: From the briefer tree diagrams in Figure 2 we know M3 = 1/3; replacing n – 2 with n in

the dashed closure in Figure 4 yields the following tree diagram in Figure 5 for An;

Figure 5: Tree diagram for An

Substituting 3 for n, we get A3 = 1/3, which is calculated along the losing path; thus we have

M3 = A3 = 1/3
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Inductive step: Assume thatMk = Ak holds, and now showMk +1 = Ak +1 also holds.
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Thereby showing Mk +1 = Ak +1 holds, and by mathematical induction Mn = An holds for all

natural n > 2.

The other interesting property is that with n approaching +∞ the limits of Mn could be

calculated according the ratio of derangement to permutation,

lim
��t

�� � lim
��t

��′

�
t 㠵 �

�풸� � 㠵 � � ′����榙�

This means that with a large enough number of doors in an exhaustive Monty Hall problem

the contestant tends to lose the game by a probability of P(L) = 0.3679 while winning the

game by P(W) = 1 – 0.3679 = 0.6321.

5. Conclusion

In this paper we isolated a group of Monty Hall problems, which in fact have also been

resorted to by other mathematic teachers while teaching though not explicitly defined or

generalized to n-doors. For example, Carlton (2005) shared his experiences.
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Before presenting a formal solution to the Monty Hall Problem to my students, I find that it

helps to give an intuitive explanation for the 1/3 - 2/3 solution. Imagine you plan to play Let’s

Make a Deal and employ the “switching strategy.” As long as you initially pick a goat prize,

you can’t lose: Monty Hall must reveal the location of the other goat, and you switch to the

remaining door - the car. In fact, the only way you can lose is if you guessed the car’s

location correctly in the first place and then switched away. Hence, whether the strategy

works just depends on whether you initially picked a goat (2 chances out of 3) or the car (1

chance out of 3).

Our experiences with exhaustive Monty Hall problems, especially with n-doors (n > 3), have

indicated even greater defusing advantages, and the new variant of briefer tree diagrams

provides students with a simpler and more feasible manual method to calculate the

conditional probability of three till nine door exhaustive problems. The recurrence form for n-

doors and its closed generation function lay down the basis for more efficient computing by

means of computer software, and the Appendix Table gives most of the results of both P(W)

and P(L) for three to one billion doors. Furthermore, some interesting properties, such as the

Fibonacci sequences, the hidden Derangement numbers, and limits of � � � 㠵 t 㠵 � and

� � � 㠵 � as n approaching +∞, all implicate the mathematical beauty of exhaustive Monty

Hall Problems and greater significance for further academic research.
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Appendix Table: Some sampled exhaustive Monty Hall probabilities

Number of doors Winning probability Losing probability

3 0.666666667 0.333333333
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4 0.625 0.375

5 0.633333333 0.366666667

6 0.631944444 0.368055556

7 0.632142857 0.367857143

8 0.632118056 0.367881944

9 0.632120811 0.367879189

10 0.632120536 0.367879464

20 0.632120559 0.367879441

30 0.632120559 0.367879441
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