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Abstract

Lung cancer is one of the most aggressive types of cancer, and the possibility to detect it at an

early stage can save a lot of patient lives worldwide. Building an automated lung cancer

detection system can help to speed up the process of cancer detection and save human lives.

This article considers three different approaches used to design and build lung cancer detection

systems. Mainly, these approaches use either the 2D convolutional neural networks (CNN) with

a multi-instance learning task, 2D CNN with recurrent neural networks, or detection system

pipelines with 3D CNNs, which can consist of single or multiple stages. The article presents the

results of the experiments for each of the approaches. Finally, the obtained results and results

from other recent papers are combined to compare all existing lung cancer detection system

architectures and evaluate how different design decisions impact overall system accuracy.
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1. Introduction

This paper is an extension of the original work presented on the SAIC 2018 conference [1]

and provides a more detailed review of the considered end-to-end models and adds more

detailed results and comparison. The main purpose of the paper is to consider the architectures

of a computer-aided lung cancer detection system and investigate how neural network

architecture and system pipeline design impact overall classification accuracy.

The paper consists of four sections that give full information about lung cancer detection

system specifics. The first section contains three subsections, which describe approaches used

to build a lung cancer detection system. Also, the second section contains information about

related works and convolution neural networks (CNN) trained in the scope of the paper

research. In the second section, we describe the type of data usually used for lung cancer

screening systems and core datasets used to train neural networks. The third section describes

common preprocessing steps used to train CNN in this article as well as results comparison.

Finally, we provide a conclusion with a comparison of the different lung cancer detection

system architectures and discuss which of them provides the best accuracy. Also, we conclude

which design decision impacts overall system accuracy.

2. 2. RelatedWorks

Lung cancer screening uses CT scans of the human chest, which represent a high-resolution 3-

dimensional image. This image used as input data for the lung cancer detection system, which

is usually built using artificial neural networks. This fact imposes memory and computational

constraints to the detection system since the whole CT scan cannot be fit into the video card

memory for a large enough model, and 3D data computation and memory usage grows

cubically. This section discusses strategies that are issued to work with such high-resolution

data and describes models used to get experimental results presented at the end of the work as

well as some of the state-of-the-art models from recent publications.

2.1. Two-dimensional convolution neural networks with a multi-instance learning task

A first and most straightforward strategy to build an end-to-end lung cancer detection system

is to process each slice of the CT scan independently and then combine results using some

predefined rules. In this case, the detection system works with 2D data, which consumes

much less memory than an overall 3D patient image created from the CT scan slices. Also,

such a strategy allows reusing the most popular pre-trained 2D convolution neural network

(CNN) architectures like ResNet [2], DenseNet [3] or Xception [4] to speed up the training
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process and improve the overall system accuracy. Each CT scan slice can be annotated, and

result labels can be used to consider each slice independently.

However, Data Science Bowl 2017 (DSB 2017) dataset, which is extensively used in this

research, has only one label per an entire patient’s CT scan, which makes such a naive

approach impractical. Therefore, the problem should be considered as a multi-instance

problem, where the instance is one of the slices in the CT scan. The final decision about the

cancer prediction can be made using a general multi-instance assumption, which says that if

there exists an instance that is positive, the whole bag is positive. The whole bag is negative if

all instances are negative [5].

In this paper, we follow the approach used for mammogram classification problem with

sparse label assignment [6], except for the fact that trained model uses an entire slice from the

CT scan as a single instance instead of the image patch, and final loss is calculated based on

all slices in the patient scan that were passed through CNN. As a core model, we have used

DenseNet [3], with modification to follow MIL task with sparse label assignment approach.

Let us assume that we have an input patient scan S, which contains k images. The goal of the

model is to predict whether a patient’s CT scan contains somewhere a malignant pulmonary

nodule or not. Given that and assuming that the model considers an entire CT scan, we are

solving a binary classification problem. For each CT scan slice, the output cancer prediction

can be written as

�� � � � � �tt �� � t (1)

where � is a sigmoid function, � is a logistic regression weight coefficient, CNN is a function

which represents convolution neural network forward pass, �� is the image in the patient scan

at position�, and t is a bias.

Given cancer probability for each image in a patient scan, the overall cancer presence

probability can be written as

� � � �ͳ�ȁ� � �h�⸷��ȁ��ȁtttȁ��� (2)

� � � 䁐ͳ�ȁ� � � � �h�⸷��ȁ��ȁtttȁ��� (3)

where � is a true label from the dataset.

Finally, the loss function for the MIL model can be written as:

� � �
t ���

t � ��⺂ � ��ͳ�ȁ� � � ��� �
� (4)
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where t – is the number of patient scans, � is a sparsity factor which represents a tradeoff

between image importance and cancer sparsity assumption, and ��� �
is the �� norm of each

image scan output vector.

The resulting loss is used to train a two-dimensional convolution neural network. In the scope

of the paper 2D DenseNet [3] pre-trained on the ImageNet dataset were used to initialize the

neural network at the beginning of the training process. During the training, the output of

DenseNet for each CT scan slice was accumulated and passed to the loss function with a true

label. Finally, this approach gives an accuracy level of only 0.62. Mainly, low accuracy value

can be explained by the fact that CNN loses the 3D nature of information, which is an

important part of building understanding about pulmonary nodule malignancy.

2.2. Recurrent neural network with attention and 2D CNN

To mitigate the problem of losing spatial information in the previous approach, we can take

inspiration from the real-word radiologist, who decides whether a tumor or suspicious

abnormal pulmonary nodules are present or not on the CT scan. Usually, a radiologist

examines CT scan slices one by one, carefully combining information from neighborhood

slices to understand pulmonary nodule malignancy. The same strategy can be achieved in a

computer-aided lung cancer detection system by combining CNN and recurrent neural

networks (RNN) in one model. In this case, we can still use transfer learning since we can

reuse pre-trained 2D CNNs on ImageNet dataset like DenseNet [3]. Meanwhile, RNN can

combine slice level features to retrieve features dependencies and spatial information. In the

model, LSTM [7] or GRU [8] are commonly used as a recurrent neural network. An excellent

example of applying such a strategy is shown by [9] work, which uses CNN, LSTM, and

attention mechanism to achieve human-level accuracy on the brain tumor classification

problem. As the work suggests, it leads to human-level performance, at least for the brain

tumor classification problem. Nevertheless, the same approach can achieve great results in the

lung cancer classification problem as well. In this paper, a similar neural network has been

applied to the lung cancer detection problem. Trained model is shown on figure 1.
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Figure 1. LSTM + DenseNet with attention mechanism neural network for lung cancer detection.

The main advantage of the method is that the neural network can learn features and their

spatial dependencies in an end-to-end manner. Besides, the model allows for reusing

radiologist knowledge about malignant nodule location. It helps speed the training process

and improve overall model accuracy. Our experiments show that, without an attention

mechanism, these models do not give better results than the end-to-end 3D convolution neural

network discussed in the next section.

The main drawback of the discussed approach is a requirement for additional labeling to

identify the location of the pulmonary nodules on the CT scan. Typically, additional labeling

is an expensive part of the detection system development since labeling requires a massive

amount of expert working time. Also, the model does not provide information about the

location of the malignant pulmonary nodule, which can make a radiologist not to trust the

detection system and thus avoid its usage.

2.3. Three-dimensional convolution neural network for lung cancer detection

The next available strategy and the most popular recently is to use the 3D nature of the CT

scans and work with the data as with three-dimensional objects. For lung cancer detection

problem, a CT scan represents a 3D view of the human chest, which contains an image of the

patient's lungs. When all slices of the CT scan are stacked together, they form an image of the

three-dimensional representation of the human chest. The resulting image can be used as an

input to the neural network. Nevertheless, in addition to the lung tissue, the resulting image

contains an image of vessels and bones, and therefore, typically lung cancer detection system

uses additional preprocessing steps that clean them to simplify learning patterns. In case there

is a massive amount of data available for the training stage, and there is enough computation

power to build a large enough neural network, the stacked 3D might be used without vessels

and bones cleaning steps which can allow CNN to learn more complex features.
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To build a neural network that works with three-dimensional data, we can use 3D

convolution operation and build 3D convolution neural networks like C3D [11] or 3D

DenseNet [12] on an entire patient scan. In the scope of this article, these neural networks

were trained and achieved 0.63 and 0.70% accuracy, respectively. 3D CNN networks were

learned based on the resized 3D image since the original 3D view with a 3D CNN does not fit

into the video card memory. An example of 3D DenseNet architecture can be found in figure

2.

Figure 2. 3D DenseNet architecture trained on the entire 3D patient image created from CT scan slices

As results show, building and training model directly on the 3D image of lungs does not show

good-enough results. One of the reasons for this is that there is a risk of losing some details

during the resizing 3D scan to lower resolution, which might be useful to build stronger

features. Also, there are not enough data in training set to allow the neural network to fetch

more background about the nature of the malignant nodules. Therefore, to achieve better

performance, a two-stage approach should be used, and as [13], [14] works show, it leads to

the human-level performance of the lung cancer classification problem.

The main idea behind the two-stage approach is that the lung cancer detection task can be

divided into two smaller tasks: segmentation and classification. In the scope of the

segmentation task, the neural network finds out all pulmonary nodules in the CT scan and

then passed them to the next classification step. On the classification step, the detection

system chooses the most probable malignant pulmonary nodules and decides whether the

cancer is present in the image using a multi-instance learning assumption, which is described

in section 2.1. The benefit of introducing two stages into the lung cancer detection system is

the ability to adapt any existing state-of-the-art segmentation models which can return a

smaller patch of the original 3D image with pulmonary nodules instead of the entire lung

image. It simplifies the development of the classification stage since smaller patches are much

simpler to fit into the video card memory. Also, it allows a learning lung detection system

with less amount of data. At the moment of writing the article, usually segmentation task is

done by V-Net [15], Faster-RCNN [16] or Mask-RCNN [17] adapted to the 3D data [13].

Usually, the classification stage used simple CNN, which outputs a probability on whether the
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pulmonary nodule is cancer or not. CNN on the classification stage shares weights with CNN

from the segmentation stage to speed up the training process, improve classification and

pulmonary nodule detection accuracy as well as reduce overfitting problem on both stages. As

[13], [14] papers state, the two-stage lung cancer detection systems were able to achieve 0.87

and 0.92 accuracy level.

Even though the two-stage approach leads to human-level accuracy, it has several drawbacks.

First, training a CNN for the segmentation stage requires additional labeling stuff to add

information about positive and negative malignant pulmonary nodule candidates in the dataset.

In the medical domain, labeling is an expensive and time-consuming work that requires a

massive amount of radiologist working time. Second, on the stage of deciding cancer presence,

the model loses global information about the lung and position of the pulmonary nodule

candidate. Such information is helpful to understand pulmonary nodule malignancy and leads

to a better understanding of cancer presence. Finally, the two-stage approach still ignores

information on the pulmonary nodule growing process over time. The problem can be solved

by adding even more stages into the pipeline.

A recent article in Nature Medicine magazine [10] describes a lung screening system that

divides the lung cancer detection problem into four components or stages (see figure 3).

Figure 3. Recent [10] end-to-end lung cancer detection system that introduced even more stages to achieve better performance.

(Image copied from the original paper)

First, a lung segmentation neural network like [17] is used to segment the lungs from the

overall CT scan. The purpose of this stage is to clean all tissue things that are not related to

lungs and leave only the lungs and related tissues on the image, which can be used further in

the later stages. The second stage uses another CNN that generates pulmonary nodule region

images in a similar way as on the first stage of the two-stage approach. The third stage uses an
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end-to-end 3D convolution neural network that is trained based on the segmented lung image

from the first stage in a similar manner as described at the beginning of this section. End-to-

end 3D CNN generated features are used in the final stage to provide a more global context to

the specific pulmonary nodule. Finally, a cancer risk prediction model uses generated features

from the third stage and pulmonary nodule candidates from the second stage to predict the

risk of cancer. Also, the last stage can use previous patient scans to improve prediction. As the

diagram in figure 2 suggests, the detection system generates pulmonary nodule candidates for

the previous CT scan and combines them with pulmonary nodule candidates for the current

CT scan on the feature level. The resultant features were concatenated with features from the

third stage and then used to perform a prediction about the lung cancer risk. The four-stage

approach was able to achieve super-human accuracy on the used dataset in comparison to the

average radiologist.

3. Data and Datasets

A standard tool to diagnose lung cancer is volumetric thoracic computed tomography (CT)

[18]. CT scans consist of a series of X-ray images taken from different angles to produce

cross-sectional (tomographic) images or slices of tissues, bones, or blood vessels in the human

body. Combined CT slices form a 3D view, which is a high-resolution 3-dimensional

representation of the human body part. Usually, a radiologist examines lung cancer by looking

at scans one by one to find a tumor or abnormal areas with cancer characteristics. Such

abnormal areas in lung CT scans are called pulmonary nodules. Most nodules seen in CT

scans are not cancer, however pulmonary nodules with a diameter larger than 6 mm have a

high risk to be dangerous. Often, a radiologist can investigate the previous scans of a patient

or repeat CT scan to check whether some of the lung nodules are not growing over time. If the

nodule has grown, it will mean that there is a high risk of lung cancer and related treatment

should be arranged for the patient.

In the scope of the paper’s experiments, LUNA [19] and Data Science Bowl 2017 (DSB 2017)

[20] datasets have been used. DSB 2017 dataset contains CT scans for more than 1000

patients with “lung cancer presence” labels. One row of the dataset represents patient chest

CT scan with an associated label. The label shows whether the CT scan contains cancer

somewhere, which is determined after a year of the CT scanning. DSB dataset contains 1397

patient scans in the training dataset, 198 patient scans in the validation set, and 506 patient

scans in the test set. The training set is highly unbalanced and contains 1035 samples of
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patients who do not have lung cancer and 362 samples of patients with cancer. The LUNA

dataset includes 1186 lung nodule labels in 888 patients that were annotated by radiologists.

Lung nodule candidate labels are used to train CNN for segmentation task.

4. Experiments and Results

This section describes the experiments we performed for each of the strategies discussed in

section 2. Experiments were performed using LUNA and DSB 2017 datasets, which was

described in section 3. As hardware, we used a preemptible compute instance in the Google

Cloud with one Nvidia Tesla P100 card, 8 GB RAM, and Intel CPU for a standard machine

type. As a machine learning framework, Keras with Tensorflow as a backend has been used.

Even though the models are different, there are standard preprocessing and data augmentation

steps applied to them. Therefore, they are discussed in a separate section (section 4.1). Other

sections discuss the training process specifics for the concrete strategy. Finally, the section

provides the results summary to give an intuition about strategies accuracy level. Results

summary includes results from other papers as well.

4.1. Data preprocessing steps

The unit of measurement in CT scans is the Hounsfield unit (HU), which is a standard

quantitative scale for describing radiodensity. All CT scanners are carefully calibrated to

measure this accurately. By default, the data in DSB 2017 dataset is not in the HU value, and

therefore, they should be converted to the HU by multiplying the pixels with the rescale slope

and adding the intercept. Fortunately, these values are conveniently stored in the metadata of

the CT scans. Luna dataset does not require this step as CT scan pixel values are already in

HU.

In HU, each tissue, bone, and blood has its values. This fact can be used to filter out from the

image those that not related to the lung tissue substance. To do this, we filtered out all the

values that are less than or equal to -600. After that, we found the biggest connected regions

[21] in the 3D lung image. Normally, the selected region represents the lungs; thus, we can

remove anything outside of this region to keep only tissues that are related to the lungs’ image.

The last preprocessing steps are to resize the image to the appropriate size and normalize the

image pixel values. The new image size is described individually for each model in the

following sections because different models used various image sizes to fit memory

requirements. The normalization implemented by using the following equation:
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(5)

where pixel is the current pixel value; ̴�h⺂݁ݓ�݁���ݓt���� is equal to 400, since the things

that are higher than 400 are simply bones with different radiodensity; ̴�h⺂݁ݓ�̴�ݓt���� is

equal to -1000 since it is the value of air radiodensity and everything less than that is not

interesting for us.

4.2. DenseNet and multi-instance learning (MIL) task with sparse label assignment

This model corresponds to the approach explained in section 2.1. As a 2D convolution neural

network, we chose DenseNet [3] since this network substantially reduces the number of

parameters and shows state-of-the-art results on the ImageNet dataset. To train the model, we

reused the pre-trained DenseNet on the ImageNet with a depth of 121 to initialize the neural

network weights at the beginning of the training process. Each CT scan slice was resized to

200×200. The number of slices was not changed for this model even though the number of

slices is different for each CT scan. During the training, the output of DenseNet for each CT

scan slice was accumulated and passed to the loss function calculated using equation (4). We

used the sparsity factor that was equal to 0.0001. When loss function was calculated for all

slices in the CT scan, the backpropagation algorithm was applied to calculate gradients. In

order to optimize loss function, Adam optimization algorithm was used with manually

adjusted learning rate during the training process and an initial value 0.00005. The training

process was stopped when the loss is not decreasing for several epochs.

When the training was finished, the trained model showed only a 0.62 accuracy level on the

validation set. The main reason why a trained neural network shows a low accuracy level is

that it loses 3D nature information, which is an important part of building understanding about

lung cancer presence.

4.3. RADNET for lung cancer detection system

The implementation of this model follows the approach described in section 2.2. Mainly, it is

an implementation based on the RADNET neural network described in [9] except for the fact

that we used a CT scan of the human chest instead of a CT scan of the human brain (see

figure 1). As input data, we used slices that we resized to the 200×200 size. Also, we created a

mask that represents the place where a malignant pulmonary nodule is located on the current

CT scan. To create a mask, we used information about the nodule candidate annotations for

the Luna dataset. DSB 2017 does not contain information about tumor location. However, we

reused malignant pulmonary nodule annotations created by [13] for DSB 2017 dataset in the
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scope of the Kaggle competition. The mask contains information only about one pulmonary

nodule that has a malignant mass characteristic.

As a 2D convolution neural network, a DenseNet [3] with depth 121 is used. As a recurrent

neural network, we used LSTM [7]. For initial weights initialization pre-trained DenseNet on

the ImageNet dataset was used. After the last concatenation layer in each dense block in

DenseNet, we used one deconvolution layer, which upsamples the feature maps to the original

image size. Added deconvolution layers compute the binary segmentation task, which

explicitly focuses its attention on the region where the malignant mass is located. The final

loss function defined as the weighted sum of the cross-entropy loss for both the classification

task and segmentation task that is done using three additional deconvolutional layers. The

training was done with the use of stochastic gradient descent with a manually adjusted

learning rate during the training process and an initial value of 0.0005. The final trained

model shows accuracy equal to 0.81 on the validation set.

4.4. C3D and 3D DenseNet

C3D [11] and 3D DenseNet [12] are the 3D convolution neural networks, which we trained in

an end-to-end fashion following the approach described at the beginning of section 2.3. To

use the 3D view of the patient’s lungs as input for the 3D CNN, we stacked all CT scan slices

together. The number of slices for each CT scan is different since various CT scanners with

distinct resolutions are used to gather the patient’s CT scans. However, all the CT scans are

resized to the same resolution of 120×120×120 in order to have an input with static image size.

The loss functions for both networks are defined as a weighted cross-entropy function so that

we can mitigate the unbalanced dataset problem. Training is done using Adam optimization

algorithm with a learning rate that equals to 0.0001 and 0.00004 for C3D and 3D DenseNet,

respectively.

Trained C3D network shows accuracy equal to 0.63 and trained 3D DenseNet shows accuracy

equal to 0.70. As the final accuracy results show, trained networks do not show good results.

It happens because the features to identify lung cancer is very complex, and thus, the dataset

should have a massive amount of the annotated data to learn them in an end-to-end way. The

problem can be solved by dividing the learning task into several stages, as discussed in

section 2.3.
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4.5. Results summary

In addition to the described experiments, there are several results added from other

publications. First, the results from the [13] work, which wins the Data Science Bowl

competition in 2017, were added. This work trained a two-stage lung cancer detection system

and achieved human-level accuracy on the DSB 2017 dataset. DeepLung [14] neural networks

extend an idea of the previous work and improve the detection system accuracy by optimizing

of the neural network architecture. Another work [10] introduced a four-stage approach (see

figure 2) with a possibility to check malignant pulmonary nodules changes between previous

and current CT scan. This work achieved super-human accuracy in comparison to the average

radiologist.

All experiments in the article and results from other publications give a better and more

complete understanding of the modern tendency in building the lung cancer detection system.

The summary results are presented in table 1.

Table 1. Font Sizes for Papers

Models Dataset Accuracy

DenseNet + MIL task with sparse

label assignment

Luna + DSB 2017 0.62

C3D Luna + DSB 2017 0.65

3D DenseNet Luna + DSB 2017 0.71

DenseNet + LSTM Luna + DSB 2017 0.72

RADNET for lung screening Luna + DSB 2017 0.81

DSB 2017 winner model [13] Luna + DSB 2017 0.87

DeepLung [14] Luna 0.92

D. Ardila et al. lung screening model

[10]

Luna + NLST (DSB 2017

dataset based on this

dataset)

0.95
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5. Conclusion

Recent research advances in lung cancer detection systems show significant progress. At the

moment this article was written, the best lung cancer detection systems can achieve a human-

level and super-human accuracy on the given dataset. The best models can do it even in small

datasets, which is a typical case for the medical domain. As experiment results have been

shown to achieve a high accuracy level, lung cancer detection should use an approach that is

aware of the 3D nature of the CT scans and can extract useful spatial information about the

malignant mass in the image. The 2D CNN with RNN approach shows good results and gives

a possibility to reuse a large amount of the 2D CNNs that are pre-trained on the ImageNet

dataset. However, they have not got results as high as the results shown by the detection

system with a multi-stage pipeline based on 3D CNNs. The reason for this is that 2D CCN

with RNN approach is less flexible than systems with 3D CNNs pipelines and cannot be split

for smaller tasks. This causes a requirement for a larger annotated dataset, which is a problem

in the medical domain.

The state-of-the-art lung cancer detection system uses 3D CNNs to build a detection system

pipeline. Such a system works with CT scans as a 3D representation of the lungs to build

features that can recognize spatial information about malignant mass in the lung image for a

specific pulmonary nodule. Usually, the lung cancer detection task is split into smaller tasks:

segmentation and classification. However, the best model also adds additional components

that help to generate features from the global or time context for the specific pulmonary

nodule. The flexibility of adding new components, which can add useful information to help

decide about cancer presence, make such detection systems more robust, reduce requirements

for the dataset size, and lead to human-level performance.
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