SCIREA Journal of Mathematics

About the diophantine equation $z^{2}=32 y^{2}-16$

Serge PERRINE
CentraleSupelec Campus de Metz 2 rue Edouard Belin, 57070 Metz, France
\section*{Email address:}

Serge.Perrine@orange.fr (Serge Perrine)

Abstract

A Pell Fermat equation and its two classes of solutions are discussed. We give a formula for the pairs of positive solutions, written with the Pell numbers, and some new identities involving these numbers. We build an invariant modulo 4 for each class of solutions.

Keywords: Pell numbers, Pell-Lucas numbers, Markoff equation.

1. Introduction

This article deals with the solutions $(\mathbf{z}, \mathbf{y}) \in \mathrm{Z}^{2}$ of the diophantine equation:

$$
\begin{equation*}
\mathbf{z}^{2}=32 \mathbf{y}^{2}-16 . \tag{1}
\end{equation*}
$$

If (\mathbf{z}, \mathbf{y}) is a solution, $(\pm \mathbf{z}, \pm \mathbf{y})$ is another solution. Moreover, we do not find any solution with $\mathbf{z}=0$ or $\mathbf{y}=0$. Hence, we can focus on the positive solutions $(\mathbf{z}, \mathbf{y}) \in \mathrm{N}^{*} \times \mathrm{N}^{*}$. We generalize here what we have shown in a former article [8]. Equation (1), which supposes \mathbf{z} divisible by 4 , can be simplified as

$$
z^{2}=2 y^{2}-1 .
$$

The notion of fundamental solution of (1) is well defined in [9]. At first, we consider all the solutions of $u^{2}-32 v^{2}=1$ and its minimal positive solution $17+3 \sqrt{32}$ (see [6] vol. 1 Theorem 8-5 p. 142, [4] Theorem 2.2.9 p.44, [1] Theorem 4.1 .2 p .58). They are always an infinity of solutions, and for each of them we can find $n \in Z$ such as:

$$
\begin{equation*}
u+v \sqrt{32}= \pm(17+\sqrt{32})^{n} . \tag{2}
\end{equation*}
$$

The solutions of (1) are classified according to the equivalence between (\mathbf{z}, \mathbf{y}) and $\left(\mathbf{z}^{\prime}, \mathbf{y}^{\prime}\right)$ defined as (see [6] vol. 1 Theorem 8-8 p. 146):

$$
\begin{equation*}
\left(\mathbf{z}^{\prime}+\mathbf{y}^{\prime} \sqrt{32}\right)(u+v \sqrt{32}=(\mathbf{z}+\mathbf{y} \sqrt{32}) . \tag{3}
\end{equation*}
$$

Easily ([9] Appendix A) this is equivalent to the conjunction of the two following conditions:

$$
\begin{equation*}
\mathbf{z z}^{\prime}-32 \mathbf{y} \mathbf{y}^{\prime} \equiv 0 \bmod 16, \mathbf{z y}^{\prime}-\mathbf{z}^{\prime} \mathbf{y} \equiv 0 \bmod 16 \tag{4}
\end{equation*}
$$

So, we deal with a group acting on classes of solutions. In each class it is possible to describe all the solutions thanks to a matrix transformation:

$$
\left[\begin{array}{l}
\mathbf{z}_{n+1} \tag{5}\\
\mathbf{y}_{n+1}
\end{array}\right]= \pm\left[\begin{array}{cc}
17 & 96 \\
3 & 17
\end{array}\right]\left[\begin{array}{l}
\mathbf{z}_{n} \\
\mathbf{y}_{n}
\end{array}\right] .
$$

In such a class the fundamental solution is the positive solution $(\mathbf{z}, \mathbf{y}) \in \mathrm{Z}^{2}$ with the minimal positive \mathbf{y}. If we find two equivalent solutions with the same minimal positive \mathbf{y}, among these two solutions the one with \mathbf{z} positive is the fundamental one. We know that we find only a finite number of classes ([1] Theorem 4.1.3 p.58). Using for example the solver built by K. Matthews [7], we can enumerate the classes of solutions of (1) by computing their fundamental solution. The equation (1) has two classes with these fundamental solutions:

$$
(\mathbf{z}, \mathbf{y})=(4,1),(\mathbf{z}, \mathbf{y})=(28,5) \text { equivalent to }(-4,1)
$$

Our objective is to find a parameter $k_{n} \in \mathrm{Z}$ linking $k_{n}^{3}+3 k_{n}$ to \mathbf{z}_{n} and \mathbf{y}_{n}, where $\left(\mathbf{z}_{n}, \mathbf{y}_{n}\right)$ is a solution of (1). It is a generalization of what we presented in [8]. From now on all the integer sequences are designated as in the On-line Encyclopedia of Integer Sequences [10]. For example, the sequence A000129 is the Pell sequence verifying:

$$
P_{0}=0, P_{1}=1, P_{n+2}=2 P_{n+1}+P_{n} .
$$

All the numbers $P_{2 n}$ are even, and all the numbers $P_{2 n+1}$ are odd. The sequence $\mathbf{A 0 0 2 2 0 3}$ is the Pell Lucas sequence:

$$
Q_{0}=0, Q_{1}=1, Q_{n+2}=2 Q_{n+1}+Q_{n} .
$$

All the numbers Q_{n} are even. Hence, we will also use the sequence $\mathbf{A 0 0 1 3 3 3}$ of numbers $Q_{n}^{*}=\left(Q_{n} / 2\right)$. Here are the recurrence relations:

$$
\begin{gathered}
\left(P_{1}-P_{0}\right)=1,\left(P_{2}-P_{1}\right)=1, \\
\left(P_{n+3}-P_{n+2}\right)=2\left(P_{n+2}-P_{n+1}\right)+\left(P_{n+1}-P_{n}\right) .
\end{gathered}
$$

For all $n \in \mathrm{~N}$:

$$
\begin{align*}
& \left(P_{n+1}-P_{n}\right)=Q_{n}^{*},\left(P_{n+1}-P_{n}\right)^{2}=2 P_{n}^{2}+(-1)^{n}, \tag{6}\\
& -P_{n}^{2}-2 P_{n} P_{n+1}+P_{n+1}^{2}=(-1)^{n} . \tag{7}
\end{align*}
$$

Hence, we obtain a solution of (1) with only Pell numbers ([3] Example 1, p. 237, [5]
Example 19.7 p. 385):

$$
\begin{equation*}
\left(4 P_{2 n}-4 P_{2 n-1}\right)^{2}=32 P_{2 n-1}^{2}-16 \tag{8}
\end{equation*}
$$

2. Finding a cubic modular relation

We have given the fundamental solutions for each of the two classes. The minimal positive solution of $u^{2}-32 v^{2}=1$ is $\left(u_{1}, v_{1}\right)=(17,3)$. The corresponding matrix appears in (5). Thanks to the transformation $\mathbf{z}=6 \alpha-2 \beta, \mathbf{y}=\alpha$, and dividing by 4 , we obtain the Markoff equation ([2]) where $\gamma=2$:

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=3 \alpha \beta \gamma .
$$

With any solution (\mathbf{z}, \mathbf{y}) of $\mathbf{z}^{2}=32 \mathbf{y}^{2}-16$ a Markoff triple can be built:

$$
\begin{equation*}
(\alpha, \beta, \gamma)=\left(\mathbf{y},\left(\frac{(6 \mathbf{y}-\mathbf{z})}{2}\right), 2\right) \tag{9}
\end{equation*}
$$

which very easily leads to:

$$
\mathbf{y}^{2}+\frac{\left((6 \mathbf{y}-\mathbf{z})^{2}\right)}{4}+2^{2}-3 \mathbf{y} \times\left(\frac{(6 y-z)}{2}\right) \times 2=\frac{\left(\mathbf{z}^{2}-32 \mathbf{y}^{2}+16\right)}{4}=0,
$$

and we define k and $z, \mathrm{y}=\mathbf{y}$, this way:

$$
\begin{equation*}
k=\frac{\mathbf{z}-4 \mathbf{y}}{4}=\left(\frac{\mathbf{z}}{4}\right)-\mathbf{y}=z-\mathbf{y} . \tag{10}
\end{equation*}
$$

We have \mathbf{z} divisible by 4 and z odd, hence \mathbf{y} odd:

$$
\left(\frac{z}{4}\right)^{2}=z^{2}=2 y^{2}-1
$$

Modulo y^{2} :

$$
k^{3}+3 k=(z-\boldsymbol{y})^{3}+3(z-\mathbf{y})
$$

$=-\mathbf{y}^{3}+3 \mathbf{y}^{2} z-3 \mathbf{y} z^{2}-3 \mathbf{y}+z^{3}+3 z$
$\equiv-3 \mathbf{y} z^{2}-3 \mathbf{y}+z^{3}+3 z$
$\equiv-3 \mathbf{y}\left(2 \mathbf{y}^{2}-1\right)-3 \mathbf{y}+z\left(2 \mathbf{y}^{2}-1\right)+3 z$
$\equiv 3 \mathbf{y}-3 \mathbf{y}-z+3 z=2 z=\left(\frac{\mathbf{z}}{2}\right)$.
As $\mathbf{y}=\alpha$ is odd, we conclude:

$$
\begin{equation*}
2 z=\left(\frac{\mathrm{z}}{2}\right) \equiv k^{3}+3 k \bmod \left(2 \mathbf{y}^{2}\right) \tag{11}
\end{equation*}
$$

Let us now explain which relations gives this congruence.

3. Observations within the class of $(4,1)$

The same method as that described in the article [8] can be followed.
With $\left(\mathbf{z}_{1}, \mathbf{y}_{1}\right)=(4,1)$:

$$
\begin{gathered}
\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=(1,1,2), k_{1}=0 \\
\frac{\mathrm{z}_{1}}{2}=2 \equiv k_{1}^{3}+3 k_{1}=0 \bmod \left(2 \mathbf{y}_{1}^{2}\right)=2 .
\end{gathered}
$$

With $\left(\mathbf{z}_{2}, \mathbf{y}_{2}\right)=(164,29)$ deriving from (5),

$$
\begin{gathered}
{\left[\begin{array}{c}
164 \\
29
\end{array}\right]= \pm\left[\begin{array}{cc}
17 & 96 \\
3 & 17
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]} \\
\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)=(29,5,2), k_{2}=12, \\
\frac{\mathbf{z}_{2}}{2}=82 \equiv k_{2}^{3}+3 k_{2}=1764 \bmod \left(2 \mathbf{y}_{2}^{2}\right)=1682
\end{gathered}
$$

With $\left(\boldsymbol{z}_{3}, \mathbf{y}_{3}\right)=(5572,985)$,

$$
\begin{gathered}
{\left[\begin{array}{c}
5572 \\
985
\end{array}\right]= \pm\left[\begin{array}{cc}
17 & 96 \\
3 & 17
\end{array}\right]\left[\begin{array}{c}
164 \\
29
\end{array}\right]} \\
\left(\alpha_{3}, \beta_{3}, \gamma_{3}\right)=(985,169,2), k_{3}=408, \\
\frac{\mathbf{z}_{3}}{2}=2786 \equiv k_{3}^{3}+3 k_{3}=67918536 \bmod \left(2 \mathbf{y}_{3}^{2}\right)=1940450 .
\end{gathered}
$$

With $\left(z_{4}, \mathbf{y}_{4}\right)=(189284,33461)$,

$$
\begin{gathered}
{\left[\begin{array}{cc}
189 & 284 \\
33 & 461
\end{array}\right]= \pm\left[\begin{array}{cc}
17 & 96 \\
3 & 17
\end{array}\right]\left[\begin{array}{c}
5572 \\
985
\end{array}\right]} \\
\left(\alpha_{4}, \beta_{4}, \gamma_{4}\right)=(33461,5741,2), k_{4}=13860 \\
\frac{\mathbf{z}_{4}}{2}=94642 \equiv k_{4}^{3}+3 k_{4}=2662500497580 \bmod \left(2 \mathbf{y}_{4}^{2}\right)=2239277042
\end{gathered}
$$

With $\left(\boldsymbol{z}_{5}, \mathbf{y}_{5}\right)=(6430084,1136689)$,

$$
\begin{gathered}
{\left[\begin{array}{lll}
6430 & 084 \\
1136 & 689
\end{array}\right]= \pm\left[\begin{array}{cc}
17 & 96 \\
3 & 17
\end{array}\right]\left[\begin{array}{cc}
189 & 284 \\
33 & 461
\end{array}\right]} \\
\left(\alpha_{5}, \beta_{5}, \gamma_{5}\right)=(1136689,195025,2), k_{5}=470832 \\
\frac{\mathbf{z}_{5}}{2}=3215042 \equiv k_{5}^{3}+3 k_{5}=104375343013182864 \bmod \left(2 \mathbf{y}_{5}^{2}\right)=2584123765442
\end{gathered}
$$

The sequence of integers $\left(k_{n}\right)_{n \in N *}$ is identified as the double of the sequence $\mathbf{A 0 8 2 4 0 5}$:

Table 1.

k_{1}	k_{2}	k_{3}	k_{4}	k_{5}
0	12	48	13860	470832
$=$	$=$	$=$	$=$	
0	12	$(12 \times 34)-0$	$(34 \times 408)-12$	$(34 \times 13860)-408$

Its recurrence is given by:

$$
k_{1}=0, k_{2}=12, k_{3}=408, k_{4}=13860, \cdots, k_{n}+2=34 k_{n+1}+1-k_{n}
$$

The sequence $\left(k_{n}\right)_{n \in N *}$ can be compared with the Pell sequence A000129:

$$
P_{0}=0, P_{4}=12, P_{8}=408, P_{12}=13860, P_{4(n-1)}=k_{n}
$$

Beginning with
$k_{1}=P_{4(1-1)}=P_{0}=0, k_{2}=P_{4(2-1)}=P_{4}=12$, and if for $j=1,2, \cdots, n$:

$$
k_{j}=P_{4(j-1)}
$$

we have:

$$
k_{n+1}=34 k_{n}-k_{n-1}=34 P_{4(n-1)}-P_{4(n-2)}
$$

A recurrence works easily (A demonstration with Binet's formula [5] is possible):

$$
\begin{aligned}
P_{4 n} & =2 P_{4 n-1}+P_{4 n-2} \\
& =2\left(2 P_{4 n-2}+P_{4 n-3}\right)+\left(2 P_{4 n-3}+P_{4(n-1)}\right) \\
& =4 P_{4 n-2}+4 P_{4 n-3}+P_{4(n-1)} \\
& =4\left(2 P_{4 n-3}+P_{4(n-1)}\right)+4\left(2 P_{4(n-1)}+P_{4 n-5}\right)+P_{4(n-1)} \\
& =P_{4(n-1)}+8 P_{4 n-3}+4 P_{4 n-5} \\
& =13 P_{4(n-1)}+8 P_{4 n-3}+8 P_{4 n-6}+4 P_{4 n-7}+P_{4(n-2)}-P_{4(n-2)} \\
& =13 P_{4(n-1)}+8 P_{4 n-3}+9 P_{4 n-6}+2 P_{4 n-7}-P_{4(n-2)} \\
& =13 P_{4(n-1)}+8 P_{4 n-3}+2 P_{4 n-5}+5 P_{4 n-6}-P_{4(n-2)} \\
& =13 P_{4(n-1)}+8 P_{4 n-3}+5 P_{4(n-1)}-8 P_{4 n-5}-P_{4(n-2)} \\
& =18 P_{4(n-1)}+8 P_{4 n-3}-8 P_{4 n-5}-P_{4(n-2)} \\
& =34 P_{4(n-1)}-P_{4(n-2)} \\
& =34 k_{n}-k_{n-1}=k_{n+1} .
\end{aligned}
$$

The sequence $\left(\mathbf{y}_{n}\right)_{\mathrm{n} \in \mathrm{N} *}$ is linked to the Pell sequence $\mathbf{A 0 0 0 1 2 9}$. More precisely:

$$
\mathbf{y}_{1}=1=P_{1}, \mathbf{y}_{2}=29=P_{5}, \mathbf{y}_{3}=985=P_{9}, \cdots, \mathbf{y}_{n}=P_{4 n-3} .
$$

The sequence $\left(\mathbf{z}_{n}\right)_{n \in N_{*}}$ is also linked to the Pell-Lucas sequence A001333:

$$
\mathbf{z}_{1}=4=4\left(P_{2}-P_{1}\right), \mathbf{z}_{2}=164=4\left(P_{6}-P_{5}\right), \cdots, \mathbf{z}_{n}=4\left(P_{4 n-2}-P_{4 n-3}\right) .
$$

Therefore, comparing with the relations (8) and (11) we obtain:
Proposition 1. With any $n \in \mathrm{~N}^{*}$ and $\mathbf{y}_{n}=P_{4 n-3}, k_{n}=3 P_{4(n-1)}$
$\frac{\mathbf{z}_{n}}{2}=2\left(P_{4 n-2}-P_{4 n-3}\right) \equiv P_{4(n-1)}^{3}+3 P_{4(n-1)} \bmod \left(2 P_{4 n-3}^{2}\right)$.
Now if we consider the values of the following expression:

$$
\frac{k_{n}^{3}+3 k_{n}-\left(\frac{\mathbf{z}_{n}}{2}\right)}{2 \mathbf{y}_{n}^{2}}
$$

We obtain another table:

Table 2.

n	2	3	4	5
$\frac{k_{n}^{3}+3 k_{n}-\left(\frac{\mathbf{z}_{n}}{2}\right)}{2 \mathbf{y}_{n}^{2}}$	$1=\frac{P_{2}}{2}$	$35=\frac{P_{6}}{2}$	$1189=\frac{P_{10}}{2}$	$40391=\frac{P_{14}}{2}$

We know that the numbers $P_{2 n}$ are even. Hence, only the following remains to be proved.
Lemma 1. With any $n \geq 2$,

$$
\begin{equation*}
P_{4(n-1)}^{3}+3 P_{4(n-1)}-P_{4 n-6} P_{4 n-3}^{2}=2\left(P_{4 n-2}-P_{4 n-3}\right) . \tag{13}
\end{equation*}
$$

Proof. With the relation (5):

$$
\begin{aligned}
& {\left[\begin{array}{c}
4\left(P_{4 n-2}-P_{4 n-3}\right) \\
P_{4 n-3}
\end{array}\right]=\left[\begin{array}{cc}
17 & -96 \\
-3 & 17
\end{array}\right]\left[\begin{array}{c}
4\left(P_{4 n+2}-P_{4 n+1}\right) \\
P_{4 n+1}
\end{array}\right]} \\
& \quad=\left[\begin{array}{c}
68 P_{4 n+2}-167 P_{4 n+1} \\
29 P_{4 n+1}-12 P_{4 n+2}
\end{array}\right]
\end{aligned}
$$

we obtain:

$$
\begin{gather*}
P_{4 n-3}=29 P_{4 n+1}-12 P_{4 n+2}, \tag{14}\\
P_{4 n-2},=5 P_{4 n-2}-12 P_{4 n+1} . \tag{15}
\end{gather*}
$$

Substituting n by $n-1$, the last equality above gives:

$$
\begin{equation*}
P_{4 n-6}=5 P_{4 n-2}-12 P_{4 n-3} . \tag{16}
\end{equation*}
$$

With (8) and (16) (13) (7),
$\mathrm{P}_{4(\mathrm{n}-1)}^{3}+3 P_{4(n-1)}-P_{4 n-6} P_{4 n-3}^{2}-2 Q_{4 n-3}^{*}$
$=P_{4(n-1)}^{3}+3 P_{4(n-1)}-\left(5 P_{4 n-2}-12 P_{4 n-3}\right) P_{4 \mathrm{n}-3)}^{2}-2\left(P_{4 n-2}-P_{4 n-3}\right)$
$=12 P_{4 n-3}^{3}-5 P_{4 n-2} P_{4 n-3}^{2}+2 P_{4 n-3}+P_{4 n-4}^{3}+3 P_{4 n-4}-2 P_{4 n-2}$
$=12 P_{4 n-3}^{3}-5 P_{4 n} P_{4 n-3}^{2}+P_{4 n-4}^{3}+P_{4 n-2}-4 P_{4 n-3}$
$=12 P_{4 n-3}^{3}-5\left(2 P_{4 n-3}+P_{4 n-4}\right) P_{4 n-3}^{2}+P_{4 n-4}^{3}+\left(2 P_{4 n-3}+P_{4 n-4}\right)-4 P_{4 n-3}$

$$
\begin{aligned}
= & 2 P_{4 n-3}^{3}-5 P_{4 n-3}^{2} P_{4 n-4}+P_{4 n-4}^{3}-2 P_{4 n-3}+P_{4 n-4} \\
= & 2 P_{4 n-3}^{3}-5 P_{4 n-3}^{2} P_{4 n-4}+P_{4 n-4}^{3} \\
& -2 P_{4 n-3}\left(P_{4 n-3}^{2}-2 P_{4 n-3} P_{4 n-4}-P_{4 n-4}^{2}\right)+P_{4 n-4} \\
= & P_{4 n-4}\left(-P_{4 n-3}^{2}+2 P_{4 n-3} P_{4 n-4}+P_{4 n-4}^{2}+1\right) .
\end{aligned}
$$

This proves Lemma 1, and as a consequence, Proposition 1. In this calculus, the link with the Markoff equation has not been identified, but we find with (8) and (7) that:

$$
\begin{aligned}
& P_{4 n-3}^{2}+\left(3 P_{4 n-3}-2 Q_{4 n-3}^{*}\right)^{2}+4-6\left(P_{4 n-3}\left(3 P_{4 n-3}-2 Q_{4 n-3}^{*}\right)\right) \\
&= P_{4 n-3}^{2}+\left(3 P_{4 n-3}-2\left(P_{4 n-2}-3 P_{4 n-3}\right)\right)^{2}+4 \\
&-6\left(P_{4 n-3}\left(3 P_{4 n-3}-2\left(P_{4 n-2}-P_{4 n-3}\right)\right)\right) \\
&= 4 P_{4 n-2}^{2}-8 P_{4 n-2} P_{4 n-3}-4 P_{n-3}^{2}+4=0 .
\end{aligned}
$$

4. Observations within the class of $(28,5)$

The similar method is implemented with $\left(\mathbf{z}_{1}, \mathbf{y}_{1}\right)=(-4,1)$:

$$
\begin{gathered}
\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=(1,5,2), k_{1}=-2, \\
\frac{z_{1}}{2}=-2 \equiv k_{1}^{3}+3 k_{1}=-14 \quad \bmod \left(2 \mathbf{y}_{1}^{2}\right)=2 .
\end{gathered}
$$

With $\left(\mathbf{z}_{2}, \mathbf{y}_{2}\right)=(28,5)$ from (5),

$$
\begin{gathered}
{\left[\begin{array}{c}
28 \\
5
\end{array}\right]= \pm\left[\begin{array}{cc}
17 & 96 \\
3 & 17
\end{array}\right]\left[\begin{array}{c}
-4 \\
1
\end{array}\right],} \\
\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)=(5,1,2), k_{2}=2, \\
\frac{\mathbf{z}_{2}}{2}=14 \equiv k_{2}^{3}+3 k_{2}=14 \quad \bmod \left(2 \mathbf{y}_{2}^{2}\right)=50 .
\end{gathered}
$$

With $\left(\mathbf{z}_{3}, \mathbf{y}_{3}\right)=(956,169)$,

$$
\begin{gathered}
{\left[\begin{array}{c}
956 \\
160
\end{array}\right]= \pm\left[\begin{array}{cc}
17 & 96 \\
3 & 17
\end{array}\right]\left[\begin{array}{c}
164 \\
29
\end{array}\right]} \\
\left(\alpha_{3}, \beta_{3}, \gamma_{3}\right)=(169,29,2), k_{3}=70, \\
\frac{z_{3}}{2}=478 \equiv k_{3}^{3}+3 k_{3}=343210 \bmod \left(2 \mathbf{y}_{3}^{2}\right)=57122 .
\end{gathered}
$$

With $\left(\mathbf{z}_{4}, \mathbf{y}_{4}\right)=(32476,5741)$,

$$
\begin{gathered}
{\left[\begin{array}{c}
32476 \\
5741
\end{array}\right]= \pm\left[\begin{array}{cc}
17 & 96 \\
3 & 17
\end{array}\right]\left[\begin{array}{l}
956 \\
169
\end{array}\right]} \\
\left(\alpha_{4}, \beta_{4}, \gamma_{4}\right)=(5741,985,2), k_{4}=2378 \\
\frac{\mathbf{z}_{4}}{2}=16238 \equiv k_{4}^{3}+3 k_{4}=13447321286 \bmod \left(2 \mathbf{y}_{4}^{2}\right)=65918162
\end{gathered}
$$

With $\left(\mathbf{z}_{5}, \mathbf{y}_{5}\right)=(1103228,165025)$,

$$
\begin{gathered}
{\left[\begin{array}{c}
1103228 \\
195025
\end{array}\right]= \pm\left[\begin{array}{cc}
17 & 96 \\
3 & 17
\end{array}\right]\left[\begin{array}{c}
32476 \\
5741
\end{array}\right]} \\
\left(\alpha_{5}, \beta_{5}, \gamma_{5}\right)=(195025,33461,2), k_{5}=80782 \\
\frac{\mathbf{z}_{5}}{2}=551914 \equiv k_{5}^{3}+3 k_{5}=527161644214114 \bmod \left(2 \mathbf{y}_{5}^{2}\right)=76069501250
\end{gathered}
$$

Comparing the following table to [10], a sequence of integers $\left(k_{n}\right)_{n \in N *}$ can be identified as the double of the sequence A046176:

Table 3.

k_{1}	k_{2}	k_{3}	k_{4}	k_{5}
-2	2	70	2378	80782
$=$	$=$	$=$	$=$	
-2	2	$(34 \times 2)-(-2)$	$(34 \times 70)-2$	$(34 \times 2378)-70$

Further, by comparing with the sequence A000129, we begin with

$$
k_{1}=P_{4(1)-6}=P_{-2}=-2, k_{2}=P_{4(2)-6}=P_{2}=2, \cdots
$$

and supposing that $k_{j}=P_{4 j-6}$ for $\mathrm{j}=1,2, \cdots, n$, we show the equality

$$
k_{n+1}=34 k_{n+1}+k_{n-1}=34 P_{4 n-6}-P_{4 n-10}
$$

The recurrence works easily with the same calculus used before, or by the
Binet's formula:

$$
P_{4 n-2}=2 P_{4 n-3}+P_{4 n-4}=34 P_{4 n-6}-P_{4 n-10}=34 k_{n+1}-k_{n-1}=k_{n+1}
$$

The sequence $\left(\mathbf{y}_{n}\right)_{\mathrm{n} \in \mathrm{N} *}$ is linked to the Pell sequence A000129. More precisely we have:

$$
\mathbf{y}_{1}=1=P_{1}, \mathbf{y}_{2}=5=P_{3}, \mathbf{y}_{3}=169=P_{7}, \cdots, \mathbf{y}_{n}=P_{4 n-5} .
$$

The sequence $\left(\mathbf{z}_{n}\right)_{\mathrm{n} \in \mathrm{N}^{*}}$ is also linked to the Pell-Lucas sequence A001333:

$$
\mathbf{z}_{1}=-4=4 Q_{-1}^{*}, \mathbf{z}_{2}=28=4 Q_{3}^{*}, \mathbf{z}_{3}=956=4 Q_{7}^{*}, \cdots, \mathbf{z}_{n}=4 Q_{4 n-5}^{*} .
$$

Therefore, with the relations (8) and (11) we obtain:
Proposition 2. With any $n \in \mathrm{~N}^{*}$ and $\mathbf{y}_{n}=P_{4 n-5}, k_{n}=P_{4 n-6)}$
$\frac{\mathbf{z}_{n}}{2}=2\left(P_{4 n-4}-P_{4 n-5}\right) \equiv P_{4 n-6}^{3}+3 P_{4 n-6} \quad \bmod \left(2 P_{4 n-5}^{2}\right)$.
Before proving the proposition, we consider the following table of values of the expression

$$
\frac{k_{n}^{3}+3 k_{n}-\left(\frac{z_{n}}{2}\right)}{2 \mathbf{y}_{n}^{2}}
$$

Table 4.

n	2	3	4	5
$\frac{k_{n}^{3}+3 k_{n}-\left(\frac{\mathbf{z}_{n}}{2}\right)}{2 \mathbf{y}_{n}^{2}}$	$0=\frac{P_{0}}{2}$	$6=\frac{P_{4}}{2}$	$204=\frac{P_{8}}{2}$	$6930=\frac{P_{12}}{2}$

We have seen that the numbers $P_{2 n}$ are even. Hence, we will demonstrate the following:
Lemma 2. With any $n \geq 2$,

$$
\begin{equation*}
P_{4 n-6}^{3}+3 P_{4 n-6}-P_{4 n-8} P_{4 n-5}^{2}=2 Q_{4 n-5}^{*}=2\left(P_{4 n-4}-P_{4 n-5}\right) . \tag{18}
\end{equation*}
$$

Proof. We use the same method that has already been implemented. With (8) and (16) (13) (7), relation (13) now gives:

$$
\begin{aligned}
& P_{4 n-6}^{3}+3 P_{4 n-6}-P_{4 n-8} P_{4 n-5}^{2}-2 Q_{4 n-5}^{*} \\
& =P_{4 n-6}^{3}+3 P_{4 n-6}-\left(5 P_{4 n-4}-12 P_{4 n-5}\right) P_{4 n-5}^{2}-2\left(P_{4 n-4}-P_{4 n-5}\right) \\
& =P_{4 n-6}\left(\left(-P_{4 n-5}^{2}+2 P_{4 n-5} P_{4 n-6}+P_{4 n-6}^{2}+1\right)=0 .\right.
\end{aligned}
$$

This proves Lemma 2, and as a consequence, Proposition 2. The Binet's formula [5] could also be used for the demonstration. In this calculus, the link with the Markoff has not been identified, but we find with (8) and (7) that:

$$
\begin{aligned}
& P_{4 n-5}^{2}+\left(3 P_{4 n-5}-2 Q_{4 n-5}^{*}\right)^{2}+4-6\left(P_{4 n-5}\left(3 P_{4 n-5}-2 Q_{4 n-3}^{*}\right)\right) \\
&= P_{4 n-5}^{2}+\left(3 P_{4 n-3}-2\left(P_{4 n-4}-3 P_{4 n-5}\right)\right)^{2}+4 \\
&-6\left(P_{4 n-5}\left(3 P_{4 n-5}-2\left(P_{4 n-4}-P_{4 n-5}\right)\right)\right) \\
&= 4 P_{4 n-4}^{2}-8 P_{4 n-4} P_{4 n-5}-4 P_{n-4}^{2}+4=0 .
\end{aligned}
$$

5. Conclusion

We considered all the couples of positive solutions $\left(\left(4 P_{2 n}-4 P_{2 n-1}\right), P_{2 n-1}\right)$ for the equation $\mathbf{z}^{2}=32 \mathbf{y}^{2}-16$. They are distributed among two classes of solutions: the class of $(4,1)$, which contains all the positive solutions $\left(\left(4 P_{2 n-2}-4 P_{2 n-3}\right), P_{2 n-3}\right)$ where $n>0$, and the class of $(28,5)$, which contains all the positive solutions $\left(\left(4 P_{2 n-4}-4 P_{2 n-5}\right), P_{2 n-5}\right)$ where $n>1$. For each class, there is a special identity between the Pell numbers:

Table 5.

$(4,1)$	$P_{4(n-1)}^{3}+3 P_{4(n-1)}=P_{4 n-6} P_{4 n-3}^{2}+2\left(P_{4 n-2}-P_{4 n-3}\right)$.	$k_{n}=P_{4 n-4}$
$(28,5)$	$P_{4 n-6}^{3}+3 P_{4 n-6}=P_{4 n-8} P_{4 n-5}^{2}+2\left(P_{4 n-4}-P_{4 n-5}\right)$.	$k_{n}=P_{4 n-6}$

The values n_{n} can be considered as the values k appearing in the Markoff theory [2] with $\gamma=2$. It is interesting to look at the values modulo 8 of $k^{3}+3 k$. It is very easy to demonstrate that with any $j \in \mathrm{Z}$ we have:

$$
\begin{array}{ll}
P_{8 j}^{3}+3 P_{8 j} \equiv 0, & P_{8 j+2}^{3}+3 P_{8 j+2} \equiv 6, \\
P_{8 j+4}^{3}+3 P_{8 j+4} \equiv 4, & P_{8 j+6}^{3}+3 P_{8 j+6} \equiv 2 .
\end{array}
$$

It gives considering the relation between n and j :

$$
\begin{array}{lll}
n=2 \mathrm{j}+1: & P_{4 n-4}^{3}+3 P_{4 n-4} & P_{4 n-6}^{3} \\
& \equiv 0, & 3 P_{4 n-6} \equiv 2, \\
& & \\
& & \\
n=2 \mathrm{j}: & P_{4 n-4}^{3}+3 P_{4 n-4} & P_{4 n-6}^{3} \\
& \equiv 4, & 3 P_{4 n-6} \equiv 6 .
\end{array}
$$

Reading only the columns, we obtain:
Table 6
$(4,1) \quad \mathbf{y}_{n}=P_{4 n-3} \quad \frac{\mathbf{z}_{n}}{2} \equiv P_{4(n-1)}^{3}+3 P_{4(n-1)} \equiv 0 \quad \bmod (4)$.

$$
\begin{equation*}
\mathbf{y}_{n}=P_{4 n-5} \quad \frac{\mathbf{z}_{n}}{2} \equiv P_{4 n-6}^{3}+3 P_{4 n-6} \equiv 0 \quad \bmod (4) \tag{28,5}
\end{equation*}
$$

Hence, we can conclude that the number

$$
\left(\left(\frac{z}{4}\right)-y\right)^{3}+3\left(\left(\frac{z}{4}\right)-y\right)
$$

is an invariant of each class of solutions of the equation $\mathbf{z}^{2}=32 \mathbf{y}^{2}-16$.
Remark: For the equation $z^{2}=5 y^{2}-4$ studied in [8] we can give a similar description. The equation has three classes with these fundamental solutions:

$$
(z, y)=(4,2),(z, y)=(1,1),(z, y)=(11,5) \text { equivalent to }(-1,1) .
$$

It gives with the solution $(z, y)=\left(L_{2 n+1}, F_{2 n+1}\right)$ of this equation the formula replacing (10):

$$
\mathrm{k}=\left(\frac{z-y}{2}\right)=\left(\frac{L_{2 n+1}-F_{2 n+1}}{2}\right)=F_{2 n}
$$

The transposition of relation (11) is:

$$
z \equiv k^{3}+3 k\left(\bmod y^{2}\right) .
$$

Unfortunately, y is usually odd, hence the number

$$
\left(\frac{z-y}{2}\right)^{3}+3\left(\left(\frac{z-y}{2}\right) \bmod (4)\right.
$$

is not an invariant of each class of solutions of the equation $z^{2}=5 y^{2}-4$.
However, with the following table, we give the possibility to compute invariants modulo 4 for each class of the three classes of solutions:

Table 7

$(4,2)$	$z_{n}=L_{6 n-3}=\left(L_{2 n-1}^{3}+3 L_{2 n-1}\right) \equiv 0 \bmod (4)$.
$(1,1)$	$z_{n}=L_{6 n-5}=-\left(F_{6 n-7}^{3}+3 L_{6 n-7}\right)+F_{4 n-6} F_{4 n-3}^{2} \equiv 0 \bmod (4)$.
$(11,5)$	$z_{n}=L_{6 n-7}=-\left(F_{6 n-9}^{3}+3 L_{6 n-9}\right)+F_{4 n-13} F_{4 n-7}^{2} \equiv 0 \bmod (4)$.

Acknowledgements

These results were obtained thanks to the OEIS and the BC-MATH programs. We are also grateful to Grégoire Lacaze (Aix Marseille Université - LERMA EA 853).

References

[1] Andreescu, T. Andrica, D., Quadratic diophantine equations, Springer Verlag, New York, 2015.
[2] Aigner, M. Markov's theorem and 100 years of the uniqueness conjecture, Verlag, Cham Heidelberg New York, Dordrecht, London, 2013.
[3] Emerson, E. Recurrent sequences in the equation $D Q^{2}=R^{2}+N$, Fibonacci Quarterly, 7, 1969, 233-242.
[4] Halter Koch, F. Quadratic irrationals - An introduction to classical number theory, CRC Press, New York, 2013.
[5] Koshy, T., Pell and Pell Lucas numbers with applications, Springer Verlag New York, 2014.
[6] LeVeque, W. J. Topics in number theory, vol. 1 and 2, Dover, New York, 2002.
[7] Matthews, K., Quadratic diophantine equations BCMATH programs, Solving $x^{2}-d y^{2}=$ $n, d>0, n$ non-zero: for fundamental solutions, by the Lagrange-Mollin-Matthews method http://www.numbertheory.org/php/main_pell_html 2015.
[8] Perrine, S., Some properties of the equation $x^{2}=5 y^{2}-4$, The Fibonacci Quarterly, 54 (2),

2016, 172-178.
[9] Robertson, J. P., Characterization of fundamental solutions to generalized Pell equations, 2014, http://www.jpr2718.org/ .
[10] Sloane, N. J. A., The On-line Encyclopedia of Integer Sequences, http://oeis.org .

