

SCIREA Journal of Mathematics

https://www.scirea.org/journal/Mathematics

November 4, 2019 Volume 4, Issue 5, October 2019

About the diophantine equation $z^2 = 32y^2 - 16$

Serge PERRINE

CentraleSupelec Campus de Metz 2 rue Edouard Belin, 57070 Metz, France

Email address:

Serge.Perrine@orange.fr (Serge Perrine)

Abstract

A Pell Fermat equation and its two classes of solutions are discussed. We give a formula for the pairs of positive solutions, written with the Pell numbers, and some new identities involving these numbers. We build an invariant modulo 4 for each class of solutions.

Keywords: Pell numbers, Pell-Lucas numbers, Markoff equation.

1. Introduction

This article deals with the solutions $(\mathbf{z}, \mathbf{y}) \in \mathbb{Z}^2$ of the diophantine equation:

$$z^2 = 32y^2 - 16.$$
 (1)

If (z, y) is a solution, $(\pm z, \pm y)$ is another solution. Moreover, we do not find any solution with z = 0 or y = 0. Hence, we can focus on the positive solutions $(z, y) \in N^* \times N^*$. We generalize here what we have shown in a former article [8]. Equation (1), which supposes z divisible by 4, can be simplified as

$$\boldsymbol{z}^2 = 2\boldsymbol{y}^2 - 1.$$

The notion of fundamental solution of (1) is well defined in [9]. At first, we consider all the solutions of $u^2 - 32v^2 = 1$ and its minimal positive solution $17 + 3\sqrt{32}$ (see [6] vol. 1 Theorem 8-5 p. 142, [4] Theorem 2.2.9 p.44, [1] Theorem 4.1.2 p.58). They are always an infinity of solutions, and for each of them we can find $n \in \mathbb{Z}$ such as:

$$u + v \sqrt{32} = \pm (17 + \sqrt{32})^n.$$
 (2)

The solutions of (1) are classified according to the equivalence between (z, y) and (z', y') defined as (see [6] vol. 1 Theorem 8-8 p. 146):

$$(\mathbf{z}' + \mathbf{y}'\sqrt{32})(u + v\sqrt{32} = (\mathbf{z} + \mathbf{y}\sqrt{32}).$$
 (3)

Easily ([9] Appendix A) this is equivalent to the conjunction of the two following conditions:

$$\mathbf{z}\mathbf{z}' - 32\mathbf{y}\mathbf{y}' \equiv 0 \mod 16, \mathbf{z}\mathbf{y}' - \mathbf{z}'\mathbf{y} \equiv 0 \mod 16.$$
(4)

So, we deal with a group acting on classes of solutions. In each class it is possible to describe all the solutions thanks to a matrix transformation:

$$\begin{bmatrix} \mathbf{z}_{n+1} \\ \mathbf{y}_{n+1} \end{bmatrix} = \pm \begin{bmatrix} 17 & 96 \\ 3 & 17 \end{bmatrix} \begin{bmatrix} \mathbf{z}_n \\ \mathbf{y}_n \end{bmatrix}.$$
(5)

In such a class the fundamental solution is the positive solution $(\mathbf{z}, \mathbf{y}) \in Z^2$ with the minimal positive \mathbf{y} . If we find two equivalent solutions with the same minimal positive \mathbf{y} , among these two solutions the one with \mathbf{z} positive is the fundamental one. We know that we find only a finite number of classes ([1] Theorem 4.1.3 p.58). Using for example the solver built by K. Matthews [7], we can enumerate the classes of solutions of (1) by computing their fundamental solution. The equation (1) has two classes with these fundamental solutions:

$$(\mathbf{z}, \mathbf{y}) = (4, 1), (\mathbf{z}, \mathbf{y}) = (28, 5)$$
 equivalent to $(-4, 1)$.

Our objective is to find a parameter $k_n \in \mathbb{Z}$ linking $k_n^3 + 3k_n$ to \mathbf{z}_n and \mathbf{y}_n , where $(\mathbf{z}_n, \mathbf{y}_n)$ is a solution of (1). It is a generalization of what we presented in [8]. From now on all the integer sequences are designated as in the On-line Encyclopedia of Integer Sequences [10]. For example, the sequence A000129 is the Pell sequence verifying:

$$P_0 = 0, P_1 = 1, P_{n+2} = 2P_{n+1} + P_n.$$

All the numbers P_{2n} are even, and all the numbers P_{2n+1} are odd. The sequence A002203 is the Pell Lucas sequence:

$$Q_0 = 0, Q_1 = 1, Q_{n+2} = 2Q_{n+1} + Q_n.$$

All the numbers Q_n are even. Hence, we will also use the sequence A001333 of numbers $Q_n^* = (Q_n/2)$. Here are the recurrence relations:

$$(P_1 - P_0) = 1, (P_2 - P_1) = 1,$$

 $(P_{n+3} - P_{n+2}) = 2(P_{n+2} - P_{n+1}) + (P_{n+1} - P_n).$

For all $n \in N$:

$$(P_{n+1} - P_n) = Q_n^*, \ (P_{n+1} - P_n)^2 = 2P_n^2 + (-1)^n, \tag{6}$$

$$-P_n^2 - 2P_n P_{n+1} + P_{n+1}^2 = (-1)^n.$$
⁽⁷⁾

Hence, we obtain a solution of (1) with only Pell numbers ([3] Example 1, p. 237, [5] Example 19.7 p. 385):

$$(4P_{2n} - 4P_{2n-1})^2 = 32 P_{2n-1}^2 - 16.$$
(8)

2. Finding a cubic modular relation

We have given the fundamental solutions for each of the two classes. The minimal positive solution of $u^2 - 32v^2 = 1$ is $(u_1, v_1) = (17, 3)$. The corresponding matrix appears in (5). Thanks to the transformation $\mathbf{z} = 6\alpha - 2\beta$, $\mathbf{y} = \alpha$, and dividing by 4, we obtain the Markoff equation ([2]) where $\gamma = 2$:

$$\alpha^2 + \beta^2 + \gamma^2 = 3\alpha\beta\gamma.$$

With any solution (\mathbf{z} , \mathbf{y}) of $\mathbf{z}^2 = 32\mathbf{y}^2 - 16$ a Markoff triple can be built:

$$(\alpha, \beta, \gamma) = (\mathbf{y}, \left(\frac{(6\mathbf{y} - \mathbf{z})}{2}\right), 2), \tag{9}$$

which very easily leads to:

$$\mathbf{y}^2 + \frac{((6\mathbf{y}-\mathbf{z})^2)}{4} + 2^2 - 3\mathbf{y} \times (\frac{(6\mathbf{y}-\mathbf{z})}{2}) \times 2 = \frac{(\mathbf{z}^2 - 32\mathbf{y}^2 + 16)}{4} = 0$$

and we define k and z, y = y, this way:

$$k = \frac{\mathbf{z} - 4\mathbf{y}}{4} = \left(\frac{\mathbf{z}}{4}\right) - \mathbf{y} = \mathbf{z} - \mathbf{y}.$$
 (10)

We have \mathbf{z} divisible by 4 and \mathbf{z} odd, hence \mathbf{y} odd:

$$\left(\frac{\mathbf{z}}{4}\right)^2 = \mathbf{z}^2 = 2\mathbf{y}^2 - 1.$$

Modulo y²:

$$k^{3} + 3k = (z - y)^{3} + 3(z - y)$$
$$= -y^{3} + 3y^{2}z - 3y z^{2} - 3y + z^{3} + 3z$$
$$\equiv -3y z^{2} - 3y + z^{3} + 3z$$
$$\equiv -3y (2y^{2} - 1) - 3y + z(2y^{2} - 1) + 3z$$
$$\equiv 3y - 3y - z + 3z = 2z = \left(\frac{z}{2}\right).$$

As $\mathbf{y} = \alpha$ is odd, we conclude:

$$2z = \left(\frac{z}{2}\right) \equiv k^3 + 3k \mod (2\mathbf{y}^2). \tag{11}$$

Let us now explain which relations gives this congruence.

3. Observations within the class of (4,1)

The same method as that described in the article [8] can be followed.

With $(z_1, y_1) = (4, 1)$:

$$(\alpha_1, \beta_1, \gamma_1) = (1, 1, 2), k_1 = 0,$$

 $\frac{\mathbf{z}_1}{2} = 2 \equiv k_1^3 + 3k_1 = 0 \mod (2\mathbf{y}_1^2) = 2.$

With $(z_2, y_2) = (164, 29)$ deriving from (5),

$$\begin{bmatrix} 164\\29 \end{bmatrix} = \pm \begin{bmatrix} 17 & 96\\3 & 17 \end{bmatrix} \begin{bmatrix} 4\\1 \end{bmatrix},$$

$$(\alpha_2, \beta_2, \gamma_2) = (29, 5, 2), k_2 = 12,$$

$$\frac{\mathbf{z}_2}{2} = 82 \equiv k_2^3 + 3k_2 = 1764 \mod (2\mathbf{y}_2^2) = 1682.$$

With (**z**₃, **y**₃) = (5572, 985),

$$\begin{bmatrix} 5572\\985 \end{bmatrix} = \pm \begin{bmatrix} 17 & 96\\3 & 17 \end{bmatrix} \begin{bmatrix} 164\\29 \end{bmatrix},$$
$$(\alpha_3, \beta_3, \gamma_3) = (985, 169, 2), \ k_3 = 408,$$
$$\frac{\mathbf{z}_3}{2} = 2786 \equiv k_3^3 + 3k_3 = 67\ 918\ 536 \mod (2\mathbf{y}_3^2) = 1940450.$$

With $(z_4, y_4) = (189284, 33461),$

$$\begin{bmatrix} 189\ 284\\ 33\ 461 \end{bmatrix} = \pm \begin{bmatrix} 17 & 96\\ 3 & 17 \end{bmatrix} \begin{bmatrix} 5572\\ 985 \end{bmatrix},$$
$$(\alpha_4, \beta_4, \gamma_4) = (33461, 5741, 2), \ k_4 = 13860,$$
$$\frac{\mathbf{z}_4}{2} = 94642 \equiv k_4^3 + 3k_4 = 2662\ 500\ 497\ 580 \mod (2\mathbf{y}_4^2) = 2239\ 277\ 042.$$

With (**z**₅, **y**₅) = (6430 084, 1136 689),

$$\begin{bmatrix} 6430 & 084 \\ 1136 & 689 \end{bmatrix} = \pm \begin{bmatrix} 17 & 96 \\ 3 & 17 \end{bmatrix} \begin{bmatrix} 189 & 284 \\ 33 & 461 \end{bmatrix},$$
$$(\alpha_5, \beta_5, \gamma_5) = (1136 & 689, 195025, 2), \ k_5 = 470 & 832,$$
$$\frac{\mathbf{z}_5}{2} = 3215042 \equiv k_5^3 + 3k_5 = 104375343013182864 \mod (2\mathbf{y}_5^2) = 2584123765442.$$

The sequence of integers $(k_n)_{n \in N^*}$ is identified as the double of the sequence A082405:

k_1	<i>k</i> ₂	<i>k</i> ₃	k_4	k_5
0	12	48	13860	470832
=	=	=	=	=
0	12	(12×34)-0	(34×408)-12	(34 × 13860) – 408

Table 1.

Its recurrence is given by:

$$k_1 = 0, k_2 = 12, k_3 = 408, k_4 = 13860, \dots, k_n + 2 = 34k_{n+1} + 1 - k_n$$

The sequence $(k_n)_{n \in N^*}$ can be compared with the Pell sequence A000129:

$$P_0 = 0, P_4 = 12, P_8 = 408, P_{12} = 13860, P_{4(n-1)} = k_n.$$

Beginning with

$$k_1 = P_{4(1-1)} = P_0 = 0, k_2 = P_{4(2-1)} = P_4 = 12$$
, and if for $j = 1, 2, \dots, n$:

$$k_j = P_{4(j-1)},$$

we have:

$$k_{n+1} = 34k_n - k_{n-1} = 34P_{4(n-1)} - P_{4(n-2)}.$$

A recurrence works easily (A demonstration with Binet's formula [5] is possible):

$$\begin{split} P_{4n} &= 2P_{4n-1} + P_{4n-2} \\ &= 2(2P_{4n-2} + P_{4n-3}) + (2P_{4n-3} + P_{4(n-1)}) \\ &= 4P_{4n-2} + 4P_{4n-3} + P_{4(n-1)} \\ &= 4(2P_{4n-3} + P_{4(n-1)}) + 4(2P_{4(n-1)} + P_{4n-5}) + P_{4(n-1)}) \\ &= P_{4(n-1)} + 8P_{4n-3} + 4P_{4n-5} \\ &= 13P_{4(n-1)} + 8P_{4n-3} + 8P_{4n-6} + 4P_{4n-7} + P_{4(n-2)} - P_{4(n-2)} \\ &= 13P_{4(n-1)} + 8P_{4n-3} + 9P_{4n-6} + 2P_{4n-7} - P_{4(n-2)} \\ &= 13P_{4(n-1)} + 8P_{4n-3} + 2P_{4n-5} + 5P_{4n-6} - P_{4(n-2)} \\ &= 13P_{4(n-1)} + 8P_{4n-3} + 5P_{4(n-1)} - 8P_{4n-5} - P_{4(n-2)} \\ &= 18P_{4(n-1)} + 8P_{4n-3} - 8P_{4n-5} - P_{4(n-2)} \\ &= 34P_{4(n-1)} - P_{4(n-2)} \\ &= 34k_n - k_{n-1} = k_{n+1}. \end{split}$$

The sequence $(\mathbf{y}_n)_{n \in \mathbb{N}^*}$ is linked to the Pell sequence A000129. More precisely:

$$\mathbf{y}_1 = 1 = P_1, \ \mathbf{y}_2 = 29 = P_5, \ \mathbf{y}_3 = 985 = P_9, \dots, \mathbf{y}_n = P_{4n-3}.$$

The sequence $(\mathbf{z}_n)_{n \in \mathbb{N}^*}$ is also linked to the Pell-Lucas sequence A001333:

$$\mathbf{z}_1 = 4 = 4(P_2 - P_1), \ \mathbf{z}_2 = 164 = 4(P_6 - P_5), \ \cdots, \ \mathbf{z}_n = 4(P_{4n-2} - P_{4n-3}).$$

Therefore, comparing with the relations (8) and (11) we obtain:

Proposition 1. With any $n \in N^*$ and $\mathbf{y}_n = P_{4n-3}$, $k_n = 3P_{4(n-1)}$

$$\frac{\mathbf{z}_n}{2} = 2(P_{4n-2} - P_{4n-3}) \equiv P_{4(n-1)}^3 + 3P_{4(n-1)} \mod (2P_{4n-3}^2).$$
(12)

Now if we consider the values of the following expression:

$$\frac{k_n^3+3k_n-\left(\frac{\mathbf{z}_n}{2}\right)}{2\mathbf{y}_n^2}.$$

We obtain another table:

n 2 3 4 5
$$\frac{k_n^3 + 3k_n - \left(\frac{\mathbf{z}_n}{2}\right)}{2\mathbf{y}_n^2} \quad 1 = \frac{P_2}{2} \quad 35 = \frac{P_6}{2} \quad 1189 = \frac{P_{10}}{2} \quad 40391 = \frac{P_{14}}{2}$$

We know that the numbers P_{2n} are even. Hence, only the following remains to be proved.

Lemma 1. With any $n \ge 2$,

$$P_{4(n-1)}^3 + 3P_{4(n-1)} - P_{4n-6}P_{4n-3}^2 = 2(P_{4n-2} - P_{4n-3}).$$
(13)

Proof. With the relation (5):

$$\begin{bmatrix} 4(P_{4n-2} - P_{4n-3}) \\ P_{4n-3} \end{bmatrix} = \begin{bmatrix} 17 & -96 \\ -3 & 17 \end{bmatrix} \begin{bmatrix} 4(P_{4n+2} - P_{4n+1}) \\ P_{4n+1} \end{bmatrix}$$
$$= \begin{bmatrix} 68P_{4n+2} - 167P_{4n+1} \\ 29P_{4n+1} - 12P_{4n+2} \end{bmatrix},$$

we obtain:

$$P_{4n-3} = 29P_{4n+1} - 12P_{4n+2}, \tag{14}$$

$$P_{4n-2} = 5P_{4n-2} - 12P_{4n+1}.$$
 (15)

Substituting n by n - 1, the last equality above gives:

$$P_{4n-6} = 5P_{4n-2} - 12P_{4n-3}.$$
 (16)

With (8) and (16) (13) (7),

$$P_{4(n-1)}^{3} + 3P_{4(n-1)} - P_{4n-6}P_{4n-3}^{2} - 2Q_{4n-3}^{*}$$

$$= P_{4(n-1)}^{3} + 3P_{4(n-1)} - (5P_{4n-2} - 12P_{4n-3})P_{4n-3}^{2} - 2(P_{4n-2} - P_{4n-3})$$

$$= 12P_{4n-3}^{3} - 5P_{4n-2}P_{4n-3}^{2} + 2P_{4n-3} + P_{4n-4}^{3} + 3P_{4n-4} - 2P_{4n-2}$$

$$= 12P_{4n-3}^{3} - 5P_{4n}P_{4n-3}^{2} + P_{4n-4}^{3} + P_{4n-2} - 4P_{4n-3}$$

$$= 12P_{4n-3}^{3} - 5(2P_{4n-3} + P_{4n-4})P_{4n-3}^{2} + P_{4n-4}^{3} + (2P_{4n-3} + P_{4n-4}) - 4P_{4n-3}$$

$$= 2P_{4n-3}^{3} - 5P_{4n-3}^{2}P_{4n-4} + P_{4n-4}^{3} - 2P_{4n-3} + P_{4n-4}$$

$$= 2P_{4n-3}^{3} - 5P_{4n-3}^{2}P_{4n-4} + P_{4n-4}^{3}$$

$$-2P_{4n-3}(P_{4n-3}^{2} - 2P_{4n-3}P_{4n-4} - P_{4n-4}^{2}) + P_{4n-4}$$

$$= P_{4n-4}(-P_{4n-3}^{2} + 2P_{4n-3}P_{4n-4} + P_{4n-4}^{2} + 1).$$

This proves Lemma 1, and as a consequence, Proposition 1. In this calculus, the link with the Markoff equation has not been identified, but we find with (8) and (7) that:

$$\begin{aligned} P_{4n-3}^{2} + (3P_{4n-3} - 2Q_{4n-3}^{*})^{2} + 4 - 6(P_{4n-3}(3P_{4n-3} - 2Q_{4n-3}^{*})) \\ &= P_{4n-3}^{2} + (3P_{4n-3} - 2(P_{4n-2} - 3P_{4n-3}))^{2} + 4 \\ &- 6(P_{4n-3}(3P_{4n-3} - 2(P_{4n-2} - P_{4n-3}))) \\ &= 4P_{4n-2}^{2} - 8P_{4n-2}P_{4n-3} - 4P_{n-3}^{2} + 4 = 0. \end{aligned}$$

4. Observations within the class of (28,5)

The similar method is implemented with $(\mathbf{z}_1, \mathbf{y}_1) = (-4, 1)$:

$$(\alpha_1, \beta_1, \gamma_1) = (1, 5, 2), k_1 = -2,$$

 $\frac{z_1}{2} = -2 \equiv k_1^3 + 3k_1 = -14 \mod (2\mathbf{y}_1^2) = 2.$

With $(\mathbf{z}_2, \mathbf{y}_2) = (28, 5)$ from (5),

$$\begin{bmatrix} 28\\5 \end{bmatrix} = \pm \begin{bmatrix} 17 & 96\\3 & 17 \end{bmatrix} \begin{bmatrix} -4\\1 \end{bmatrix},$$

$$(\alpha_2, \beta_2, \gamma_2) = (5, 1, 2), k_2 = 2,$$

$$\frac{\mathbf{z}_2}{2} = 14 \equiv k_2^3 + 3k_2 = 14 \qquad \text{mod} \ (2\mathbf{y}_2^2) = 50.$$

With $(\mathbf{z_3}, \mathbf{y}_3) = (956, 169),$

$$\begin{bmatrix} 956\\160 \end{bmatrix} = \pm \begin{bmatrix} 17 & 96\\3 & 17 \end{bmatrix} \begin{bmatrix} 164\\29 \end{bmatrix},$$

(\alpha_3, \beta_3, \beta_3) = (169, 29, 2), \keta_3 = 70,
$$\frac{\mathbf{z}_3}{2} = 478 \equiv k_3^3 + 3k_3 = 343210 \mod (2\mathbf{y}_3^2) = 57122.$$

With $(\mathbf{z}_4, \mathbf{y}_4) = (32476, 5741),$

$$\begin{bmatrix} 32476\\5741 \end{bmatrix} = \pm \begin{bmatrix} 17 & 96\\3 & 17 \end{bmatrix} \begin{bmatrix} 956\\169 \end{bmatrix},$$
$$(\alpha_4, \beta_4, \gamma_4) = (5741, 985, 2), \ k_4 = 2378,$$
$$\frac{\mathbf{z}_4}{2} = 16238 \equiv k_4^3 + 3k_4 = 13447321286 \mod (2\mathbf{y}_4^2) = 65918162.$$

With (**z**₅, **y**₅) = (1103228, 165025),

$$\begin{bmatrix} 1103228\\195025 \end{bmatrix} = \pm \begin{bmatrix} 17 & 96\\3 & 17 \end{bmatrix} \begin{bmatrix} 32476\\5741 \end{bmatrix},$$
$$(\alpha_5, \beta_5, \gamma_5) = (195025, 33461, 2), \ k_5 = 80782,$$
$$\frac{\mathbf{z}_5}{2} = 551914 \equiv k_5^3 + 3k_5 = 527161644214114 \mod (2\mathbf{y}_5^2) = 76069501250$$

Comparing the following table to [10], a sequence of integers $(k_n)_{n \in N*}$ can be identified as the double of the sequence **A046176**:

k_1	<i>k</i> ₂	k_3	k_4	k_5
-2	2	70	2378	80782
=	=	=	=	=
-2	2	(34×2) –(-2)	(34×70)-2	$(34 \times 2378) - 70$

Table 3.

Further, by comparing with the sequence A000129, we begin with

$$k_1 = P_{4(1)-6} = P_{-2} = -2, k_2 = P_{4(2)-6} = P_2 = 2, \cdots,$$

and supposing that $k_j = P_{4j-6}$ for $j = 1, 2, \dots, n$, we show the equality

$$k_{n+1} = 34k_{n+1} + k_{n-1} = 34P_{4n-6} - P_{4n-10}.$$

The recurrence works easily with the same calculus used before, or by the

Binet's formula:

$$P_{4n-2} = 2P_{4n-3} + P_{4n-4} = 34P_{4n-6} - P_{4n-10} = 34k_{n+1} - k_{n-1} = k_{n+1}$$

The sequence $(\mathbf{y}_n)_{n \in \mathbb{N}^*}$ is linked to the Pell sequence A000129. More

precisely we have:

$$\mathbf{y}_1 = 1 = P_1, \ \mathbf{y}_2 = 5 = P_3, \ \mathbf{y}_3 = 169 = P_7, \dots, \ \mathbf{y}_n = P_{4n-5}$$

The sequence $(\mathbf{z}_n)_{n \in \mathbb{N}^*}$ is also linked to the Pell-Lucas sequence A001333:

$$\mathbf{z}_1 = -4 = 4Q_{-1}^*, \, \mathbf{z}_2 = 28 = 4Q_3^*, \, \mathbf{z}_3 = 956 = 4Q_7^*, \, \dots, \, \mathbf{z}_n = 4Q_{4n-5}^*$$

Therefore, with the relations (8) and (11) we obtain:

Proposition 2. With any $n \in N^*$ and $\mathbf{y}_n = P_{4n-5}$, $k_n = P_{4n-6}$)

 $\frac{\mathbf{z}_n}{2} = 2(P_{4n-4} - P_{4n-5}) \equiv P_{4n-6}^3 + 3P_{4n-6} \mod (2P_{4n-5}^2).$ (17)

Before proving the proposition, we consider the following table of values of the expression

$$\frac{k_n^3+3k_n-\left(\frac{\mathbf{z}_n}{2}\right)}{2\mathbf{y}_n^2}.$$

n	2	3	4	5
$\frac{k_n^3 + 3k_n - \left(\frac{\mathbf{z}_n}{2}\right)}{2}$	$0 = \frac{P_0}{2}$	$6 = \frac{P_4}{2}$	$204 = \frac{P_8}{2}$	$6930 = \frac{P_{12}}{2}$
$2\mathbf{y}_n^2$	2	-	-	-

We have seen that the numbers P_{2n} are even. Hence, we will demonstrate the following:

Lemma 2. With any $n \ge 2$,

$$P_{4n-6}^{3} + 3P_{4n-6} - P_{4n-8}P_{4n-5}^{2} = 2Q_{4n-5}^{*} = 2(P_{4n-4} - P_{4n-5}).$$
(18)

Proof. We use the same method that has already been implemented. With (8) and (16) (13) (7), relation (13) now gives:

$$P_{4n-6}^{3} + 3P_{4n-6} - P_{4n-8}P_{4n-5}^{2} - 2Q_{4n-5}^{*}$$

= $P_{4n-6}^{3} + 3P_{4n-6} - (5P_{4n-4} - 12P_{4n-5})P_{4n-5}^{2} - 2(P_{4n-4} - P_{4n-5})$
= $P_{4n-6}((-P_{4n-5}^{2} + 2P_{4n-5}P_{4n-6} + P_{4n-6}^{2} + 1) = 0.$

This proves Lemma 2, and as a consequence, Proposition 2. The Binet's formula [5] could also be used for the demonstration. In this calculus, the link with the Markoff has not been identified, but we find with (8) and (7) that:

$$\begin{split} &P_{4n-5}^{2} + (3P_{4n-5} - 2Q_{4n-5}^{*})^{2} + 4 - 6(P_{4n-5}(3P_{4n-5} - 2Q_{4n-3}^{*})) \\ &= P_{4n-5}^{2} + (3P_{4n-3} - 2(P_{4n-4} - 3P_{4n-5}))^{2} + 4 \\ &- 6(P_{4n-5}(3P_{4n-5} - 2(P_{4n-4} - P_{4n-5}))) \\ &= 4P_{4n-4}^{2} - 8P_{4n-4}P_{4n-5} - 4P_{n-4}^{2} + 4 = 0. \end{split}$$

5. Conclusion

We considered all the couples of positive solutions $((4P_{2n} - 4P_{2n-1}), P_{2n-1})$ for the equation $\mathbf{z}^2 = 32\mathbf{y}^2 - 16$. They are distributed among two classes of solutions: the class of (4, 1), which contains all the positive solutions $((4P_{2n-2} - 4P_{2n-3}), P_{2n-3})$ where n > 0, and the class of (28, 5), which contains all the positive solutions $((4P_{2n-4} - 4P_{2n-5}), P_{2n-5})$ where n > 1. For each class, there is a special identity between the Pell numbers:

Table 5.

$$(4,1) P_{4(n-1)}^{3} + 3P_{4(n-1)} = P_{4n-6}P_{4n-3}^{2} + 2(P_{4n-2} - P_{4n-3}). k_{n} = P_{4n-4}$$

$$(28,5) P_{4n-6}^{3} + 3P_{4n-6} = P_{4n-8}P_{4n-5}^{2} + 2(P_{4n-4} - P_{4n-5}). k_{n} = P_{4n-6}$$

The values n_n can be considered as the values k appearing in the Markoff theory [2] with $\gamma = 2$. It is interesting to look at the values modulo 8 of $k^3 + 3k$. It is very easy to demonstrate that with any $j \in \mathbb{Z}$ we have:

$$P_{8j}^{3} + 3P_{8j} \equiv 0, \qquad P_{8j+2}^{3} + 3P_{8j+2} \equiv 6,$$

$$P_{8j+4}^{3} + 3P_{8j+4} \equiv 4, \qquad P_{8j+6}^{3} + 3P_{8j+6} \equiv 2.$$

It gives considering the relation between *n* and *j*:

$$n = 2j+1:$$
 $P_{4n-4}^3 + 3P_{4n-4} P_{4n-6}^3 +$
 $\equiv 0, \qquad 3P_{4n-6} \equiv 2,$

n =2j:
$$P_{4n-4}^3 + 3P_{4n-4} P_{4n-6}^3 + = 4, \qquad 3P_{4n-6} \equiv 6.$$

Reading only the columns, we obtain:

Table 6

(4,1)
$$\mathbf{y}_n = P_{4n-3} \quad \frac{\mathbf{z}_n}{2} \equiv P_{4(n-1)}^3 + 3P_{4(n-1)} \equiv 0 \mod (4).$$

(28,5) $\mathbf{y}_n = P_{4n-5} \quad \frac{\mathbf{z}_n}{2} \equiv P_{4n-6}^3 + 3P_{4n-6} \equiv 0 \mod (4).$

Hence, we can conclude that the number

$$\left(\left(\frac{z}{4}\right) - y\right)^3 + 3\left(\left(\frac{z}{4}\right) - y\right)$$

is an invariant of each class of solutions of the equation $\mathbf{z}^2 = 32\mathbf{y}^2 - 16$.

Remark: For the equation $z^2 = 5y^2 - 4$ studied in [8] we can give a similar description. The equation has three classes with these fundamental solutions:

$$(z, y) = (4, 2), (z, y) = (1, 1), (z, y) = (11, 5)$$
 equivalent to $(-1, 1)$.

It gives with the solution $(z, y) = (L_{2n+1}, F_{2n+1})$ of this equation the formula replacing (10):

$$k = \left(\frac{z-y}{2}\right) = \left(\frac{L_{2n+1}-F_{2n+1}}{2}\right) = F_{2n}$$

The transposition of relation (11) is:

$$z \equiv k^3 + 3k \pmod{y^2}.$$

Unfortunately, y is usually odd, hence the number

$$(\frac{z-y}{2})^3 + 3((\frac{z-y}{2}) \mod (4).$$

is not an invariant of each class of solutions of the equation $z^2 = 5y^2 - 4$.

However, with the following table, we give the possibility to compute invariants modulo 4 for each class of the three classes of solutions:

Table 7

(4,2)	$z_n = L_{6n-3} = (L_{2n-1}^3 + 3L_{2n-1}) \equiv 0 \mod (4).$
(1,1)	$z_n = L_{6n-5} = -(F_{6n-7}^3 + 3L_{6n-7}) + F_{4n-6}F_{4n-3}^2 \equiv 0 \mod (4).$
(1,1)	$Z_n - L_{6n-5} = (\Gamma_{6n-7} + 3L_{6n-7}) + \Gamma_{4n-6}\Gamma_{4n-3} = 0 \mod (4).$
(11,5)	$z_n = L_{6n-7} = - (F_{6n-9}^3 + 3L_{6n-9}) + F_{4n-13}F_{4n-7}^2 \equiv 0 \mod (4).$
	$2n = 20n - 7$ ($6n - 9$ ($2 - 6n - 9$) ($4n - 13^{2} - 4n - 7$) (1000 ($1)$)

Acknowledgements

These results were obtained thanks to the OEIS and the BC-MATH programs. We are also grateful to Grégoire Lacaze (Aix Marseille Université - LERMA EA 853).

References

- [1] Andreescu, T. Andrica, D., Quadratic diophantine equations, Springer Verlag, New York, 2015.
- [2] Aigner, M. Markov's theorem and 100 years of the uniqueness conjecture, Verlag, Cham Heidelberg New York, Dordrecht, London, 2013.
- [3] Emerson, E. Recurrent sequences in the equation $DQ^2 = R^2 + N$, Fibonacci Quarterly, 7, 1969, 233-242.
- [4] Halter Koch, F. Quadratic irrationals An introduction to classical number theory, CRC Press, New York, 2013.
- [5] Koshy, T., Pell and Pell Lucas numbers with applications, Springer Verlag New York, 2014.
- [6] LeVeque, W. J. Topics in number theory, vol. 1 and 2, Dover, New York, 2002.
- [7] Matthews, K., Quadratic diophantine equations BCMATH programs, Solving $x^2 dy^2 = n$, d > 0, *n* non-zero: for fundamental solutions, by the Lagrange–Mollin-Matthews method <u>http://www.numbertheory.org/php/main_pell_html</u> 2015.
- [8] Perrine, S., Some properties of the equation $x^2 = 5y^2 4$, The Fibonacci Quarterly, 54 (2),

2016, 172–178.

- [9] Robertson, J. P., Characterization of fundamental solutions to generalized Pell equations, 2014, <u>http://www.jpr2718.org/</u>.
- [10] Sloane, N. J. A., The On-line Encyclopedia of Integer Sequences, http://oeis.org .