
25

The uniform boundedness theorem in b-Banach space

Jiachen Lv* ,Yuqiang Feng

School of Science, Wuhan University of Science and Technology, Wuhan, China

*Corresponding author: 7411286@qq.com

Abstract

B-Banach space is an extension of Banach space, which provides a suitable framework for

studying many analytical problems. The uniform boundedness theorem is is the basic theorem

in functional analysis and has many important applications in many field, such as matrix

analysis, operator theory, and numerical analysis. In this note, we revisit the concept of b-

Banach space, and then establish the uniform boundedness theorem for linear operators. The

result may be useful to establish linear operator theory in b-Banach space.
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Introduction

As an extension of metric space, the concept of b-metric space was given by Bakhtin[1],

Czerwik[2] and was announced earlier as quasi-metric by Berinde [3-6].

In the framework of b-metric, we can deal with analytical problems in the spaces

)]([ 1p0ba,Lp  or )( 1p0l p  , which are important in theory and applications. For

example, Xu[7] proposed the )( 1p0l p  regularization optimization algorithm in signal
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processing, proved that the optimal condition for the solution was 5.0p , and gave the

analytical form of the optimal solution. While in [8], questions of approximation of periodic

functions in pL -spaces for 1p0  by certain families of linear polynomial operators were

studied.

Since )]([ 1p0ba,Lp  and )( 1p0l p  not only have topological structure, but also have

good linear structure, We have reason to conduct more in-depth research on them.

Recently in [9-10], Monica etc. introduced the concept of b-Banach space, which is an

extension of Banach space, and a special case of b-metric space. We recognize that the most

typical examples of this kind of spaces are )]([ 1p0ba,Lp  and )( 1p0l p  .

As a new type of normed linear space, it seems there are many topics can be discussed. For

example, in [9-10], a Krasnoselskii type fixed point theorem and a fixed point theorem under a

finite number of equality constraints involving a well-known Ciric type mappings were given

in the context of b-Banach space, respectively.

While in this paper, we aim to revisit the concept of b-Banach space, then establish the

uniform boundedness theorem for linear operators in b-Banach space.

In [11], the author proved Banach-Steinhaus theorem for some families of bounded linear op-

erators from a normed space into a generalized 2-normed space, and in [12], the author gave a

elementary proof of the uniform boundedness theorem (i.e., did not use any version of the

Baire category theorem). The above results have given us a lot of inspiration. Our uniformly

bounded theorem can be seen as another generalization of Banach-Steinhaus’s theorem.

This paper is organized as follows. In Section 2, we recall the definition of b-normed linear

space and some relevant properties. In Section 3, we establish the uniform boundedness

theorem in b-normed linear space.

Preliminaries

Definition 2.1 Let X be a vector space over a field K (either C or R ) and let 1s be a

given real number. A functional   ,0: X is said to be a b-norm if the following

conditions are satisfied:

(1) 0x  , and 0x  if and only if 0x ;
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(2) xx   ;

(3) )s( yxyx  .

for all Xx,y,z , K . A pair )( ，X is called a b-normed linear space.

Example 2.2 Let )]([ 1p0ba,Lp  be the set of all real-valued Lebesgue measurable

function x on ][ ba, for which  dttx
p

ba ],[
)( . For each ][ ba,Lx p , define

pb

a

pdttxx
1

)( 



  .

Then  ],,[ baLp )10(  p is a b-normed linear space with
11

2


 ps , see in [13].

Example 2.3[13] Let   




 

1n n
p

n1nn
p NnRxwherex|xx:l ,, , )10(  p .

Define
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p
nxx

1

1








 





.

for each plx . Then pl is a b-normed linear space with
11

2


 ps .

Let )( ，X be a b-normed linear space. For Xyx  , , define yxyxd ),( , then d is a

b-metric on x . We call d a b-metric induced by  .

Definition 2.4 Let )( ，X be a b-normed linear space. Then a sequence 
1}{ nnx in X is

called

(a) Convergent if and only if there exists Xx such that 0 xxn as n . In this

case we write xxnn



lim .

(b) Cauchy if and only if 0 nm xx as nm, .

Definition 2.5 The b-normed linear space )( ，X is complete if and only if every Cauchy

sequence in X is convergent in X . A complete b-normed linear space is called a b-Banach

space.
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It is verified that   )10(],,[  pbaLp and   )10(],,[  pbal p are all b-Banach spaces.

The uniform boundedness theorem in b-Banach space

Theorem 3.1 Let  IT  | be a family of bounded linear operators from Banach space X

to normed linear space Y . If  IT  | is pointwise bounded ( i.e.

for  xTXx 

sup, ), then  IT  | is norm-bounded, i.e.( xT


sup ).

In order to generalize the classical the uniform boundedness theorem from Banach space to

b-Banach space, we need the following definitions and lemmas.

Definition 3.2 Let X and Y be b-normed linear spaces, YXT : is a linear operator, we

called T as bounded linear operator if there exist 0M such that for Xx , xMTx  .

Lemma 3.3 Let X and Y be b-normed linear spaces, YXT : is a bounded linear

operator.

Define

 XxxMTxMT  ,:inf ,

TxT
x 1

1
sup


 ,

TxT
x 1

2
sup


 .

Then
21

TTT  .

Proof. On one hand, by the definition of
1

T and
2

T , we have

TTTxTT
xx


 11

21
supsup .

On the other hand, due to the definition of
1

T , we get

0,)(
1

 xTx
x
xTxTx ,

which implies that
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1
TT  .

Hence we have
21

TTT  .

Lemma 3.4 Let X and Y be b-normed linear spaces. Let ),( YXB be all bounded linear

operators from X to Y . Then for ),( YXBT  and 0r ,

TrTx
rx




sup .

Proof. Note that TyT y 1sup  , let 1 xry ,then

rTrTyrxrTxrrTTx
yrxrrxrrx










  1

11 sup)(sup)(supsup
11

.

Remark If X is a b-normed linear space with 1ss  , Y is a b-normed linear space with

2ss  , then X and Y are all b-Banach space with 0ss  , where  210 ,max sss  . Hence, we

always assume that two b-normed linear space X , Y have the same constant s .

Lemma 3.5 Let X and Y be b-normed linear spaces, ),( YXBT  . Then for Xx and

0r ,

Ts
rxT

rxx



sup .

Proof. By the inequality (3) in Definition 2.1, we have

   

TysTyTxTyTxs

yxTyxTs

yxTyxTyxTyxT

1
2
1

)()(2
1

)()(2
1)(,)(max







Let yxx  . Take the upper bound for ),0( rBy , then using Lemma 3.4 we obtain

Ts
rTysxT

ryrxx



sup1sup .

The main result is given as follows,

Theorem 3.6 Let F be a family of bounded linear operators from b-Banach space X to b-

normed linear space Y . If F is pointwise bounded, then F is uniformly bounded. In other

words, if  TxFTsup for Xx , then  TFTsup .
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Proof. Conversely, we assume that  TFTsup .

Firstly, let
ns nn 


)2(
1 for ,,2,1 n then 0n as n . Now, we can choose a

sequence of bounded linear operators   FT nn 
1 satisfying  2

nnT  .

Moreover, we can find Xxn  such that nnn xx  1 , n
n

nn TsxT 2


 .

In fact, by Lemma 3.5, we have

TsTsxT n
n

n
n

xx nn
2sup

1





 

.

Secondly, let’s show that }{ nx is a cauchy sequence. In fact, for nm  ,

0)2(
)2(

)1()2(
1

)1(2
12

)(2
1...
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1
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1

...

...

2

1
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
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




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n
s
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msnsns

sss

xxsxxsxxsxx

n

nnn

nmnnnn

m
m

nn

mm
m

nnnnnm





Hence, }{ nx is a cauchy sequence. By the completeness of X , there is Xx such that

l xxn n
lim .

Let m , we have

2)2( s
xx n
n


 .

Finally, we get
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which is contradiction.

This completes the proof.
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