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Abstract

For the past few years, the meshless method has played a great advantage in solving partial

differential equations. In this paper, a local meshless method based on moving least square

and local radial basis functions is used to solve the inverse problem of heat conduction

equation. The inverse problem is determination of a source term, and the unknown source

term is time dependent. Numerical experiments are given to demonstrate the accuracy,

effectiveness and feasibility of this method.
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1 Introduction

The inverse problem of heat conduction equation appears in a wide variety of physical

problems, and the inverse source problem is one of the important class. There are various
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methods to deal with this kind of inverse problems.

Liu[1] present an inverse problem using adjoint problem approach in nonlinear parabolic

partial differential equation, and the applicability of this method is demonstrated in numerical

examples.

Saadatmandi[2] investigate the problem of simultaneous determination of the time dependent

coefficients in one-dimensional partial differential equation applying tau technique. Hussein[3]

present the inverse problem of determining time and space dependent coefficients

simultaneously in parabolic equations, the methods in that paper are finite-difference method

and Tikhonov regularization method, and the influence of noisy data on the results is also

studied. Fatullayev [4] present the inverse problem of identification of an unknown source in

heat equation, the method he used in the paper is approximating unknown function by

polygons linear pieces, and the polygons linear pieces are determined consecutively from the

solution of minimization problem based on the overspecified data. Le[5] and Muhammad[6]

investigate the inverse source problem in the fractional differential equation using different

methods.

In recent years, more and more researchers use meshless method to solve the inverse source

problem of heat conduction equation.

Wang[7] investigate the numerical solution of a class of one-dimensional inverse parabolic

problems using the moving least squares approximation, and the inverse problem is

determination of an unknown source term depending on time. Yan[8] and Amirfakhrian[9] solve

the inverse source problems using the meshless method. Farcas[10] present two classes of

inverse problems of determining unknown source term, one class is time dependent, and the

other is space dependent.

Wang[11-12] present a local meshless method based on the linear combination of moving least

squares and local radial basis functions in the same compact support domain, by changing the

coefficient of the linear combination, the new method possesses the properties of moving least

squares approximation and local radial basis functions. Then the local meshless method is

applied to find the numerical solutions of two classes of inverse problems in parabolic
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equations, one class is time dependent source term, the other class is time and space

dependent.

In this paper, according to the ideas in [8], we use the local meshless method[11] to solve a

class of inverse heat source problem.

The outline of this paper is divided into the following sections: In Section 2, we introduce the

local meshless method. In Section 3, we present the inverse source problem. In Section 4, we

give the numerical solutions of the inverse problem. In Section 5, we present the numerical

examples and discussions. Finally, we give the conclusion.

2 The local meshless method

Let Ω be an open bounded domain in ��, given data values ��� ��� � Ȝ �������� where �� is

the distinct scattered point in Ω�, u_j is the data value of function �t�� at the node ��� � is the

number of scattered nodes, and we let ��t�� denote the approximate function of �t�� in this

paper.

Combining with the collocation method and the local meshless method in [11], we assume

that the approximate function �� can be written as

�� � Ȝ �Ȝ�
� �� � ��� � (1)

where �� � stands for the shape function, and it can be written as the linear combination of

some shape functions, which are composed of the moving least squares and the local radial

basis functions,

�� � Ȝ ���
� � � � � � ��

� � � (2)

where ��
� � and ��

� � stand for the shape functions in moving least squares and the local

radial basis functions, respectively, � is a constant which can be taken different values in

[0,1].
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Lemma 1[11] Let Ω be an open and bounded domain in �� , having a Lipschitz-continuous

boundary, � � � �� Ω �t� ⸱ �
�
�, then there exists a constant �� , such that for all scattered

points with � � ��, we have

� � �� �� Ω � ����� � �� Ω �t� � � � ���

where � Ȝ sup
��Ω

min
�����

� � �� �
� �� is defined by (1), and � is a constant independent of �.

3 The inverse source problem

Consider the following equation

�� ��� Ȝ t � ��� ��� � t � � � � ��� � � � t��� � (3)

with the initial condition

� ��� Ȝ �� � � � � t����� (4)

the boundary conditions

� ��� Ȝ t � � � ��� Ȝ ㄮ � � � � t��� � (5)

and the additional observation of �t���� at some internal point ����� � t�����

� ���� Ȝ t � � � � t��� ᦙ (6)

In above formulas (3)-(6), the function tt�� is unknown, so the problem is inverse source

problem, according to the ideas of Yan[8], let

� � Ȝ ��
� tt����� �t���� Ȝ �t���� � �t��� (7)

from (7) and (3)-(6), we get

�� ��� Ȝ t � ��� ��� � � � ��� � � � t��� � (8)

with the initial condition

� ��� Ȝ �� � � � � t����� (9)

and the boundary conditions
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� ��� Ȝ t � � � � � � ��� Ȝ ㄮ � � � � � � � t��� � (10)

from (6) and (7), we get

� ���� Ȝ t � � � � � � � t��� � (11)

combine with (10) and (11), we have

� ��� � � ���� Ȝ t � � t � � � ��� � � ���� Ȝ ㄮ � � t � � � � t��� ᦙ (12)

Through the above derivation process, the inverse problem is transformed to a direct problem,

then we use the local meshless method described in section 2 solving the problem (8),(9) and

(12).

4 The numerical solutions

When the collocation method is employed in conjunction with the local meshless method to

solve the equations (8),(9) and (12), the exact solution �t���� is replaced by the approximate

solution ��t���� . We followed the method of Wang[11], and according to (1), at the time � Ȝ

��t� Ȝ ��������� Ȝ �� � �� � � � �� Ȝ ��, ��t�����can be represented as

�� ���� Ȝ �Ȝ�
� �� t���� ����� �� (13)

where ��t�� is the shape function described in section 2, �� ����� is the value of the

approximate function �� ��� at �� and �� .

Then, we have

����t����� Ȝ �Ȝ�
� ����t���� ����� �� (14)

for the time derivative ���t�����, we apply one step forward difference formula,

���t����� Ȝ
��t����������t�����

Δ�
� (15)

where Δ� Ȝ ���� � ���� Ȝ ������� � �ᦙ

So for � Ȝ �� , the equation (8) can be rewritten as
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��t����������t�����
Δ�

Ȝ tt�� �Ȝ�
� ����t���� ����� �� (16)

that is equivalent to

�� ������ Ȝ ��t����� � Δ� � tt�� �Ȝ�
� ����t���� ����� �� (17)

by the collocation method, we select � distinct points in Ω , and substitute each ��t� Ȝ

�������� for � in (17), then we get

�� ������� Ȝ ��t������ � Δ� � tt��� �Ȝ�
� ����t����� ����� �� (18)

Combining with the conditions (9) and (12), for the iterative system of equation (18), after

computation using the iterative method, we can obtain the numerical solution

��t������t� Ȝ ��������� Ȝ ��������ᦙ

5 Numerical results and discussions

In this section, we give examples to illustrate the accuracy, feasibility and effectiveness of the

method.

Example 1. Consider the problems (3)-(6) with the conditions

��t�� Ȝ � � ����� tt�� Ȝ � � � ���� ㄮt�� Ȝ � � � � sin � ���� (19)

tt�� Ȝ � � � � sin �� ���ᦙ (20)

The exact solutions are

�t���� Ȝ � � � � sin � ���� tt�� Ȝ � � � � ���� (21)

and � Ȝ ��� Ȝ ���� Ȝ �.

Firstly, we give the comparisons of the exact solutions tt��� �t���� and the numerical

solutions t�t��� ��t���� at some nodes.

Table 1 the comparisons of the exact and numerical solutions

� t � t� � � �ᦙ��� �� �ᦙ��� � �ᦙa��� ��t�ᦙa����
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0.2 -0.9825 -0.9825 2.1937 2.1937 2.6068 2.6068

0.4 -0.9385 -0.9385 1.9301 1.9301 2.2684 2.2684

0.6 -0.8781 -0.8781 1.6900 1.6900 1.9669 1.9669

0.8 -0.8088 -0.8088 1.4735 1.4735 1.7003 1.7003

1.0 -0.7358 -0.7358 1.2800 1.2800 1.4656 1.4656

1.2 -0.6626 -0.6626 1.1082 1.1082 1.2602 1.2602

1.4 -0.5918 -0.5918 0.9567 0.9567 1.0811 1.0811

1.6 -0.5249 -0.5249 0.8324 0.8324 0.9255 0.9255

1.8 -0.4628 -0.4629 0.7074 0.7074 0.7908 0.7908

From Table 1, we see that the exact solutions are approximately identical in the numerical

solutions at different nodes, and the maximum error is not more than � � ���� , so the

approximation effect is very good.

Secondly, in order to illustrate the numerical accuracy of the method in this paper, let

���tt�� Ȝ tt�� � t�t��� ����t���� Ȝ �t���� � ��t����� (22)

we plot the exact solution tt�� , the numerical solution t�t�� and the error function ���tt��

for different Δ� in Figures 1-3, and we plot the exact solution �t����, the numerical solution

��t���� and the error function ����t���� for different Δ� in Figures 4-5.

Figure 1 Δ� Ȝ �ᦙ���૙� � �� � �th �� � � t䠠���椀杮 杮��⺁� �૙t૙�૚⺁t 杮���t��ᦙ
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Figure 2 Δ� Ȝ �ᦙ���e� � �� � �th �� � � t䠠���椀杮 杮��⺁� �૙t૙�૚⺁t 杮���t��ᦙ

Figure 3 Δ� Ȝ �ᦙ����� � �� � �th �� � � t䠠����杮 杮��⺁� �૙t૙�૚⺁t 杮���t��ᦙ

Figure 4 � �૙ ��� � t䠠�� ૙� ��� ᦙ
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Figure 5 杮��૙t���� �⺁� h૚��杮�杮t� Δ�� t���Δ� Ȝ �ᦙ���૙� t䠠��Δ� Ȝ �ᦙ����ᦙ

For purpose of observing the effect of the approximation more clearly, we plot the function

�t���� at � Ȝ �ᦙ� and � Ȝ �ᦙ�, respectively, in Figure 6.

Figure 6 t��� ૙t૙ᦙ����� t䠠�� ૙t���ᦙ��ᦙ

From the above six figures, we see intuitively that the numerical solutions are close to the

exact solutions, and the effect of the approximation is good.

Thirdly, in order to study the influence of the noise on the numerical results, we define the

observed data with noise disturbance as

t�t�� Ȝ tt��t� � ��� (23)

where � represents the noise data.

We plot the exact solution tt�� and the numerical solution t� � with different noise data �

in Figure 7, the error functions ���tt�� and ����t���� with different noise data � in Figures

8-9.
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Figure 7 �t�� �th ��t�� �⺁� h૚��杮�杮t� �� t���� Ȝ �ᦙ��૙� t䠠��� Ȝ �ᦙ�૙ᦙ

Figure 8 � Ȝ �ᦙ��૙ t��� 杮���t��� t䠠�� 杮��૙t����ᦙ

Figure 9 � Ȝ �ᦙ�૙ t��� 杮���t��� t䠠�� 杮��૙t����ᦙ

From the above three figures, we get that when the noise parameter is large, the

approximation effect is relatively poor, but there is no obvious oscillation, and the error

decreases with the decrease of noise parameter.

Finally, in order to test the feasibility of the numerical method, and to get a better view of the

approximation, we define the errors of tt�� and �t���� as follows
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��t Ȝ �
� �Ȝ�

� t �� � t� ��
�� � (24)

��� Ȝ �
�� �Ȝ�

�
�Ȝ�
� � ����� � �� �����

��� � (25)

we give the results of Ref and Reu for different Δ� with different methods in Table 2, where

MLS represents the moving least squares approximation method, LRBF represents the local

radial basis function method, and LMM represents the method in this paper.

Table 2 Results for different Δ� with different methods

��t ���

MLS �ᦙ潯a瑯瑯 � ���� �ᦙa��潯 � ����

Δ� Ȝ �ᦙ���� LRBF �ᦙ���� � ���� �ᦙ���� � ���a

LMM �ᦙ�潯�� � ���� �ᦙ���� � ���a

MLS �ᦙ瑯�a� � ���� �ᦙ�潯�潯 � ����

Δ� Ȝ �ᦙ���� LRBF 瑯ᦙ���� � ���� �ᦙ���� � ����

LMM �ᦙ瑯瑯�瑯 � ���� �ᦙ�a�� � ���a

MLS �ᦙa�潯� � ���� �ᦙ���潯 � ����

Δ� Ȝ �ᦙ���� LRBF 潯ᦙ���� � ���� �ᦙ�a�� � ����

LMM �ᦙa�潯潯 � ���� 瑯ᦙ瑯�潯� � ���a

As indicated in Table 2, we get that as the decease of Δ� , the value of ��t and ��� are

decrease too, and the results obtained by the method in this paper are superior to those

obtained by other two methods, so the method in this paper is feasible.

6 Conclusion

In this paper, we use a local meshless method to solve the inverse source problem of heat

conduction. Numerical experiments demonstrate that the method in this paper is accurate,

feasible and effective.
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