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Abstract

Let GS represents the class connected 6-cyclic graphs. In this paper, first some result is
derived for the characterization of class connected 6-cyclic graphs. Then we find minimum

degree distance of class of connected of 6-cyclic graph.

Keywords: connected graph, degree distance, Six cyclic graphs

Introduction

For any graph G € G,, d(x,y) represents the shortest distance between the vertices x,y €
V(G) and the maximum of d(x,y) for any vertices x,y € V(G) is defined to be the
diameter of G, denoted by giam(G).
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The Wiener index [8] is a well-known topological index of a molecular graph which is used to
describe molecular branching and cyclicity. It’s also stablishes correlation with various

parameters of chemical compounds. The wiener index of a graph G is defined as

Yreve) Zrevy 46 Y).

Dobrynin and Kotchetova [1] and Gutman [2] introduced a new graph invariant that is more
sensitive than the Wiener index. It is defined in the following way: given any G € G, the

degree distance of a vertex x € V(G) is defined by

D'(x) = d(x)D(x)

where d(x) is the degree of x and D(x) = Zx,y v () d(x,y). The degree distance of a
graph G is defined as:
: . 1
D@= ) D@= Y dwbp@W= 75 » dxy) @ =do).
x€V(G) x €V(G) xy EV(G)

In this paper, we determine all the extremal 5-cyclic graphs achieving the minimum degree

distance.

In section 2, we list some known results needed in this paper. In section 3, we characterize

extremal 5-cyclic graphs achieving the minimum degree distance.

Some Lemmas

In this section, we characterize connected six cyclic graphs by their degree sequence in the

following lemma.

Lemma 1. Let n > 6. The degrees of the vertices of a graph G € G are the integers n — 1 >

(i) X ,di=2n+10
(i1) d; = 2, for at least six indices.

Proof: = Let G € G>. Then by the definition of 5-cyclic graph condition (i) and (ii) is

verified.

64



& For n=6, we have Z?Zldi=22. If dg >4 then di{+d,+d3+dy+ds>24 a
contradiction. So dg <4 . If dg=3 then 2?21 d; =19 , which implies that
(dq,dy,ds, dy, ds,dg) = (5,5,3,3,3,3), or (5,4,4,3,3,3) or (4,4,4,4,3, 3) represented
by graphs H; or H, or Hsz, respectively in fig 1. If dg <3, then d¢ =2 and
(dy,dp,d3, dy, ds, dg) = (5,4, 4,4,3,2), or (5,5,4, 3, 3, 2) represented by graphs H, or Hs,
respectively in fig 1. Let n = 7 and assume that the result is true for all k < n.

Case 1. If d,, > 1, then d, = 2. Otherwise, dy +d, +--+d, >3n>2n+10. If d,, =3
for n=7, 8, 9 or 10, we do not have a graphical sequence. For d,, = 2, and sufficiently large n,

by solving the equation, d; + dy + --- + d,,_1 = 2n + 8. We have the following possibilities
Subcase 1.1. If dy =12,d, =d3 =-+-=d, =2, then the unique resultant graph is
isomorphic to G in fig.2.

Subcase 1.2. If dy =11,d, =3,d3 =--=d, =2, then the unique resultant graph is
isomorphic to G, in fig.2.

Subcase 1.3. If d; = 10,d, =d3 =3,d, = -+ =d, = 2, then the unique resultant graph is
isomorphic to Gz or G4 in fig.2.

Subcase 14. If di =9,dy=d3;=d4 =4,ds= dg=:+-=d, =2, then the unique
resultant graph is isomorphic to G5 or Gg in fig.2.

Subcase 1.5. If di=8,d,=d3=dy,=ds =3, d¢=-+-=d, =2, then the unique

resultant graph is isomorphic to G; or Gg in fig.2.

Subcase 1.6. If d{ =7,d, =4, d3=dy,= ds =3, dg =--=d, =2, then the unique

resultant graph is isomorphic to Gg in fig.2.

Subcase 1.7. If d{ =6,d, =d3 =4, dy = ds =3, dg =+ =d,, =2, then the unique

resultant graph is isomorphic to G or G in fig.2.

Subcase 1.8. If d1 =6, dz =4, d3 = d4 = d5 = d6 =3, d7 == dn =2 , then the

unique resultant graph is isomorphic to G4, in fig.2.

Subcase 1.9. If di=d,=6,d3;=dy,=4,ds=dg=--=d, =2, then the unique

resultant graph is isomorphic to G13 in fig.2.

Subcase 1.10. If d; =6, d, =5, d3; = 4, dy =3,ds =dg - =d, =2, then the unique

resultant graph is isomorphic to G4 in fig.2.
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Subcase 1.11. If dl = 6,d2 = d3 = d4_ = d5 = d6 = d7 =3, d8 == dn =2 , then the
unique resultant graph is isomorphic to G5 in fig.2.
Subcase 1.12. If d1 = 5, dz = d3 = d4, = d5 = d6 = d7 = 3, d8 = e = dn = 2, then the
unique resultant graph is isomorphic to G4 in fig.2.
Subcase 1.13. If dy = d,=5,d3=dy,=4,ds=dg=3,d, =+-=d, =2, then the

unique resultant graph is isomorphic to G in fig.2.

Subcase 1.14. If dl = dz =5, d3 =4, d4=d5 =3, d6 =d7=d8 ==dn=2, then

the unique resultant graph is isomorphic to Gg in fig.2.

Subcase 1.15. If dy = dy, = d3 = dy =ds =4, dg =d; =+ =d, = 2, then the unique

resultant graph is isomorphic to G in fig.2.

Schase 1.16. If d1: d2: d3: d4:d5:d6:d7:d8:d9:d10:3, dllz.--:

d,, = 2, then the unique resultant graph is isomorphic to G, in fig.2.

Subcase 1.17. Ifdl = 5, dz = 4, d3 = d4, = d5 = d6 = d7 = 3, d8 = e = dn = 2, then the

unique resultant graph is isomorphic to G, in fig.2.
Case 2. If d,, = 1, we consider the following two subcases:
Subcase 2.1. If d; = n — 1, and for sufficiently large n, we have the following possibilities,

Subcase 2.1.1. If dl =n-—1, dz =d3 = d4 =3, ds = e =d10 =2, dll = e =dn= 1,

then the unique resultant graph is isomorphic to 4, in fig.3.

Subcase 2.1.2. If di=n—-1,dy; =+ =d;,=3,dy;y =+-=d,=1, then the unique

resultant graph is isomorphic to 4, in fig.3.

Subcase 2.1.3. Ifd1=n—1,d2=5, d3:3, d4:d5:d6: d7:2,d8:“’:dn:1,

then the unique resultant graph is isomorphic to Az in fig.3.

Subcase 2.1.4. If dl =n-— 1,d2 = 5,d3 =3, d4 = d5 = d6 =3, d7 = dg = Z,dg = e =
d,, = 1, then the unique resultant graph is isomorphic to 4,4 in fig.3.

VOO
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Fig. 1

Fig. 2

Subcase 2.1.5. If dl =n-—1, dz = = d5 =3, d6 = = dg =2, le = = dn =1 ,
then the unique resultant graph is isomorphic to As in fig.3.

Subcase 2.1.6. If dl =Tl—1,d2 =4, d3 = d4 = d5 =3,d6 = d7 =2, dg = dg = e =
d,, = 1, then the unique resultant graph is isomorphic to A¢ in fig.3.

Subcase 2.1.7. If dl =Nn-— 1, dz = d3 = d4 = d5 = d6 = d7 = 3, d8 = "'d19 = 2, dzo =
-+ = d, = 1, then the unique resultant graph is isomorphic to 4 in fig.3.

Subcase 2.1.8. Ifdl =n-— 1, dz = 7, d3 = d4 = d5 = d6 = d7 = d8 = 2, dg"' = dn = 1,
then the unique resultant graph is isomorphic to A in fig.3.

Subcase 2.1.9. If dl =Tl—1,d2 =4,d3 =d4 = 3, d5 = d6 = d7 = dg = 2, dg = e =
d, = 1, then the unique resultant graph is isomorphic to Ag in fig.3.

Subcase 2.1.9. Ifdl :n—l,dz = d3 :4,d4 = 3, d5 :d6 = d7 = 2, d8 = . :dn = 1,
then the unique resultant graph is isomorphic to 4, in fig.3.
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Fig 3.
Subcase 2.2. Suppose dy <n—2 and d, =1. Foreach 1<i<n-—1 if d; <2 then
2;d; <2n—1, which is a contradiction. We can find a maximal index j, 1 <j<n-—1,
such that d; =3, and dj;1 <2 andd; =2dy, =+ =2d;_1 =d; = =d, = 1. At least six
members of the sequence dy, -, dj_l , d]- -1,:d,, are greater than 2, for which d; <
n—2 and dy+dy+--+d,=2(n—1)+10 = 2n+ 8. By induction hypothesis there
exist G € G having this degree sequence. By adding a new vertex, joined by an edge with
the vertex having degree d;_;, we obtain a graph having six cycles with the degree sequence

dy = dy = -+ = d, = 1. This completes the proof of Lemma 1.

If for any vertex v €V(G),d(v) =k, then D(v) >22n—k—2 , and if for all
v eV , ,dlvy)<2 then D(v)=2n—k—2 . Consequently, D'(G)=
>, v (6 d(v)D(v) = % Z’;;} kx, (2n — k — 2), where x; denotes the number of vertices of
degree i, 1 < i < n — 1. By denoting as in [2], F(xq, X3, -, Xp_1) = Zz;i kx, (2n —k — 2).
We will find the minimum of F(xy, X3, ***, X,—1) over all-natural numbers Xy, X3, ***, X,_1 =

0 satisfying the conditions in above lemma. We have the following corollary:

Corollary: Let n = 6. The integers x4, X5, ***, X,_1 = 0 are the multiplicities of the degrees of
a graph G € G iff

. -1 _

(1) 21{;1 Xp=n

.. 1. _

(i) Yo, ix; =2n+10

(i) x, <n —6
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Let the set of vectors xq, x5, -+, x,_1, Where xq, .-+, x,_1 are non-negative integers be denoted
by A satisfying the conditions (i)-(iii) of corollary. Let us define transformations T and T,

m=22,p>0m+p<n—2,x,=> 1,xp > 1, by

T1(x1, ) Xpo1) = (x’lr"'r x'n—l) = ( xp X+ Lx, =1, Xmtp — 1, Xm+p+1 +
1, x,_1) and

To(xq, o Xne1) = (X%, ) =( X, X1 + 1, %, — 2, Xppyq + 1,4, %,21)  we have
x; =x fori # {m—1,m,m+p,m+p+1}.

Lemma 2. Let (xq, -*-, X,—1) € A then

(@). T1(xq, ", xp_1) €EA if m#2 and x; #n—7 , moreover F(T1(xq, ", xp_1)) <
F(xy, -+ Xp-1)
(b). Ty(xq, ", xp—1) EA if m#2 and x; #n—7 , moreover F(T,(xy, ", xp_1)) <

F(xli Y xn—l)
Proof: (a). As Y1 x; = Y1l x, and Y iy = Y i, = 2n 4+ 6. If (xq, -+, Xpq) €A,
m=2 and n—6 then x'1 >n—6 a contradiction. Also F(xq, ", Xp—1) —

F( Tl(xl, ceey xn_l)) = Zp +2>0.

Similarly, (b) also hold. This completes the proof of lemma 2.

Main result
Theorem: Let G € Gfl,

(a). If n = 6 then minD'(G) = 132, and the unique extremal graph is isomorphic to H, as

shown in fig.1.

(b). If n = 7 then minD (G) = 3n? + 17n — 80 then all the extremal graphs are isomorphic
to the graphs F and F, in fig.5.

Proof. In order to find min F (x4, -*-, x,_1) where (xq, -, x,_1) € A.

Firstly, let n = 6 the resultant graphs are given in Fig 1, and D'(H,) = 132 is the minimum

value.

Secondly, let us consider n = 7. Then all graphs G € G? are C;'s where 1 < i < 11. Here
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D'(C,) =D (C;) =202, D'(C,) =190, D'(C3) = 200,D'(C,) = D'(Cz) =198, D'(Cs) =
194, D'(Cg) =188, D'(Cy) = D'(Cyp) = 198 and D (C;) = 186, where C; are shown in

Fig.4.

Finally, n > 8. If x,_; = 2,consider two different vertices u, v € V(G) such that d(u) =
d(v) =n—1. As n =8, we can choose at least eight different vertices distinct from u, v
which are adjacent to u,v . Thus, we have at least seven cycles, which contradicts the

hypothesis, Therefore x, ¢ < 1.

Now we analyze the possible values of x,x;, -+, x,,_, If there exist 8 < i, j <n — 2 such that
x; 2 1 and x; = 1 then by applying the transformation Ty for the position i and j, we have a
new vector (X, x,_) €A for which F(x,,+, x, ) < F(xy, ", X,_1). Similarly, if there
exist 6 < i,j <n — 2 such that x; > 2 then we obtain a new degree sequence in A for which
F (x'l,---, x;1—1) < F(xq, ***, X,—1). by applying the transformation T,. Now we consider two

cascs:

Case 1. Suppose that there exist distinct indices i, k with 8 < i, k <n—2 such that x; =1
and xj, = 0. In this case, if x; = 1 then by applying the transformation T for position 7 and i,
we obtain smaller a smaller value of F, Suppose that x; = 0. Since x,_; € {0, 1}, we will

analyze the two cases separately.

(a) In this case x,,_1 = x; =1, where 7 < i and x5 = 0. We can consider different vertices
wv,wx,y,p,q € V(G) such that d(u) =n —1,d(v) =i > 7 then w,x,y,p,q are all adjacent
to u and v respectively. Meanwhile, u and v are adjacent too, so we have found six cycles

which contradicts the hypothesis.

(b) If x,_1=0 then x5 =0 and x; =1, (7<in—2) and A is characterized by the
equations x; + x, + x3 + x4, =n —1 and x; + 2x, + 3x3 + 4x4 = 2n + 8 — i which implies
that x, + 2x3 = n + 8 — i by solving for x, and x3 and then by applying the transformation

for position 2 and 7 or 3 and i or 4 and i, we obtain smaller value of F.

Case 2. Suppose that xg, --,x,1 =0, hold and the degree sequence is

(%1, x2, X3, X4,Xs5, X6,X7,0, +--,0, x,,). As x,_1 € {0, 1}, so we have to analyze two cases:

(a). If x,_; = 0, then x, + 2x3 + 3x, + 4x5 + 5x4 + 6x; = n + 10. This equation does not
hold. If all x,, x3, x4 , X5 ,x¢ and x; are not greater than 2, then x, + 2x3 + 3x4 + 4x5 +
5xg + 6x7 < 42 which contradicts the hypothesis n = 8. If one of them is greater than two,

then by using T, for the corresponding position, we obtain a smaller value of F.
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(b). If x,_; =1, then x, + 2x3 + 3x4 + 4x5 + 5x¢c + 6x7 = 12. If x; > 3, then x, +
2x3 + 3x4 + 4x5 + 5x¢ + 6x7 = 18 which is not possible. So x; < 2, if x; = 2 then x, +
2x3 + 3x4 + 4x5 + 5x¢ = 0, which implies that x, = x3 = x4 = x5 =x¢ =0 and x; =n —

3 which is a contradiction as x; < n — 6. So x; # 2. Thus either x; = 0 or x; = 1.

If x; =1, then x, + 2x3 + 3x4 + 4x5 + 5x4 = 6, the possible solutions which gives the
graphical degree sequence and which satisfy all the conditions of corollary 1 is x, = 6, x3 =
X4 = X5 =Xx¢ =0 . The degree sequence (n—38,6,0,0,0,0,1,0,.--,0,1) and t,(n—
8,6,0,0,0,0,1,0,--,0,1) is not graphical. Thus F(n—8,6,0,0,0,0,1,0,--,0,1) = 3n? +
17n — 86.

Next consider if x; = 0, then then x, + 2x3 + 3x4 + 4x5 + 5x¢ = 12, all possible solution of

X, X3, X4, X5 and xg which follows the above corollary and construct the twenty dour degree
sequences which are graphical. The sequences are

(n - 6'01312'0'...'0‘1)‘ (n - 610'4'0111 O'...'O'l)’ (n - 7' 3’ O' 3'0' ...'0‘1)1

(n - 7' OI 6' 0’ ".IOI 1)' (n - 7’ 2’ 3' OI 1’ 0’ ".ll 0’ 1)’ (n - 7' 1' 4’ 1’ 0’ ...’0’ 1)' (n - 7I3’ 1’ 1' 1' ..."0’1)’
(n - 8' 4' 1’ 2' 0’ ...'0‘1)’ (n - 8’ 3’ 3’ 1' O' "‘10’1)‘ (n - 8' 2' 5' O' ...'O‘ 1)‘ (n - 8’ 5’ 1' O' O' 1’ 01...'0'1)'
(n - 7’ 3’ 2’ 0’ 0’ 1' O' "‘10’ 1)’ (n - 915' 2' 1' 0’ ...'0‘1)’ (n - 9’ 6’ 1’ O' 1' O""IOI 1)’(n - 9'61012'0...'0‘1)1
(n-970001,-.01),(n-10,8,0,01,0,,011), (n-10,71,1,0,-,0,1),(n - 10,6,3,0,--+,,0,1),
(n-11,820,-01),(n-11,9,0,1,0,--,0,1),(n—12,10,1,0,---,0,1), (n — 13,12, 0,---,0, 1).
By applying transformations T; and T, these degree sequences are transformed to either the
sequence (n—7,3,2,0,0,1,0,---,0,1) or (n —6,1,2,1,1,0,---,0,1) represented by graphs F;and
F, respectively. But F(n-17,3,2,00,1,0,--01) =3n>+17n—-80 < F(n—

6,1,2,1,1,0,---,0,1) = 3n? + 17n — 78. Hence for n = 7, minD (G) = 3n® + 17n — 80.
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Fig. 5
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