

SCIREA Journal of Mathematics http://www.scirea.org/journal/Mathematics November 15, 2021 Volume 6, Issue 6, December 2021

A Note on Connected Six Cyclic Graphs Having Minimum Degree Distance

Nadia Khan, Fatima Ramazan and Munazza Shamas Department of Mathematics and Statistics, The University of Lahore, Lahore Pakistan. E-mail: nadiakhan811@gmail.com, fatimaramazan19@gmail.com, munazashms123@gmail.com

Mathematics Subject Classification: 05C12

Abstract

Let G_n^6 represents the class connected 6-cyclic graphs. In this paper, first some result is derived for the characterization of class connected 6-cyclic graphs. Then we find minimum degree distance of class of connected of 6-cyclic graph.

Keywords: connected graph, degree distance, Six cyclic graphs

Introduction

For any graph $G \in G_n$, d(x, y) represents the shortest distance between the vertices $x, y \in V(G)$ and the maximum of d(x, y) for any vertices $x, y \in V(G)$ is defined to be the diameter of G, denoted by giam(G).

The Wiener index [8] is a well-known topological index of a molecular graph which is used to describe molecular branching and cyclicity. It's also stablishes correlation with various parameters of chemical compounds. The wiener index of a graph G is defined as

$$\sum_{x \in V(G)} \sum_{x \in V(G)} d(x, y)$$

Dobrynin and Kotchetova [1] and Gutman [2] introduced a new graph invariant that is more sensitive than the Wiener index. It is defined in the following way: given any $G \in G_n$ the degree distance of a vertex $x \in V(G)$ is defined by

$$D'(x) = d(x)D(x)$$

where d(x) is the degree of x and $D(x) = \sum_{x, y \in V(G)} d(x, y)$. The degree distance of a graph G is defined as:

$$D'(G) = \sum_{x \in V(G)} D'(x) = \sum_{x \in V(G)} d(x)D(x) = \frac{1}{2} \sum_{x, y \in V(G)} d(x, y) (d(x) = d(y)).$$

In this paper, we determine all the extremal 5-cyclic graphs achieving the minimum degree distance.

In section 2, we list some known results needed in this paper. In section 3, we characterize extremal 5-cyclic graphs achieving the minimum degree distance.

Some Lemmas

In this section, we characterize connected six cyclic graphs by their degree sequence in the following lemma.

Lemma 1. Let $n \ge 6$. The degrees of the vertices of a graph $G \in G_n^6$ are the integers $n - 1 \ge d_1 \ge d_2 \ge \cdots \ge d_n \ge 1$, iff

- (i) $\sum_{i=1}^{n} d_i = 2n + 10$
- (ii) $d_i \ge 2$, for at least six indices.

Proof: \Rightarrow Let $G \in G_n^5$. Then by the definition of 5-cyclic graph condition (i) and (ii) is verified.

 $\leftarrow \text{ For } n = 6, \text{ we have } \sum_{i=1}^{6} d_i = 22. \text{ If } d_6 \ge 4 \text{ then } d_1 + d_2 + d_3 + d_4 + d_5 \ge 24 \text{ a} \\ \text{contradiction. So } d_6 < 4 \text{ . If } d_6 = 3 \text{ then } \sum_{i=1}^{n} d_i = 19 \text{ , which implies that} \\ (d_1, d_2, d_3, d_4, d_5, d_6) = (5, 5, 3, 3, 3, 3), \text{ or } (5, 4, 4, 3, 3, 3) \text{ or } (4, 4, 4, 4, 3, 3) \text{ represented} \\ \text{by graphs } H_1 \text{ or } H_2 \text{ or } H_3 \text{ , respectively in fig 1. If } d_6 < 3 \text{ , then } d_6 = 2 \text{ and} \\ (d_1, d_2, d_3, d_4, d_5, d_6) = (5, 4, 4, 4, 3, 2), \text{ or } (5, 5, 4, 3, 3, 2) \text{ represented by graphs } H_4 \text{ or } H_5, \\ \text{respectively in fig 1. Let } n \ge 7 \text{ and assume that the result is true for all } k \le n. \\ \end{aligned}$

Case 1. If $d_n > 1$, then $d_n = 2$. Otherwise, $d_1 + d_2 + \dots + d_n > 3n > 2n + 10$. If $d_n = 3$ for n=7, 8, 9 or 10, we do not have a graphical sequence. For $d_n = 2$, and sufficiently large *n*, by solving the equation, $d_1 + d_2 + \dots + d_{n-1} = 2n + 8$. We have the following possibilities

Subcase 1.1. If $d_1 = 12$, $d_2 = d_3 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_1 in fig.2.

Subcase 1.2. If $d_1 = 11$, $d_2 = 3$, $d_3 = \dots = d_n = 2$, then the unique resultant graph is isomorphic to G_2 in fig.2.

Subcase 1.3. If $d_1 = 10$, $d_2 = d_3 = 3$, $d_4 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_3 or G_4 in fig.2.

Subcase 1.4. If $d_1 = 9$, $d_2 = d_3 = d_4 = 4$, $d_5 = d_6 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_5 or G_6 in fig.2.

Subcase 1.5. If $d_1 = 8$, $d_2 = d_3 = d_4 = d_5 = 3$, $d_6 = \dots = d_n = 2$, then the unique resultant graph is isomorphic to G_7 or G_8 in fig.2.

Subcase 1.6. If $d_1 = 7$, $d_2 = 4$, $d_3 = d_4 = d_5 = 3$, $d_6 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_9 in fig.2.

Subcase 1.7. If $d_1 = 6$, $d_2 = d_3 = 4$, $d_4 = d_5 = 3$, $d_6 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_{10} or G_{11} in fig.2.

Subcase 1.8. If $d_1 = 6$, $d_2 = 4$, $d_3 = d_4 = d_5 = d_6 = 3$, $d_7 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_{12} in fig.2.

Subcase 1.9. If $d_1 = d_2 = 6$, $d_3 = d_4 = 4$, $d_5 = d_6 = \dots = d_n = 2$, then the unique resultant graph is isomorphic to G_{13} in fig.2.

Subcase 1.10. If $d_1 = 6$, $d_2 = 5$, $d_3 = 4$, $d_4 = 3$, $d_5 = d_6 \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_{14} in fig.2.

Subcase 1.11. If $d_1 = 6$, $d_2 = d_3 = d_4 = d_5 = d_6 = d_7 = 3$, $d_8 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_{15} in fig.2.

Subcase 1.12. If $d_1 = 5$, $d_2 = d_3 = d_4 = d_5 = d_6 = d_7 = 3$, $d_8 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_{16} in fig.2.

Subcase 1.13. If $d_1 = d_2 = 5$, $d_3 = d_4 = 4$, $d_5 = d_6 = 3$, $d_7 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_{17} in fig.2.

Subcase 1.14. If $d_1 = d_2 = 5$, $d_3 = 4$, $d_4 = d_5 = 3$, $d_6 = d_7 = d_8 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_{18} in fig.2.

Subcase 1.15. If $d_1 = d_2 = d_3 = d_4 = d_5 = 4$, $d_6 = d_7 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_{19} in fig.2.

Subcase 1.16. If $d_1 = d_2 = d_3 = d_4 = d_5 = d_6 = d_7 = d_8 = d_9 = d_{10} = 3$, $d_{11} = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_{20} in fig.2.

Subcase 1.17. If $d_1 = 5$, $d_2 = 4$, $d_3 = d_4 = d_5 = d_6 = d_7 = 3$, $d_8 = \cdots = d_n = 2$, then the unique resultant graph is isomorphic to G_{21} in fig.2.

Case 2. If $d_n = 1$, we consider the following two subcases:

Subcase 2.1. If $d_1 = n - 1$, and for sufficiently large *n*, we have the following possibilities,

Subcase 2.1.1. If $d_1 = n - 1$, $d_2 = d_3 = d_4 = 3$, $d_5 = \cdots = d_{10} = 2$, $d_{11} = \cdots = d_n = 1$, then the unique resultant graph is isomorphic to A_1 in fig.3.

Subcase 2.1.2. If $d_1 = n - 1$, $d_2 = \cdots = d_7 = 3$, $d_{11} = \cdots = d_n = 1$, then the unique resultant graph is isomorphic to A_2 in fig.3.

Subcase 2.1.3. If $d_1 = n - 1$, $d_2 = 5$, $d_3 = 3$, $d_4 = d_5 = d_6 = d_7 = 2$, $d_8 = \dots = d_n = 1$, then the unique resultant graph is isomorphic to A_3 in fig.3.

Subcase 2.1.4. If $d_1 = n - 1$, $d_2 = 5$, $d_3 = 3$, $d_4 = d_5 = d_6 = 3$, $d_7 = d_8 = 2$, $d_9 = \cdots = d_n = 1$, then the unique resultant graph is isomorphic to A_4 in fig.3.

Fig. 1

Fig. 2

Subcase 2.1.5. If $d_1 = n - 1$, $d_2 = \dots = d_5 = 3$, $d_6 = \dots = d_9 = 2$, $d_{10} = \dots = d_n = 1$, then the unique resultant graph is isomorphic to A_5 in fig.3.

Subcase 2.1.6. If $d_1 = n - 1$, $d_2 = 4$, $d_3 = d_4 = d_5 = 3$, $d_6 = d_7 = 2$, $d_8 = d_9 = \cdots = d_n = 1$, then the unique resultant graph is isomorphic to A_6 in fig.3.

Subcase 2.1.7. If $d_1 = n - 1$, $d_2 = d_3 = d_4 = d_5 = d_6 = d_7 = 3$, $d_8 = \cdots d_{19} = 2$, $d_{20} = \cdots = d_n = 1$, then the unique resultant graph is isomorphic to A in fig.3.

Subcase 2.1.8. If $d_1 = n - 1$, $d_2 = 7$, $d_3 = d_4 = d_5 = d_6 = d_7 = d_8 = 2$, $d_9 \dots = d_n = 1$, then the unique resultant graph is isomorphic to *A* in fig.3.

Subcase 2.1.9. If $d_1 = n - 1$, $d_2 = 4$, $d_3 = d_4 = 3$, $d_5 = d_6 = d_7 = d_8 = 2$, $d_9 = \cdots = d_n = 1$, then the unique resultant graph is isomorphic to A_9 in fig.3.

Subcase 2.1.9. If $d_1 = n - 1$, $d_2 = d_3 = 4$, $d_4 = 3$, $d_5 = d_6 = d_7 = 2$, $d_8 = \dots = d_n = 1$, then the unique resultant graph is isomorphic to A_{10} in fig.3.

Fig 3.

Subcase 2.2. Suppose $d_1 \le n-2$ and $d_n = 1$. For each $1 \le i \le n-1$ if $d_i \le 2$ then $\sum_i d_i \le 2n-1$, which is a contradiction. We can find a maximal index j, $1 \le j \le n-1$, such that $d_j \ge 3$, and $d_{j+1} \le 2$ and $d_1 \ge d_2 \ge \cdots \ge d_{j-1} \ge d_j \ge \cdots \ge d_n \ge 1$. At least six members of the sequence $d_1, \cdots, d_{j-1}, d_j - 1, \cdots, d_{n-1}$ are greater than 2, for which $d_1 \le n-2$ and $d_1 + d_2 + \cdots + d_n = 2(n-1) + 10 = 2n+8$. By induction hypothesis there exist $G \in G_n^6$ having this degree sequence. By adding a new vertex, joined by an edge with the vertex having degree d_{j-1} , we obtain a graph having six cycles with the degree sequence $d_1 \ge d_2 \ge \cdots \ge d_n = 1$. This completes the proof of Lemma 1.

If for any vertex $v \in V(G)$, d(v) = k, then $D(v) \ge 2n - k - 2$, and if for all $v \in V(G)$, $d(v, y) \le 2$ then D(v) = 2n - k - 2. Consequently, $D'(G) = \sum_{v \in V(G)} d(v)D(v) \ge \frac{1}{2} \sum_{k=1}^{n-1} kx_k (2n - k - 2)$, where x_i denotes the number of vertices of degree $i, 1 \le i \le n - 1$. By denoting as in [2], $F(x_1, x_2, \dots, x_{n-1}) = \sum_{k=1}^{n-1} kx_k (2n - k - 2)$. We will find the minimum of $F(x_1, x_2, \dots, x_{n-1})$ over all-natural numbers $x_1, x_2, \dots, x_{n-1} \ge 0$ satisfying the conditions in above lemma. We have the following corollary:

Corollary: Let $n \ge 6$. The integers $x_1, x_2, \dots, x_{n-1} \ge 0$ are the multiplicities of the degrees of a graph $G \in G_n^6$ iff

- (i) $\sum_{i=1}^{n-1} x_i = n$
- (ii) $\sum_{i=1}^{n-1} ix_i = 2n + 10$
- (iii) $x_1 \le n 6$

Let the set of vectors x_1, x_2, \dots, x_{n-1} , where x_1, \dots, x_{n-1} are non-negative integers be denoted by Δ satisfying the conditions (i)-(iii) of corollary. Let us define transformations T_1 and T_2 $m \ge 2, p > 0, m + p \le n - 2, x_m \ge 1, x_p \ge 1$, by

$$T_1(x_1, \dots, x_{n-1}) = (x'_1, \dots, x'_{n-1}) = (x_1, \dots, x_{m-1} + 1, x_m - 1, \dots, x_{m+p} - 1, x_{m+p+1} + 1, \dots, x_{n-1})$$
 and

$$T_{2}(x_{1}, \dots, x_{n-1}) = (x'_{1}, \dots, x'_{n-1}) = (x_{1}, \dots, x_{m-1} + 1, x_{m} - 2, x_{m+1} + 1, \dots, x_{n-1}) \text{ we have}$$
$$x_{i} = x'_{i} \text{ for } i \neq \{m - 1, m, m + p, m + p + 1\}.$$

Lemma 2. Let $(x_1, \dots, x_{n-1}) \in \Delta$ then

- (a). $T_1(x_1, \dots, x_{n-1}) \in \Delta$ if $m \neq 2$ and $x_1 \neq n-7$, moreover $F(T_1(x_1, \dots, x_{n-1})) < F(x_1, \dots, x_{n-1})$
- (b). $T_2(x_1, \dots, x_{n-1}) \in \Delta$ if $m \neq 2$ and $x_1 \neq n-7$, moreover $F(T_2(x_1, \dots, x_{n-1})) < F(x_1, \dots, x_{n-1})$

Proof: (a). As $\sum_{i=1}^{n-1} x_i = \sum_{i=1}^{n-1} x'_i$ and $\sum_{i=1}^{n-1} ix_i = \sum_{i=1}^{n-1} ix'_i = 2n + 6$. If $(x_1, \dots, x_{n-1}) \in \Delta$, m = 2 and n - 6 then $x'_1 > n - 6$ a contradiction. Also $F(x_1, \dots, x_{n-1}) - F(T_1(x_1, \dots, x_{n-1})) = 2p + 2 > 0$.

Similarly, (b) also hold. This completes the proof of lemma 2.

Main result

Theorem: Let $G \in G_n^6$,

- (a). If n = 6 then minD'(G) = 132, and the unique extremal graph is isomorphic to H_2 as shown in fig.1.
- (b). If n ≥ 7 then minD'(G) = 3n² + 17n 80 then all the extremal graphs are isomorphic to the graphs F₁ and F₂ in fig.5.

Proof. In order to find min $F(x_1, \dots, x_{n-1})$ where $(x_1, \dots, x_{n-1}) \in \Delta$.

Firstly, let n = 6 the resultant graphs are given in Fig 1, and $D'(H_2) = 132$ is the minimum value.

Secondly, let us consider n = 7. Then all graphs $G \in G_7^6$ are C_i 's where $1 \le i \le 11$. Here

 $D'(C_1) = D'(C_7) = 202$, $D'(C_2) = 190$, $D'(C_3) = 200$, $D'(C_4) = D'(C_6) = 198$, $D'(C_5) = 194$, $D'(C_8) = 188$, $D'(C_9) = D'(C_{10}) = 198$ and $D'(C_{11}) = 186$, where C_i are shown in Fig.4.

Finally, $n \ge 8$. If $x_{n-1} \ge 2$, consider two different vertices $u, v \in V(G)$ such that d(u) = d(v) = n - 1. As $n \ge 8$, we can choose at least eight different vertices distinct from u, v which are adjacent to u, v. Thus, we have at least seven cycles, which contradicts the hypothesis, Therefore $x_{n-1} \le 1$.

Now we analyze the possible values of x_1, x_2, \dots, x_{n-2} If there exist 8 < i, j < n-2 such that $x_i \ge 1$ and $x_j \ge 1$ then by applying the transformation T_1 for the position *i* and *j*, we have a new vector $(x'_1, \dots, x'_{n-1}) \in \Delta$ for which $F(x'_1, \dots, x'_{n-1}) < F(x_1, \dots, x_{n-1})$. Similarly, if there exist 6 < i, j < n-2 such that $x_i \ge 2$ then we obtain a new degree sequence in Δ for which $F(x'_1, \dots, x'_{n-1}) < F(x_1, \dots, x_{n-1})$. Similarly, if there exist 6 < i, j < n-2 such that $x_i \ge 2$ then we obtain a new degree sequence in Δ for which $F(x'_1, \dots, x'_{n-1}) < F(x_1, \dots, x_{n-1})$. by applying the transformation T_2 . Now we consider two cases:

Case 1. Suppose that there exist distinct indices *i*, *k* with 8 < i, k < n - 2 such that $x_i = 1$ and $x_k = 0$. In this case, if $x_7 \ge 1$ then by applying the transformation T_1 for position 7 and *i*, we obtain smaller a smaller value of *F*, Suppose that $x_7 = 0$. Since $x_{n-1} \in \{0, 1\}$, we will analyze the two cases separately.

(a) In this case $x_{n-1} = x_i = 1$, where 7 < i and $x_5 = 0$. We can consider different vertices u,v, w,x,y,p,q $\in V(G)$ such that d(u) = n - 1, $d(v) = i \ge 7$ then w,x,y,p,q are all adjacent to u and v respectively. Meanwhile, u and v are adjacent too, so we have found six cycles which contradicts the hypothesis.

(b) If $x_{n-1} = 0$ then $x_5 = 0$ and $x_i = 1$, (7 < i, n-2) and Δ is characterized by the equations $x_1 + x_2 + x_3 + x_4 = n - 1$ and $x_1 + 2x_2 + 3x_3 + 4x_4 = 2n + 8 - i$ which implies that $x_2 + 2x_3 = n + 8 - i$ by solving for x_2 and x_3 and then by applying the transformation for position 2 and *i* or 3 and *i* or 4 and *i*, we obtain smaller value of *F*.

Case 2. Suppose that $x_8, \dots, x_{n-1} = 0$, hold and the degree sequence is $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, 0, \dots, 0, x_n)$. As $x_{n-1} \in \{0, 1\}$, so we have to analyze two cases:

(a). If $x_{n-1} = 0$, then $x_2 + 2x_3 + 3x_4 + 4x_5 + 5x_6 + 6x_7 = n + 10$. This equation does not hold. If all x_2, x_3, x_4, x_5, x_6 and x_7 are not greater than 2, then $x_2 + 2x_3 + 3x_4 + 4x_5 + 5x_6 + 6x_7 \le 42$ which contradicts the hypothesis $n \ge 8$. If one of them is greater than two, then by using T_2 for the corresponding position, we obtain a smaller value of F. (**b**'). If $x_{n-1} = 1$, then $x_2 + 2x_3 + 3x_4 + 4x_5 + 5x_6 + 6x_7 = 12$. If $x_7 \ge 3$, then $x_2 + 2x_3 + 3x_4 + 4x_5 + 5x_6 + 6x_7 \ge 18$ which is not possible. So $x_7 \le 2$, if $x_7 = 2$ then $x_2 + 2x_3 + 3x_4 + 4x_5 + 5x_6 = 0$, which implies that $x_2 = x_3 = x_4 = x_5 = x_6 = 0$ and $x_1 = n - 3$ which is a contradiction as $x_1 \le n - 6$. So $x_7 \ne 2$. Thus either $x_7 = 0$ or $x_7 = 1$.

If $x_7 = 1$, then $x_2 + 2x_3 + 3x_4 + 4x_5 + 5x_6 = 6$, the possible solutions which gives the graphical degree sequence and which satisfy all the conditions of corollary 1 is $x_2 = 6$, $x_3 = x_4 = x_5 = x_6 = 0$. The degree sequence $(n - 8, 6, 0, 0, 0, 0, 1, 0, \dots, 0, 1)$ and $t_2(n - 8, 6, 0, 0, 0, 0, 1, 0, \dots, 0, 1)$ is not graphical. Thus $F(n - 8, 6, 0, 0, 0, 0, 1, 0, \dots, 0, 1) = 3n^2 + 17n - 86$.

Next consider if $x_7 = 0$, then then $x_2 + 2x_3 + 3x_4 + 4x_5 + 5x_6 = 12$, all possible solution of x_2 , x_3 , x_4 , x_5 and x_6 which follows the above corollary and construct the twenty dour degree sequences which are graphical. The sequences are

 $\begin{array}{l} (n-6,0,3,2,0,\cdots,0,1), (n-6,0,4,0,1,0,\cdots,0,1), (n-7,3,0,3,0,\cdots,0,1), \\ (n-7,0,6,0,\cdots,0,1), (n-7,2,3,0,1,0,\cdots,0,1), (n-7,1,4,1,0,\cdots,0,1), (n-7,3,1,1,1,\cdots,0,1), \\ (n-8,4,1,2,0,\cdots,0,1), (n-8,3,3,1,0,\cdots,0,1), (n-8,2,5,0,\cdots,0,1), (n-8,5,1,0,0,1,0,\cdots,0,1), \\ (n-7,3,2,0,0,1,0,\cdots,0,1), (n-9,5,2,1,0,\cdots,0,1), (n-9,6,1,0,1,0,\cdots,0,1), (n-9,6,0,2,0\cdots,0,1), \\ (n-9,7,0,0,0,1,\cdots,0,1), (n-10,8,0,0,1,0,\cdots,0,1), (n-10,7,1,1,0,\cdots,0,1), (n-10,6,3,0,\cdots,0,1), \\ (n-11,8,2,0,\cdots,0,1), (n-11,9,0,1,0,\cdots,0,1), (n-12,10,1,0,\cdots,0,1), (n-13,12,0,\cdots,0,1). \end{array}$

By applying transformations T_1 and T_2 these degree sequences are transformed to either the sequence (n - 7,3,2,0,0,1,0,...,0,1) or (n - 6,1,2,1,1,0,...,0,1) represented by graphs F_1 and F_2 respectively. But $F(n - 7,3,2,0,0,1,0,...,0,1) = 3n^2 + 17n - 80 < F(n - 6,1,2,1,1,0,...,0,1) = 3n^2 + 17n - 78$. Hence for $n \ge 7$, $minD'(G) = 3n^2 + 17n - 80$.

Fig. 4

References

- [1] A. A. Dobrynin and A. A. Kochetova, *A Degree distance of a graph: A degree analogue of the Wiener index*, J. Chem. Inform. Comput. Sci., 34(1994), 1082-1086.
- [2] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inform. Comput. Sci}, 34(1994), 1087-1089.
- [3] J. W. Moon, *Counting Labelled Trees*, Canadian Mathematical Monographs}, Vol. 1, W. Clowes and Sons, London and Beccles, (1970).
- [4] J. K. Senior, *Partitions and their representative graphs*, Amer. J. Math., 73(1951), 663-689.
- [5] I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math., 98 (1999), 159-163.
- [6] A. I. Tomescu, Note on unicyclic and bicyclic graphs having minimum degree distance, Discrete Appl. Math., 156(2008), 125-130.
- [7] W. Zhu, *A note on tricyclic graphs with minimum degree distance*, Discrete. Math. Algorithms and applications., Vol 3, No. 1 (2011) 25-32.
- [8] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc Jpn., 4(1971), 2332-2339.