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Abstract

In this paper, we establish the comparison principles via the perturbation method for the

equation ��� � � � �� � t �t� in Ω , where Δ�� � � �� �t� �����t�� is a highly

degenerate and h- homogeneous operator associated with the infinity Laplacian. Based

on the comparison principle, we obtain the uniqueness of the viscosity solution to the

Dirichlet problem

��� � � � �� � t �t� ，��Ωt

� � ᙊt 표� 휕Ωt

where ᙊ ∈ 퐶 ∂Ω . During this procedure, we also establish a stability result of the

viscosity solution to the inhomogeneous equation.
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1. Introduction

In this paper, we consider the following inhomogeneous problems for ᙊ ∈ 퐶 휕Ω :

��� � � � �� � t �t� t��Ωt

� � ᙊt 표� 휕Ωt
(1.1)

where Ω be a bounded domain in �� � � � , � � :�� � � is continuous and homogeneous

of degree �t t �t� � 퐶 Ω �� is non-decreasing in the second variable � , Δ�� is a highly

degenerate elliptic operator given by

Δ�� � � �� �t�

�t���

�

��� �����t � � �.

Notice that the operator Δ�� is not in divergence form. Hence, the notion of the solution is

understood here in the viscosity sense introduced by Crandall, Lions [9], and Crandall, Evans,

Lions [10].

For the case � � �, Δ�� � is the 1-homogeneous normalized infinity-Laplacian operator,

Δ���� �� t� �����t�� .

And there is a “tug-of-war” game approach to the following normalized infinity Laplacian

Dirichlet problem mentioned in [23],

���� � t � t ��Ωt

� � ᙊt 표� 휕Ω.
(1.2)

In [19], Lu and Wang gave a different proof from the PDEs perspective for the existence and

uniqueness of the viscosity solution of the problem (1.2). One can see [4, 15, 18, 22, 24], etc.

for more about stochastic approach related to the normalized�tLaplacian operator.

For the case � � �, Δ�� � is the 3-homogeneous infinity-Laplacian operator,
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���� �� �����.

The infinity Laplacian �� was first introduced by Aronsson [2] in connection with the

geometric problem of finding the so-called absolutely minimizing Lipschitz extension. For

more properties of the infinity harmonic functions (the viscosity solution to ��� � � ), one

can see the works of Crandall [7], Crandall, Evans and Gariepy [8], Aronsson, Crandall and

Juutinen [3], and the references therein.

For other �, we have Δ�� �= �� �t���� � �� �t�����.

In [20], Lu and Wang proved the comparison principle and existence of the viscosity solution

to the infinity Laplace equation

��� � t �

under Dirichlet condition. Moreover, they also obtained the stability of the viscosity solutions

to ��� � t � . It should be pointed out that they constructed a counterexample to show that

the uniqueness does not hold if the inhomogeneous term t � changes its sign. A

counterexample is given for the normalized infinity Laplacian equation

���� � t �

in [23]. In [5], Bhattacharya and Mohammed considered the comparison principle, existence

and nonexistence of the viscosity solutions to a general infinity Laplacian equation with zero

order term

∆∞u = t(x, u)

with Dirichlet condition. In [17], Liu and Yang established the existence of the viscosity

solution to the Dirichlet problem of the �-infinity Laplacian

��� � � t � .

In this paper, we are interested in the problem (1.1) not only because it is strong degenerate

and nonlinear but also it has many applications such as in optimal mass transportation [12, 14],

mathematical finance [21], digital image processing [1, 6, 13], etc.

Now we state our main results as follows.

Theorem 1.1 (Comparison principle). Suppose that t �t� � 퐶 Ω �� is positive (negative)
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and non-decreasing in �. Assume that � � 퐶 Ω
�

and � � 퐶 Ω
�

satisfy

��� � � � �� � t �t� t � � Ω

and

��� � � � �� � t �t� t � � Ω

in the viscosity sense. If � � � on ∂Ω, then � � � inΩ.

Due to the strong degeneracy of the operator ��� , we adopt the perturbation method based on

the viscosity solutions theory to establish the comparison principle. With the comparison

principle in hand, the uniqueness of the Dirichlet problem (1.1) follows immediately.

Theorem 1.2 (uniqueness). If t �t� � 퐶 Ω �� is positive (negative) and non-decreasing

in �, then there exists at most one viscosity solution to the Dirichlet problem (1.1).

Based on the double variables argument, we can give the following stability result of the

viscosity solutions.

Theorem 1.3 (stability). Let t� ���
� be a sequence of non-negative functions in 퐶tΩ) such

that t� � t locally uniformly in Ω for some t � 퐶 Ω . Suppose that for each positive

integer �t�� � 퐶 Ω
�

is a viscosity solution to the problem

��� � � t�t ��Ωt

�� � ᙊ 표� 휕Ω

such that �� � �� � �� in Ω
�
, for some functions �� and �� in 퐶 Ω

�
t with �� � �� � g on

휕t . Then ���� has a subsequence that converges locally uniformly in Ω to a viscosity

solution � � 퐶 Ω
�

to the problem
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��� � � t�t ��Ωt

�� � ᙊt 표� 휕Ω.
(1.3)

The paper is organized as follows. In Section 2, we state the definition of viscosity solutions

to the Dirichlet problem (1.1). In Section 3, we prove the comparison principle to ��� � �

� �� � t �t� , based on the double variables method. And we also use the perturbation

method to prove the stability of the viscosity solution.

2. Definition of viscosity solutions

In this section, we first introduce the definition of the viscosity solutions to the problem (1.1),

and then establish the comparison principles via the perturbation method for the equation

��� � � � �� � t �t� t ��Ω. (2.1)

Since the operator has no divergence structure, we define the viscosity solution by the semi-

continuous extension. See for example [11, 16, 19], etc. We remark that the singularity is

removable for � � �. Then for ��:� � t������ � � and

�� �t� � � �t� �� � � � � � t

where � denotes the set of � � � real symmetric matrices, we can rewrite the equation (2.1) as

�� ���t�� � t �t� t � � Ω.

Due to � � � 퐶 �� is homogeneous of degree �, we obtain � � � �. Since � � �t then

we have lim
���

�� �t� � � for arbitrary �∈ �. That is, the operator Δ
∞

� is continuous for

� � �. Therefore, we can define the continuous extension of �� as follows,

��� �� �t� : � �� �t� t �t � � �t
�t �t � � �.

Now we state the definition of viscosity solutions to the problem (1.1).

Definition 2.1. Suppose that �:Ω → � is an upper semi-continuous function and �≤ ᙊ on

휕Ω. If for every �� ∈ Ωand φ∈ 퐶� Ω such that � �� � φ �� and � � ≤ φ � for all

� ∈ Ω near ��t there holds
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�� ��φ �� t�φ �� ≥ t ��tφ �� .

Then we say that � is a viscosity subsolution to (1.1).

Similarly, suppose that �:Ω → � is a lower semi-continuous function and �≥ ᙊ on ∂Ω . If

for every �� ∈ Ω and φ∈ 퐶� Ω such that � �� � φ �� and � � ≥ φ � for all � ∈

Ω near ��, there holds

�� ��φ �� t�φ �� ≤ t ��tφ �� .

Then we say that � is a viscosity supersolution to (1.1).

A function �∈ 퐶 Ω is a viscosity solution to (1.1) in Ω if it is both a viscosity subsolution

and viscosity supersolution of (1.1).

We can also use sub-jets and super-jets (see [11]) to define the viscosity subsolution and the

viscosity supersolution equivalently. Now we first recall the definition of sub-jets and super-

jets.

The second order super-jet of upper semi-continuous function � at �� ∈ Ω is the set

��t�� �� � � �φ �� t��φ �� :φ ∈ 퐶� Ω ������ t φ���t����표������������������,

and its closure is

���t�� �� � � �t� ∈ �� × �:∃� ��t��t�� ∈ Ω×� × � �th� ����

��t�� ∈ ��t�� �� ��� ��t��t�� → ��t�t� �.

Similarly, the second order sub-jet of lower semi-continuous function � at �� ∈ Ω is the set

��tt� �� � � �φ �� t��φ �� :φ ∈ 퐶� Ω ������ t φ���t����표������������������t

and its closure is

���tt� �� � � �t� ∈ �� × �:∃� ��t��t�� ∈ Ω×� × � �th� ����

��t�� ∈ ��tt� �� ��� ��t��t�� → ��t�t� �.

Definition 2.2. We say that �∈ 퐶 Ω is a viscosity subsolution to (2.1) if
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�� �t� ≥ t ��t� �� t ∀� �t� ∈ �
�t�
� �� t�∀��� ∈ Ω.

Similarly, we say that �∈ 퐶 Ω is a viscosity supersolution to (2.1) if

�� �t� ≤ t ��t� �� t ∀� �t� ∈ �
�tt
� �� t�∀��� ∈ Ω.

3. Comparison principle

In this section, we first prove the comparison principle by the perturbation method based on

the viscosity solutions theory, and then establish a stability result.

Now we recall the maximum principle for infinity harmonic functions which can be deduced

from Harnack’s inequality ( see for example [3,7]).

Lemma 3.1 Let �∈ 퐶 Ω satisfy Δ
∞
�≥ � in the viscosity sense. Then

sup
Ω

� � sup
휕Ω

� .

Moreover, the supremum occurs only on the boundary ∂Ω unless � is a constant.

Next, we use the double variables method to prove the comparison principle.

Proof of Theorem 1.1. We consider the case for t �t� is positive. The case for t �t� is

similar and we leave it to the reader.

We define

�ε��� ε � t sup
휕Ω

� . t ε � �.

By Lemma 3.1, we have �≤ sup
휕Ω

� . and �ε ≤ � in Ω . Since t �t� � � inΩ×� and

� � ∈ 퐶 ��t� is homogeneous of degree �, it is easy to verify

Δ
∞

� �ε � � ��ε � � � ε � Δ
∞

� � � � �� ≥ � � ε �t �t� ≥ � � ε �t �t�ε ≥ t �t�ε t

that is, �� is a viscosity subsolution to the equation (2.1).

We claim that �ε ≤ � in Ω. We argue by contradiction. Suppose that �� � � somewhere in Ω.
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Set

� � sup
Ω

�ε t � � �ε �� t � �� � �. (3.1)

Using the arguments in [11], we double the variables

�� �th � �ε � t � h t � � t h ���t�� �th ∈ Ω×Ωt�� � �t �t⋯.

We denote the maximum point of �� over Ω×Ω by ��th� . According to Proposition 3.7 in

[11], we have

lim
�→∞

�� � lim
�→∞

�� �� t � h� t � �� t h�
��� � �

and

lim
�→∞

� �� t h�
�
�� � �.

It is obvious �� → ��t h� → �� as �→∞. Since � � � ≥ sup
휕Ω

�� t � t there is an open set

Ω� such that ��, �� and h� ∈ Ω� ⊆ Ω for �→∞.

Set

φ � � � � t h�
���t ϕ h �t � �� t h ���.

It is clear that the functions �ε tt and � t ϕ have a local maximum at �� and a local

minimum at h� respectively. We consider the two cases: either �� ≠ h� or �� � h� for �→∞.

Case 1: If �� � h� , we have �φ �� � � and ��φ �� � � . Since � � � 퐶 �� is

homogeneous of degree � , we get � � � � . And since �� is a viscosity subsolution, we

have

t ��tφ �� � t ��t�ε �� ≤ �

which is contradictory to t � � in Ω.

Case 2: If �� ≠ h� , we shall use jets and maximum principle for semi-continuous functions,

see [11]. There exist �× � symmetric matrices �� and �� such that �� t �� ≥ � and
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��t�� ∈ ���t��ε �� t  ��t�� ∈ ���tt� h� t

where �� � � �� t h�
� �� t h� .Again since Δ

∞

� �ε � � ��ε ≥ � � ε �t �t�ε ≥ t �t�ε

and Δ
∞

� � � � �� ≤ t �t� in the viscosity sense, we have

�≤ ��
�t�

����t�� � � �� t �� � �t ��t�� ��
≤ ��

�t� ����t�� � � �� t t h�t� h� � t h�t� h� � � � �t ��t�� ��
≤ t h�t� h� t �� � �t ��t�� �� t

where we have used �� t �� ≥ �. Letting �→∞, we get

t ��t� �� t �� ε �t ��t�ε �� ≥ �. (3.3)

Since t �t� is non-decreasing in � and �ε �� � � �� , we have t ��t�ε �� ≥

t ��t� �� which contradicts to (3.3). Hence, we have �ε ≤ � in Ω. Letting ε→ �, we get

�≤ � inΩ.

Now, we prove the stability of the problem (1.3).

Proof of Theorem 1.3. Set �: � sup
Ω

�� t inf
Ω
�� . Clearly, we have sup

Ω

�� t inf
Ω
�� � � t

for every � � �t �t⋯. Let Ω� be any compact subset of Ω and ��dist Ω�t∂Ω . We

take � � � such that �� � �. Since Δ
∞

� �� ≥ � in Ω, we have Δ
∞
�� ≥ � in Ω. By Lemma

2.9 of [3], we get

�� � t �� h ≤ �
� t h
�

t ∀�∈ Ω�t��th∈ ���� � .

By compactness, we get ��� is equicontinuous in Ω�. On taking an exhaustion of Ω by

subdomains compactly contained in Ω , we apply the standard method of Cantor

diagonalization to extract a subsequence of ��� that converges uniformly on compact subsets

of Ω. For simplicity we will continue to denote such subsequence by ���. Set

� � � lim
���

�� � t �∈ Ω.

We extend this definition to the closure Ω by defining � � ᙊ on ∂Ω. By the assumption, we
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have �� ≤ �≤ �� inΩ. This means that �∈ 퐶 Ω .

Next, we show thatΔ
∞

� � � t in the viscosity sense. Suppose that φ∈ 퐶� Ω and � t φ has

a local maximum at some �� ∈ Ω, i.e.

� � t φ � ≤ � �� t φ �� t �∈ �� �� ⊆ Ω

for some � � �. Suppose that �� is a point of maximum of

�� � t φ � �
ε
�
� t �� � t ε � �t��∈ �� �� .

Particularly,

�� �� t φ �� �
ε
�
�� t �� � ≥ �� �� t φ �� .

Since �� ∈ �� �� , by passing to a subsequence, �� → �� , for some �� ∈ �� �� . Letting

�→∞ in (3.4), we have

� �� t φ �� �
ε
�
�� t �� � ≥ � �� t φ �� t

i.e.

ε
� �� t �� � ≤ � �� t φ �� t � �� t φ �� ≤ �.

Then we have �� � �� Thus, �� ∈ ���� �� for sufficiently large � . Since �� is a viscosity

subsolution and �� is a point of local maximum of �� � t φ � � ε
�
� t �� � in �� �� ,

we have

Δ
∞

� φ �� �� ε ≥ t� �� . (3.5)

Taking the limit in (3.5) and recalling that t� → t locally uniformly inΩ, we find that

Δ
∞

� φ �� �� ε ≥ t �� .

Letting � � �, we have Δ
∞

� �≥ t in the viscosity sense. Similarly, we can prove that � is a

viscosity supersolution.
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