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Abstract

Machine learning trains and obtains learning models based on a large amount of training

samples. Mislabeled training samples will affect the generalization/performance of the final

predictive model. Some methods of detecting/correcting mislabeled samples such as graph-

based methods, are proposed and used in machine learning to improve predictive models'

generalization. However, these methods do not perform well for high-dimensional samples. In

this paper, we present three algorithms for detecting/correcting mislabeled samples in high-

dimensional feature space. First, we propose an improved high-dimensional detection

algorithm: PCA- -RNG. Next, we introduce a notion of -scalar relative neighbourhood

graph ( -SRNG) and study its relationship with relative neighbourhood graph (RNG) and -

relative neighbourhood graph ( -RNG). Then, we give an alternative high-dimensional

detection algorithm: PCA- -SRNG. After detecting mislabeled training samples, it is

necessary to correct these mislabeled samples. Then we further propose a scalar-adapted

correction algorithm: Fat location correction/deletion. Finally, we explore and validate our

algorithms based on real datasets with high-dimensional features.
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Introduction

Machine learning has made great success in every walk of life. Supervised learning, as one

kind of framework of machine learning, needs a large number of labeled samples to train and

construct the final predictive model. The bad quality (For examples, incomplete, inaccurate

and so on) of labels will cause a bad generalization/performance of the obtained learning

model. However, in practice, data labeling is a high time and resources consuming process, so

it is very difficult to achieve all the ground-truth labels for a big training sample set. In [1],

Zhou classified (weakly) supervised learning into three types: 1) incomplete supervision

(Only a small parts of training samples are given with labels whereas the other remain

unlabeled), 2) inexact supervision (The given labels are coarse-grained), and 3) inaccurate

supervision (The given labels are not always ground-truth).

For inaccurate supervision, it means that some label information may suffer from errors [1]. A

common situation is that labels of training samples are affected by random noise. And a

noticeable and necessary step consists in cleansing/filtering the training samples themselves,

what is similar to outlier or anomaly detection. There are many kinds of typical researches

carried on handling (detecting/correcting) of mislabeled samples [2,3]: 1) voting filtering. For

example, [4] adopted a set of algorithms to construct classifiers which play as a filter for

training samples through the majority and consensus votes, 2) measures and thresholds. For

example, [5] defined an information entropy on the probability of the instance belonging to

each class label. Then it showed that a sample with entropy lower than a given threshold, but

with error prediction result, is identified as mislabeled samples and replaced its original label

with the predictive label, 3) graph-based methods. For examples, [6-8] regarded training

samples as nodes in a graph. First, they created a relative neighbourhood graph (RNG) by

weighing the distance between each pair of nodes. The edges linking two nodes (i.e., training

samples) with different labels are named cut edge. Then, they calculated a cut edge weight

statistic, which is the sum of the edge weights of the detected training sample to its neighbors

with different labels. Finally, according to the value of the cut edge weight statistic, they

classified training samples into three types: good, doubtful and bad samples. The suspected

and bad samples can be either removed or relabeled. In addition, there are other methods,
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such as 4) local ( -nearest neighbors)-based methods [9], 5) single model-based methods [10],

6) ensemble-based methods [11], and so on. However, detecting/correcting mislabeled

samples in a training sample set is seldom easy. The aforementioned work achieves a certain

degree of success.

In this paper, we focus on improving the quality of the training samples by detecting/handling

mislabeled samples prior to apply learning algorithms, thereby increasing the predictive

model's accuracy/generalization. And our study is for inaccurate supervision with a high-

dimensional feature space. The main method adopted in this paper is based on graph theory.

Motivation. Note that the work of [6-8] mainly depend on the construction of RNG . While

the edges in are based on the distance of vertices (training samples). Therefore, the

neighborhood information will become less trustworthy in sparse high-dimensional feature

space [1] (See distance matrix of samples from CNAE-9 in Table 5 in Appendix A).

Meanwhile, for real datasets, the number of neighbors of some vertices in could be small

(See the experimental data about RNG in Tables 1 and 2 in Section 6). For such a situation, it

will be inaccurate if we directly use the normal approximation of the cut edge weight statistic

to calculate its -value (See equation~(3.1) in Section 3). What's more, for handling detected

doubtful samples, [6-8] directly dropped the doubtful sample when at least one of its

neighbors has a different label. However, we think that such a detected doubtful sample may

be a sample near/on the boundary.

Main results. To address these issues, we employ principal component analysis (PCA) before

constructing neighbourhood graphs. Then we use -RNG graph proposed in [12,13] to

describe the neighbourhood of training samples, it can overcome the aforementioned shortfall

of the small number of neighbors. Next, we propose an algorithm which can detect mislabeled

samples in high dimension (See Algorithm 1 in Section 3). Then, we give an extended relative

neighbourhood graph: -scalar relative neighbourhood graph ( -SRNG). And we study the

relationship among RNG, -RNG and -SRNG. Further, based on -SRNG, we propose a

PCA- -SRNG detection algorithm (See Algorithm 3 in Appendix B). In order to correct

mislabeled samples, a fat location correction/deletion algorithm is given (See Algorithm 2 in

Section 5). Finally, we perform and explore our three algorithms on datasets CNAE-9 and

MNIST (See the experimental results in Tables 1 and 2 in Section 6). In addition, we employ

-test (confidence intervals) to make a decision to reject or fail to reject null hypothesis as

pointed out in [14,15].
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Outline. The remainder of this paper is organized as follows. In Section 2, we introduce some

basic notations and definitions for later discussions. In Section 3, we review some mislabeled

samples detection algorithms, then we present an improved mislabeled samples detection

algorithm in high dimension: PCA- -RNG. In Section 4, we give a notion of -scalar relative

neighbourhood graph and analyze its relationship with RNG and -RNG. Furthermore, we

propose a PCA- -SRNG detection algorithm. In Section 5, we propose a scalar-adapted fat

location correction/deletion algorithm for correcting/deleting mislabeled samples. In Section 6,

we perform our proposed algorithms on two real datasets CNAE-9 and MNIST and discuss

and study the results from experiments. We conclude the paper in Section 7.

Notations and definitions

In this section, we introduce some notations, assumptions, definitions and tools for later use.

Note that among them, some are from [6-8,12,13,16-19] for self-containedness.

 Let be a probability space. is the (unknown) distribution (or probability

measure). alone is called the sample space, and has the structure , where and

are called the input and output spaces, respectively.

 Let be a finite set of

labeled samples, and may be inaccurate/incorrect, and assume that these samples are

independent and identically distributed (i.i.d.) according to . Here, we suppose that ,

, and . For , we can write as which are the features of

the sample .

 Let be the number of neighbors of the sample vertice .

 Let be the probability of the label of the 's neighbor is the same to 's label.

 Let be the weight between the sample vertice and its neighbor .

 Let be the weight between the sample vertice and its neighbor with a

different label from 's label.

 For the simplicity, in this paper we consider the classification case, i.e.,

.
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Definition 2.1: [18] [Relative Neighbourhood Graph (RNG)] Let be a set of points in

(with the number of features). The RNG of is a graph with the vertices set , and

the set of edges of the RNG of are exactly those pairs of points for which

(2.1)

where denotes the distance between two points in .

Remark 2.2: Inequality~(2.1) in Definition 2.1 is equivalent to

Let

(2.2)

where is called a lune or lens [17,19]

Definition 2.3: [12,13,16] [ -Relative Neighbourhood Graph ( -RNG)] Let be a set of

points in (with the number of features). The -RNG of is a graph with the

vertices set , and the set of edges of the -RNG of are exactly those pairs of

points for which

(2.3)

When =1, it is RNG which is first introduced by Toussaint in [18]. [12] extended the

definition of relative neighbors used in RNG to define a general -RNG based on the lens

function~(2.2). [16] used -RNG to study medoid estimation, outlier identification,

classification and clustering.

For a given sample vertice in the neighborhood graph, the total weights of its neighbors

with different labels is

(2.4)

the expectation of the total weights of its neighbors with different labels is

(2.5)

and the variance of the total weights of its neighbors with different labels is
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(2.6)

In later discussions, we will construct neighbourhood graphs (i.e., -RNG and -SRNG which

will be introduced in Definition 4.1 in Section 4) from training samples, and detect mislabeled

samples based on the constructed neighbourhood graphs.

Mislabeled samples detection in high dimension

In this section, we will improve the work in [6-8] and propose a mislabeled samples detection

algorithm in high dimension feature space: PCA- -SRNG detection algorithm.

Consider that mislabeled samples perturb the generalization of learning models, [6-8]

proposed a mislabeled samples identification and handling method based on graph theory.

The method is based on the construction of RNG on training samples, and they computed a

cut edge weight statistic, which is the sum of the edge weights of the detected training sample

to its neighbors with different labels. Then they judged the detected training sample (Good,

doubtful or bad) by calculating the -value.

However, the method will become powerless when the feature space of samples is high-

dimensional. We will illustrate the calculation of distance matrix on the CNAE-9 dataset

(99.22% of this dataset is filled with zeros) from the UCI machine learning repository (See

Table 5 in Appendix A). And note that the method in [6-8] used the normal approximation to

compute the cut edge weight statistic when the number of neighbors of the detected training

sample is “great enough” and the weights are not too unbalanced. However, for a RNG

constructed from training samples in real datasets, the number of their neighbors may be

small (See the experimental data about RNG in Tables 1 and 2 in Section 6). A general rule is

that the number of samples is “great enough” if

(3.1)

where is the parameter in binomial distribution [20].

To address these problems, in this paper, our method is as follows:

 We use PCA to reduce dimensions prior to construct neighbourhood graph.

 Then, we construct -RNG from training samples. Here, we compare -RNG with

RNG in Subfigures (a)-(b) in Figure 1. The nodes in -RNG have more neighbors than RNG,
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and it will make the general rule about “great enough” more likely satisfied (It also is shown

by the experimental data in Tables 1 and 2 in Section 6). Then we use the normal

approximation to compute.

 Finally, we adopt -test (Confidence intervals) to detect mislabeled samples.

We denote as the null hypothesis: equals the hypothesized mean . In order to use -

test, we need the following statistics:

o Weight : we compute it as one over . If , we let .

o Probability : as in [8], we use the global proportion of the label of as an

estimation of .

o Confidence interval:

where and are computed by equations~(2.5) and~(2.6). We need to calculate by

equation (2.4) and determine whether it belongs to the above interval.

Therefore, we have the following PCA- -RNG detection algorithm (See Algorithm 1).
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-scalar relative neighbourhood graph and PCA- -SRNG detection

algorithm

In this section, we will proceed to improve the Algorithm 1 presented in Section 3.

From Subfigures (a)-(c) in Figure 1, it can see that the number of edges among sample

vertices increases with . What's more, the number of edges on sample vertices among

different clusters also increases quickly with . One behind reason is that -RNG only

requires the neighbors of sample vertices to be at most while never considering how far a

neighbor is. Meanwhile, such requirement will increase the calculation burden. Ideally, it

should link sample vertices according to some similar scalar. Note the limitations of -RNG,

we extend RNG from the view of the metric, and give the following definition.

Figure 1. Subfigures (a)-(c) are about -RNG. When = 1, -RNG is RNG. And Subfigures (d)-(f)

are about -RNG.

Definition4.1[ -Scalar Relative Neighbourhood Graph ( -SRNG)] )] Let be a set of points

in (with the number of features). There exists an , such that, the -SRNG of

is a graph with vertices set , and the set of edges of the -SRNG of are exactly those

pairs of points for which

(4.1)
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where denotes the distance between two points in .

Remark 4.2: Actually, -SRNG is scalar-dependent (vertice pair-dependent), while -RNG is

independent of the scalar, because -RNG requires the lune of a pair of vertices to have at

most neighbors. In Figure 2, it compares the relationhip among RNG, -RNG and -SRNG.

Form Subfigures (a) and (b), it can see that -RNG extends RNG by allowing the number of

vertices in the lune is at most . Form Subfigures (a) and (c), it can see that -SRNG does not

impose certain conditions on the number of vertices, and just extends the boundary of RNG

and shrinks the scope of the lune by a scalar . Thus, -SRNG is like a fat RNG. That is, the

two circles in RNG become two donuts in -SRNG.

Property 4.3: If we take =0. Then, -SRNG is RNG.

Proof. The proof is trivial. Let =0, inequality (4.1) reduces to inequality (2.1).

In some cases, -SRNG is equivalent to -RNG. Before giving the further properties, we

introduce the following notation:

Property 4.4: -SRNG is a special -RNG, where

.

Proof. From Subfigure (c) in Figure 2, is the lune colored with green. While

is the lune bounded by the red dotted line. So, the proof follows.

Figure 2. The comparison of RNG, -RNG and -RNG.

Property 4.5: In inequality (4.1), if

Then
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Proof. Note that the following set

is empty. Therefore, the result follows.

Property 4.6: If we take

Then, -SRNG and -RNG are equivalent.

Proof. By the condition and Property 4.5, , we have

Then by Property 4.4, let

we get that -SRNG is -RNG.

And use Property 4.4 again, we have

Thus, we obtain the result.

Therefore, -SRNG is a scalar-based description of neighborhood. From Figure 1, it shows

that -SRNG has a more refined quantitative description on the neighbors than -RNG: -

SRNG describes the intermediate states from RNG to -RNG with the changing of the scalar

from 0 to

Meanwhile, for -SRNG, it actually links edges according to a priori scalar . Therefore, if

we can choose an appropriate , there will be more edges in the same cluster, and less edges

among different clusters (See Subfigure (e) vs. Subfigure (b)). And it will drop the distant

sample vertice and spare the unnecessary computation.

Based on the definition of -SRNG, we propose a PCA- -SRNG detection algorithm. We

mainly replace -RNG in Step 7 of Algorithm 1 with -SRNG. For saving spaces, the
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concrete Algorithm 3 can be found in Appendix B. We will expect that Algorithm 3 achieves

a similar detection than Algorithm 1 but spares the unnecessary computation.

Fat location correction/deletion algorithm

In the above section, we analyze how to detect mislabeled samples in high-dimensional

feature space. However, after identifying mislabeled samples, it needs to correct them. In this

section, we will discuss that how to correct the detected mislabel samples.

First, we classify the detected mislabeled samples into four types: let be the detected

mislabeled sample,

o Type I: 's label is the same to all its neighbors' labels.

o Type II: 's label is different from all its neighbors' labels, but its neighbors' labels

are the same.

o Type III: 's label is different from all its neighbors' labels, and its neighbors' labels

are not all the same.

o Type IV: 's label is the same to some of its neighbors' labels.

Figure 3. Fat location of from the view of in -SRNG.

For dealing with Types I-IV, we introduce a notion of “fat location”. In Remark 4.2, we have

discussed that -SRNG can be regarded as a fat RNG. In Figure 3, we name the sample

vertices in the area bounded by the blue dotted line “fat location” of from the view of ,

and denote it as or simply . Actually, can be expressed as

Then, our handling method for the detected mislabeled samples is as follows:
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o Type I: delete .

o Type II: relabel with its neighbors' label.

o Type III and IV: roughly speaking, if fat location of from each of its neighbors

with different labels is not empty, then we label each fat location according to the labels of its

sample vertices. Next, we relabel by majority voting on all labeled fat location. Otherwise,

delete .

Finally, we give the detailed correction algorithm in Algorithm 2.

Experiments and discussion

In this section, we will perform our three algorithms PCA- -RNG, PCA- -SRNG and fat

location correction/deletion algorithms on real datasets. Then, we will further analyze our

experimental results.

We will explore our algorithms proposed in previous sections on datasets CNAE-9 [21] and

MNIST [22], respectively. CNAE-9 is a dataset containing 1080 documents of free text
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business descriptions (The number of features is 856) of Brazilian companies categorized into

a subset of 9 categories cataloged in a table called National Classification of Economic

Activities [21]. This dataset is highly sparse (99.22% of the matrix is filled with zeros).

MNIST has a training set of 60000 collected handwritten digits each digitized to a

grayscale (so with dimension 784, and 80.88% of the matrix is averagely filled with zeros)

image, as well as a test set of 10000 examples [22]. If we try to directly construct

neighborhood graphs from training samples in these datasets, the results are less reliable. For

instance, we take the first 45 samples from CNAE-9 to construct the distance matrix and find

that the distances of lots of sample pairs with different labels are the same (See Table 5 in

Appendix A). Thus, our two algorithms (Algorithms 1 and 3) use PCA prior to construct

neighbourhood graphs.

For simplicity of presentation, let

o

o

o

o

o

Here, IDR, DR, RR and MCR are the abbreviations of inaccurate samples detection rate,

deletion rate, relabeling rate and mislabeling correction rate on original/pollution training

sample set, respectively.

In following experiments, we first introduce the noise level from 1% to 20% by mislabeling

labels of training samples from CNAE-9 and MNIST, respectively. Then, we perform our

algorithms (Algorithms 1, 2, and 3) on these two datasets. Tables 1 and 2 show the

experimental results.
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Table 1. Algorithms on CNAE-9 (The number of eigenvector chosen is 180, ratio of variance is about

0.974, number of sample is 400, significance level is 0.1, scale and threshold of labeling fat

location )
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Table 2. Algorithms on MNIST (The number of eigenvector chosen is 162, ratio of variance is about

0.974, number of sample is 400, significance level is 0.05, scale and threshold of labeling fat

location )

From Tables 1 and 2, we plot the curve of the inaccurate samples detected rate in Figure 4.

And it can see that except the case , i.e., RNG, the trend of the detected rates generally

increases with noise level. However, the curve of detection rates will begin to be lower than

the curve of “Detection rate = Noise level” as the noise level is more than about 10%, that is,

when our algorithms could not detect all the mislabeled samples. And for some abnormal

points such as the values on the noise level 15% in Figure 4, we think that one behind reason

is some samples polluted are on the boundary, so they are detected as inaccurate samples.
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Table 3. The detected pollution samples over total samples for CNAE-9 and MNIST

And from Tables 1 and 2, we can compute the detected pollution samples over total samples

as follow (The calculation results see Table 3):

Then we plot the curves of the detected pollution samples over total samples with the change

of noise in Figure 5. It can see that when the noise level is between 1% and 5%, our

algorithms can detect nearly all the mislabeled samples we have made. With increasing noise

level, our algorithms become less effective. The detection rate is about 15% as the noise level

is around 25%, when PCA- -RNG is slightly better than PCA- -SRNG. In addition,

contrasting with Figure 4, the curves in Figure 5 have a larger deviation from the curve

“Detection rate = Noise level”. It means that there exist some inaccurate samples detected by

our algorithms before we add noise to training samples.
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Figure 4. The curves of inaccurate samples detection rate with the change of noise.

Furthermore, from the definitions of IDR, RR and MCD, we can calculate the correction rate

on pollution samples as follow:

Then, based on the experimental data in Tables 1 and 2, we compute the correction rate on

pollution samples in Table 4. And we plot the curves of the correction rate on pollution

samples with the change of noise in Figure 6. It shows that the curves of correction rate on

pollution samples generally decrease with increasing noise level. The trend of correction rates

for -RNG and -SRNG-based algorithms are close. While for RNG case, i.e., , the

trend is not so obvious which is due to its low correction rate. And for some abnormal points

such as the values on the noise level 15% in Subfigure (a) and 1% in Subfigure (b) in Figure 6,

we think one behind reason is too much samples are detected as mislabeled (some may be

accurate samples), then the correction rate becomes low (See the values on the noise level

15% in Subfigure (a) in Figure 4). Another reason may be some polluted samples are on the

boundary, so it is difficult to correct (or detect) when they are polluted/mislabeled (See the

purple and red values on the noise level 1% in Subfigure (b) in Figure 4).
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Figure 5. The curves of detected pollution samples over total samples with the change of noise.

Figure 6. The curves of correction rate on pollution samples with the change of noise.
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Table 4. The correction rate on pollution samples for CNAE-9 and MNIST

Conclusion

In this paper, we focus on the detection and correction of mislabeled samples in high

dimension. First, based on the -RNG constructed from training samples, we give a PCA- -

RNG detection algorithm for the high-dimensional feature space. Then, we propose an -

scalar relative neighbourhood graph from the view of the metric and present an alternative

high-dimensional detection algorithm: PCA- -SRNG. And in order to correct the detected

mislabeled samples, we propose a fat location correction/deletion algorithm. Finally, we

perform and analyze our algorithms on two real datasets. How to adjust the scale and

threshold parameters (For instances, in Algorithm 1, in Algorithm 2 and in Algorithm 3.

From figures in Section 6, it seems that the smaller is or the larger is, the better the

detection and correction rates are) and improve algorithms' performance deserves further

studying in the future.
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Appendix A Distance matrix for samples from CNAE-9

Table 4. Distance matrix for 45 samples from CNAE-9

Appendix B PCA- -SRNG Detection
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