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Abstract 

The concept of the coherence length of the neutron is explored. The generally accepted 

definition of a Gaussian wave packet based on the method of the beam preparation, and 

the singular de Broglie's wave packet are considered. Possible ways of measuring the 

coherence length are discussed. 
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1.Introduction 

Examination of wave packets is, apparently, one of the most important fundamental problems 

of physics today. It is evident that a particle wave function is not a plane wave. It should be a 

vector of the Hilbert space i.e. a wave packet having certain properties. It has some size,called 

the coherent length, and the size can change with energy. Here the neutron wave properties 
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are discussed, because the neutron seems to be the simplest massive particle. In [1] it was 

reasonably noted that an unstable particle with a lifetime τ can have the size of the order of 

mL  , which for the neutron is 0.75 cm. However, the finite lifetime can also lead to 

the definition of the packet size proportional to the particle velocity L = vτ. So the greater the 

speed, the larger is the wave packet, though from a physical point of view, it seems more 

reasonable to accept [2] that the faster is the particle, the more close it to a point one. In [3] a 

wave packet was introduced to explain the UCN anomaly (abnormally high losses in traps). 

The packet size was estimated to be  210 Be

5L , where Be is the minimal wavelength of 

the neutron, which can be stored in beryllium traps. In this case L is the order of several 

millimeters, which does not contradict the assumption made in the [1]. 

Later [4,5] the assumption was made that the size of the wave packet depends on the speed 

and is proportional to the neutron wavelength:  2105L . Therefore, the thermal neutron 

wave packet size is up to about 5 microns. Perhaps it is correct, but how experimentally to 

measure the size of the wave packet that is the question. 

One way is to look for neutron transmission through a film when incident at a subcritical 

glancing angle [4, 6, 7]. Some indication of the transmission was found, but statistics of the 

experiment was not sufficient to talk about this transmission with certainty. More precise 

experiments are needed. Here another type of the experiments is discussed. When, because of 

some coherent process, the neutron wave function of a polarized neutron is split into two 

diverging in the space oppositely polarized components, one can observe superposition of 

polarization and find the distance, at which superposition is terminated, i.e. two components 

diverge and the neutron becomes only in one of the components. To predict theoretically 

transition of a coherent superposition into incoherent one, it is necessary to accept a model. 

Gaussian packets are not suitable because they spread out in the space. Gaussian packets are 

the result of the beam preparation. Their width Δk in the momentum space characterizes the 

coherent length  lc = 1/Δk in the coordinate space. This length is well observable in 

experiments on interference measurements of distances [8-10]. Here will be accepted a more 

appropriate model: a nonspreading singular de Broglie's wave packet [11] 
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with the spatial size l = 1/q. To get rid of various constants, the variable t in (1) includes 

factor m , so that t has dimension cm
-2

, and the angular frequency is 2)( 22 qk  . The 

packet (1) is normalized to unity by integration over the volume: 

  132

dB rd ,  

or as a full flux through any plane, integrated over time. Fourier expansion of this packet has 

the form 
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and the packet satisfies the equation 
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In the next three sections some possible experiments with the de Broglie wave packet are 

discussed. Detailed calculations are shifted to appendices. 

 

2. Measurement of packet size after coherent splitting of the neutron wave 

into 2 parts with equal but not collinear speeds. 

Consider a packet (1), which describes a particle with a fixed speed. Imagine a neutron flying 

at a speed k along x-axis being polarized along y-axis. At some point x = 0, as shown in Fig.1, 

the packet splits into 2 components polarized along and opposite z-axis and propagating at an 

angle θ to the x-axis. Spinor wave function of the neutron is 

 ztzt   ),(),(
2

1
dBdB kr,kr, ,             (4) 

where ),0,( zx kk k ,  coskkx  ,  kkkz  sin .  
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Fig. 1: The neutron because of a coherent process is split into two oppositely polarized components 

symmetrically propagating at a small angle θ with respect to the original direction. Superposition of split 

components passes through an analyzer, which transmits only neutrons polarized along the x-axis. The 

intensity recorded by the detector after analyzer when shifted along the x-axis, should contain an 

oscillating component of the type shown in Fig.2. 

Let's put on the way of the split neutron an analyzer transmitting only neutrons, polarized 

along the x-axis (it can be also along the y-axis, which is not essential). Since  

       2xxz  , 

the wavefunction, transmitted by the analyzer is 

 ),(),(
2

1
),( dBdB ttxt   kr,kr,r .   (5) 

Therefore, the total flux through the plane y, z, located at the point x after the analyzer, is 

   IIIxI
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)( ,     (6) 

where 
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   ),(),()2cos(2 dBdB ttzkdydzdtkI zx kr,kr, . (8) 

The integrals (7), as is easy to show, are equal to unity because of normalization. Of interest is 

the interference flux I . Detailed calculations are shown in the Appendix A. The result is 

represented by the function 
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which depends on two dimensionless parameters 22 kxX   and  kq .  

Note that the q can currently be estimated [3] as 10
-5

k. If 510 then 1 , and the 

attenuation length is approximately equal to the period of oscillations, so the oscillations after 

analyzer in fact will not be seen. To observe them, it is desirable to have 410  . Then 

1.0 . With this setting of   the function (9) looks as shown in Fig. 2. 
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Fig. 2: The result of a numerical calculation of the functions (9) for η = 0.1. 

The variable X corresponds to displacement x in space equal to 

24Xx  ,      (10) 

where λ is the neutron wavelength. For an experiment the displacement x should be large 

enough. If the parameter X = 1 should correspond to the actual displacement x=1 cm, then for 

θ=10
-4

 the neutron wavelength should be λ=10Å, which corresponds to the energy of 1 meV. 

Let’s estimate how to get splitting at the angle θ=10
-4

. 

Imagine transmission of a beam through a polarized magnetized prism, as shown in Fig. 3. 

The neutron beam polarized along the x-axis falls from the left perpendicularly to the vertical 

face of the prism magnetized along z-axis. Near the exit at the oblique face within the prism 

the wave vectors of the two components polarized along the z-axis are equal 
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where n and t are the unit vectors along the normal and along generatrix of the oblique edge, 

respectively, and u1;2  are interaction potentials of the two spin components with prism 

material and its magnetic induction. After exiting the prism into the empty space without 

magnetic field the wave vectors become  
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Fig. 3: Getting slightly split beam of neutrons by transmission through a magnetized prism. 

which for small u is reduced to 

 tan
4 2k

u
 ,      (12) 

where Δu=u1-u2. At k
2
 corresponding to the energy1 meV the value θ=10

-4 
 is obtained, if 

Δu=10
-7

 eV, which corresponds to magnetization 2T, and to tanφ=4, i.e. φ=75
0
. 

The result (9) is obtained for a fixed packet speed xkk  . Let us now imagine that in fact the 

packet speed has a Gaussian distribution  
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where all the parameters are defined in terms of the average speed k0. Integration of (9) over 

this distribution gives 
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Fig. 4: The result of the averaging of the function Fig.2, in accordance with (14) for Δ = 0,5. 
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The result for the function, shown in Fig.2, is presented in Fig. 4 for Δ = 0,5. 

 

3. Scheme of the packet size measurement by splitting of the neutron into 2 

components with different but parallel speeds. 

Suppose now that )0,0,(  kk , where 1k . Then (8) takes the form 

   ),(),()22cos(2 dBdB tttkxdydzdtkI kr,kr, .  (15) 

The calculation of this integral, as shown in Appendix B, again leads to the function (9), in 

which the dimensionless parameters are X = kxζ
2
, and η=q/kζ, where ζ=δ/k plays the same 

role as the parameter θ in (9). The experimental scheme is shown in Fig. 5. If neutrons of 

energy 10
-4

 eV pass through RF spin flipper with frequency 10 MHz, the velocities of the 

neutron components polarized up and down become different by the amount 

kkk 42 10    

 

Fig. 5: Getting a slightly longitudinally split beam of neutrons via RF spin-flipper [11]. 

The parameter 1.0 , and the function (9) has the same form as shown in Fig. 2. Let's see 

what will be the oscillation period. Since it is determined by the same formula as (10) only 

with the replacement of  and the energy of 10
-4

eV corresponds to  30Å, the 

parameter X = 1 will correspond to x 3 cm. Thus, the whole picture, as shown in Fig. 2 can 

be seen by moving the analyzer to 60 cm. 

 

4. Scheme of the experiment for measuring the packet size by splitting of 

the neutron into 2 parts with different and non-parallel speeds. 

Consider now the case, when the neutron is split into 2 components propagating with different 

velocities at an angle to each other. Such a beam, for example, can be obtained by reflection 

of a neutron beam, polarized along the external magnetic field, from the magnetic mirror with 
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magnetization noncollinear to the external field. At the reflection the reflected beam is split 

into 2 components. One, reflected in the specular direction, retains polarization and the 

velocity of the incident beam and the other one has the opposite polarization and is reflected 

in the non-specular direction [12] under larger grazing angle.  Choose the x-axis in such a 

way that the components of the wave vectors are ),0,(2,1 zkk  k , then the integral (8) 

becomes 

  ),(),()222cos(2 2dB1dB tttkzkxdydzdtkI zx kr,kr, .  (16) 

Obviously, the calculations result in the same function (9), but instead of the parameter θ 

there will be 
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Let's estimate the value of these parameters in the experiment [12]. Since the experiment was 

performed with thermal neutrons, and external field varied from 33 Oe to 4000 Oe, which 

corresponds to the magnetic energy from 10
-10 

and 10
-8

eV, the parameter ξ changed in within 

10
-6

–10
-8

, and the parameter η in (9) is much greater than unity, then (9) can be approximated 

as 

      kxqxXsXdsXf 5
1

0
102exp2expexp)cos()(   .   (18) 

Therefore the coherence length, respectively, in this case,  

 4105cL ,     (19) 

varies in the range 1 --100 m, i.e. in this case practically one deals with a plane wave. 

 

Conclusion 

This article shows a possibility of a direct measurement of the size of neutron wave packet, 

described by the singular de Broglie's wave function. No fundamental difficulties for 

corresponding experiments are expected. 

 

 

 



19 

 

Appendix  

A. Calculation of the integral (8). 

We will show here in detail how to calculate the integral (8). We use the Fourier 

representation (2), write 2cos(2kzz) as the sum of two exponents and obtain the integral 
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Integrating over the plane (y,z) and over time, and then over p’, gives 

 




]))(2()2()[(

))(2exp(

)2(

)4(
222222

3

4

2

qkkkppkppqp

kxkkpipdq
J

xzzzxzzy

xzzz




.  (A2) 

 

Make the change of variables  zz kp pz, and introduce θ= kz/kx kz/k, then the integral is 

transformed into 
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Let us make more change of the variable xzx ppp   . Then the integral is transformed 

into 
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Use the transformation 

 


1

0 2))1((

1

BA

d

AB 


.                                                    (A5) 

 




2222222

3
1

02 ])21)((2)1([

)2exp(

qkpkppppp

xippd
d

q
J

zzzzxxzy

z







.  (A6) 

Change variables s = 2α-1, and xzx pspp   . Then (A6) is 

transformed into 
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Integration over dpx dpy gives 
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For small θ integral can be simplified 
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Change of variables zzz pskp  , leads to 
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One can now integrate over pz. The result is 
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B. Calculation of the integral (15)  

Write 2cos(α) as a sum of two exponents, then get the integral 
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Integration over time and coordinates leads to three δ-functions which makes it easy to 

integrate over d
3
p’, resulting in the expression 
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Change of variables xx pp  leads to 
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Transformation (A5) and change of variables 2α-1=s leads to 

 




 22222

3
1

12 )2(

)2exp(

2 qpsppp

kpxipd
ds

q
J

xzxy

x





 
.                           (B4) 



21 

 

Change of variable xx psp   and integration over dpydpz  gives 
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After integration over dpx we finally obtain the function (9), in which η=q/kζ, ζ=δ/k, and X = 

2xkζ
2
. 
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