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Abstract:  

Propagation and static distribution of light on noncircular orbits are modelled. The space 

where light embodies is determined with kinematics, such that the perpendicular velocity of 

the 'material'-space described as a noncircular orbit, is harmonic with amplitude fwre.  Light 

propagation to discrete orbits may occur with arbitrary velocity. The modeling serves to 

describe light when distributed on an arch e.g. rainbow or cloud bow, and when located into 

more discrete spots. The latter is assumed being present at singularities of the electric field. 

The assumption of convolution gives propagation of light onto a new noncircular orbit, with 

solutions of discrete multiple singularities. This is compared with bi-Solars of a Halo. A fine 

structure will be outlined assuming bi-bi-Solars implied as fractals. 
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1. Introduction 

Planetary motions are an issue to describe, and results date back to Ptolemaios. With the 

Kepler solution to Newtonian gravity, the motion of a planet is that of an ellipse, c.f. e.g. 

Arnold (1978). Mercury is the only planet with large eccentricity, and it is observed that 

perihelion moves, which indicates that there are also other forces, internal, intrinsic and from 

outside. Here, we will assume the path of a noncircular orbit, Strömberg (2014; 2015), such 

that radius vector is given by 

r =ro+re sin(fwt)      (1) 

 

  Figure 1. Radius vector for a noncircular orbit, with f=3/2  

It is found that this formulation describes many other motions and phenomena e.g. water 

waves, light and acoustics where 2nd order effects show, Strömberg (2015). 

For example in acoustics, the factors f=2, 3/2 and 3 give connections between the frequency 

and its octave, quint and duodecima.  

Such ratios was found by Pythagoras, and later but assumed different by Ptlolemaios, 

according to Wikipedia. At ionization of oxygen by a magnetic field, similar ratios are found 

in Northern Light, Figure 2, Strömberg (2015). 

 

Figure 2. Northern Light, mostly green and indigo 
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The spin orbit ratio 3/2 for Mercury was analysed in Correia and Laskar (2004), by modeling 

effects of shear deformation. 

Dynamical phenomena in fluid structural interaction e.g. Magnus effect for a ball with spin, 

and uplift on a Ringvinge, may be cast into this framework, Strömberg (2016). 

Concepts of memory c.f.  Gurtin (1996), Runesson et al (2009), can be expressed in terms of a 

time invariant, Tti, to a noncircular orbit, Strömberg (2015). 

Discrete solutions on an orbit have similarities with star shapes e.g. Charles Vain 

(Karlavagnen) and Southern Cross, Strömberg (2015; 2016). 

Light spots show at the side of the pupil of an eye, which suggests that light takes a circular 

path on the Iris before entering the pupil, Strömberg (2015; 2016). 

According to Huygens principle, light propagates with spherical wave fronts from a source. 

Hereby, when not constrained, the propagation will be in all directions. The spherical 

symmetry is often modeled with 1/r singularity, which is a solution to electrostatics. The 

model is valid far field from the source. For light which we can observe at a location, i.e. 

reflected on a surface, or from crystals, solutions derived from Maxwell's equation may be 

descriptive to obtain a spatial distribution. Other models are those of a singularity and its 

development derived with so called micro local analysis. 

In the present paper, we shall propose a model for light on a Halo, by assuming the geometry 

of a noncircular orbit. The shape relates also to formations and propagation of light in terms 

of elliptic cavities, as found in accelerators such as Max IV.  

 

2. Model for electromagnetism and propagation of light 

Here, we shall consider an electromagnetic field confined to a noncircular orbit (nco). For a 

nco, the perpendicular velocity is a harmonic, with a dependency on f, re and wt, given by 

time differentiation of r(t) in equation (1) . 
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Figure 3. The figure shows elliptic cavities formed by light. Here the boundary curve is 

modified from an ellipsoidal to a noncircular orbit.  

Recent models for propagation of singularities are found in so-called micro local analysis, 

where e.g. polynomial expressions in time are analysed. Here, the details for a discrete and 

partly continuous propagation will be derived. Assuming light being governed by Helmholtz’ 

equation, the solutions in Helsing and Karlsson (2016) are applicable. Subsequently, the 

notations from this will be used, in a brief description, and we consider a plane part of the 

cavity in cylindrical coordinates, at a constant z coordinate  z=z0 . The region between (1) and 

a corresponding circle with radius r0 will be denoted the ‘eccentricity zone’, or ‘zone’. 

Static conditions are assumed inside and time dependency in the eccentricity zone, such that 

DE = 0 r<r0 for all v, and DE=e(t) r>r0 and r= r0 , where v is the angle coordinate on a circle 

and e(t) is a source term in the eccentricity zone. 

Then, the singularity for the electric field, is at r=0. To obtain a propagating singularity 

(which is identified with a wave front), the fundamental solution and integration will be 

applied with so-called convolution, for a noncircular orbit such that abs(r-r')=resin(fwt), i.e. r 

is the radius of a nco and r'=r0. 

In the eccentricity zone, we assume time dependency sin f1wt, to fit the format of a 

noncircular orbit, instead of entire exp(iwt) as in Helsing and Karlsson (2016). 

Proposal. With the above preliminaries, the general solution in an eccentricity zone; abs(r-r'), 

is given as the original time independent field, satisfying the homogenous equation, now 

scaled with a factor;  

(sin (f1wt) /sin (fwt))                 (2) 

'integrated over' the part of the zone for which the solution is sought.  

This is obtained by insertion and convolution of the homogenous solution into the zone.  
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3. Certain solutions 

Theorem 1.(Distributed) 

When f1=f, the factor is constant. 

Proof. The  factor  (2), simply equals 1 

Singular points, in time and space: For  

f=2f1                        (3) 

the solution has singularities at discrete values of wt. 

Preliminaries. wt will be identified with a location angle v, at the corresponding circular orbit 

with radius r0. 

Theorem 2. (Discrete, ‘quantized’) With the above preliminaries, relation (3) and f1 =1, there 

will be singularities at discrete equidistant locations in the zone. These are given by v=p/2 and 

-p/2. 

Sketch of Proof.  Insertion of (3) in the ratio (2), and evaluation of the trigonometric functions. 

A cosine-function will remain in the denominator, and this is zero for the angles v=p/(2f1)  

and -p/(2f1). In the theorem, f1 is specified to equal 1, but there are also other possible 

solutions, e.g. f=2 may give 4 spots. 

 

4. Applications 

A light phenomenon on an arc is the rainbow. Then, the solution is distributed on the arc, and 

not discrete, as it appears. The framework above resulting in Theorem 1, with f1=f and a small 

re, provides a constant field on a thin almost circular arc. This applies to rainbows and cloud 

bows. 

Another formation is a Halo, consisting of a ring around the sun, with two larger spots with 

light, c.f. Figure 4. The locations where the new two discrete singularities appear are at 0 and 

p rad from the horizon, and these are known as bi-Solars. The location agrees with the 

solution in Theorem 2. Above, there is a so-called circumzenithal arc, which is an upside 

down rainbow. 
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Figure 4. Halo phenomena with two bi-Solars 

 

5. Fractal domains to model details of the bi-Solar shape 

Next, we will propose a fine structure of the bi-solars. This will be constructed in a similar 

way which gives bi-bi-solars, as the second level in a fractal. The bi-bi-solars will be assumed 

with different values of f. As 'candidates' for possible f, we may use common ratios in 

acoustics, or all f in the cycle Strömberg (2016)2, given by [1,2,0.7,3/2,3]. For the latter case, 

several bi-bi-solars on rings of certain sizes, may be assumed. This gives patterns as in 

Figures 5. The value 1, is assumed to appear on all rings 

 

Figure 5. 

 Another plausible model, is to assume an additional propagation outwards, together with a 

simultaneously development of two bi-bi-solars inside. With the values of f=2 and 3/2, we get 

the locations in Figure 6.  
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Figure 6.  

The singularity for the value 3/2, will overlap the large circle, which agrees with details of the 

photo, Figure 4. Assuming that the sublevel singularities contribute and move the center of 

the entire bi-solar, the locations may give a displacement upwards, which also agrees with the 

appearance for some real configurations, e.g. Figure 4. 

 

6. Conclusion 

For the modeling considered here, the solution for the electric field has singularities at 

discrete f1wt. Hereby, a singularity for the electric field will propagate to other points, 

adjacent, at the distance r0 from the original singularity.  

At the radius r0, for some values of f, the first singularity is multiplied into several 

singularities, with quantized equidistant locations. 

The distance to next (circle of) singularity is not determined and may be given by fractal 

properties of adjacent geometry with ice crystals.  A fractal structure for additional bi-bi-solar 

was proposed. The location was assumed, induced by the duplicated appearence of the first, 

but with other f, and smaller radius, such that mostly inside the first 'lightcloud'. The intensity 

of the singularities on sublevels may be discussed in terms of energy distribution and 

availibility of new energy at certain locations. 
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