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Abstract

New approach to calculate both bound and continuum excitonic states in a quantum well are

presented. Green functions technique for appropriate Schrödinger equation allowed transforms it

to system of linear algebraic equations and to obtain a general numerical solution for excitonic

wave function in a matrix form. The exciton binding energy was determined as poles of the wave

function. Calculated quantum-mechanical transverse average size of an exciton correlates with

binding energy. The results for different well widths and excitonic states are presented and

analyzed.
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Introduction.

Bound state of an electron and hole called an exciton, is being studied for last several decades. A

new impact to the study of excitonic states and related effects has been stimulated by the

development of the technology and physics of low-dimensional structures. In particular, the
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binding energy of an exciton in a quantum well is increased by 2 and more times compared to the

bulk materials, and that is favorable for creating a laser based on the condensation of polaritons

[1] – bound states of an exciton and light. In addition, in bulk semiconductors the exciton states

manifest itself only at low temperatures, that don’t allow its practical use. In contrast, in low-

dimensional structures the exciton states are well defined at room temperature. Changing, for

example, the size of nanostructures, it is possible to change the binding energy and other

parameters of excitons and thus to control excitons in low-dimensional structures and to create

new devices operating due physical processes with excitons [1-3]. The most publications related

to the calculation of excitonic states were done in the 80-90 years of the last century. This amount

of papers contain a way from from the simple models with a parabolic bands [4] to the more

complex models taking into account nonparabolicity factor, mixing of light and heavy holes

states in the valence band [5], etc. At that, variational [1, 6] as well as numerical methods [7] has

been used. Non-trivial approach to the calculation of the exciton states was used in [8,9] where

the Green's function method was applied to solve the appropriate Schrödinger equation. A similar

approach is developed in presented paper. The difference is in construction of Green's function

and in the method used to solve final equations. While 3 stages are necessary to calculate the

Green's function in Ref. [8], it is determined by the specific expressions in the present work. The

effectiveness of our approach are demonstrated on the example of excitonic states in a

heterostructure Ga1-xAlxAs/GaAs/ Ga1-xAlxAs

Solution of Shredinger equation for excitonic states in a quantum well.

We consider the so-called Wannier-Mott exciton, when the electron and hole are separated by a

distance a much more than material lattice constant. Then to calculate the exciton energy levels

and wave functions we use Hamiltonian in the effective mass approximation:

H=Hze+Hzh+Heh (1)

where Hze (Hzh) - describe the quantized electron (hole) states:
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where mze,zh – electron (e) or hole (h) mass along z direction, Ve,h(z) – square-well confinement

potential, and Heh is responsible for electron-hole in-plane relative motion
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where (,) are the distance and angle describing the e-h relative motion in the QW plane, me,h –

mass corresponding to electron (e) or hole (h) bands in the QW plane.
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 - electron - hole Coulomb interaction, q – unit charge, 

- permittivity, 0 - dielectric constant.

To solve the Schredinger equation with the full Hamiltonian (1) we construct a basis of single-

particle states which satisfy the following one-dimensional equations:
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Next, we do expand excitonic wave function ψ(ze,zh,  ,  ) into a basis of

functions )(),( h
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Because of the axial symmetry of the system, angular momentum projection onto the z axis is

conserved Lz= m (m=0, 1, 2, … - magnetic quantum number), and their eigenfunctions exp(-

im) determine the dependence of the unknown exciton wave function versus an angle  . Thus

we can rewrite (3) as:
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Substituting (4) in (1), we obtain a system of differential equations.
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where
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In (5) we use dimensionless variables, introducing Bohr radius ab as unit of distance and Rydberg

Ry as energy respectively
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where 1/=1/m,e +1/m,h. The solution of equations (4) is written in the form analogous to the

[10, 11]:
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where the Green's function GN(R,R',E) corresponds to homogenous equation (4) (without right

side). The procedure of getting solutions for binding energy and wave function have been

described in [11].

Binding energy and average transverse size of exciton.

As usually we classified excitons in QW according to the pairs of subband involved, eg. e1-hh1,

e1-hl2 etc. We have calculated the binding energies of the ls state of the heavy-hole exciton (e1-

hh1, e1-hh2) and the light-hole exciton (e1-hl1, e1-hl2) as a function of QW width for values of

Al concentration x=0.15. We used next values for electron, heavy hole and light hole masses (in

the unit of free electron mass m0): 0.067, 0.45, 0.08 in barrier and in the well. The reduced mass

in QW plane is 0.04 and 0.051 for the heavy-hole exciton and light-hole exciton respectively.

Also the same values for the static dielectric constant in the well and barrier were assumed. All

data are the same as in Ref. [4].
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First we compare results of numerical solution of Eq. (4) to analogous obtained in Ref. [4] (close

lying solid and dotted curves on Fig.1). As can be seen from Fig. 1 both curves are almost same.

Next, we calculated the binding energy for the 1s state of e1-hh1, e1-hh2, e1-hl1, e1-hl2 excitons

as function of QW width L in the range of 50-300 Å. The obtained dependencies confirm the

well-known results: after initial maximum as the QW widths increase the binding energy

decreases. The initial maximum is a consequence of a limiting case: as QW width reduces to zero

the binding energy also tends to zero. For exciton e1-hh1 the maximum is located at smaller

values of the QW width. In equation (4) we took into account only the contribution of electron

and hole subbands such that RyEj
h

i
e 25  . The contribution of subbands beyond the last

inequality led to change in the binding energy of an exciton less than 0.1 %. We also present the

results when the contribution of only two subband involved in exciton have been taken into

account. It is easy to see that this approximation is adequate for cases of narrow QWs and low-

lying exciton levels. Let's note that the increase of the contribution of the other subbands leads to

an increase in the binding energy, in contrast to the case of impurity states [10] when increase of

the contribution of additional subband can led both to increase and to decrease of the binding
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Fig.1. Binding energy of heavy-hole (a) and light-hole (b) excitons as function of
quantum well width L: 1 – e1-hh1, 2 – e1-hh2, 3 – e1-hl1, 4 – e1-hl2.
The dashed curves correspond to the case of only two subband contribution, while
dotted lines are results from Ref. [4] and are compared to our curves 1.
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energy. The reason is that the modified 2D potential (5) has the same sign for any of the

considered states.

For further analysis we introduce the quantum-mechanical average distance between the electron

and hole forming an exciton as:
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In fact, it is an integral characteristic for the structure of wave functions of different electronic

and hole states. It should be noted that the similar expression has been used in [12] as a parameter

for analytical solutions for the impurity states. The use of such quantity follows from next

arguments. The binding energy of the exciton is determined by the Coulomb interaction between

electrons and holes, which depends on the distance between them. We examine the binding

energy as function of the QW width, which is measured along the z axis. That is the reason why z

component of the distance we are interested in. In fact, it turned out that its values are completely

correlated with the calculated dependencies of binding energy versus QW widths. This can be

seen from Fig.2. Moreover, this value is extremely sensitive to the slightest changes in the

dependencies of binding energy versus QW widths. For example, it repeats a barely noticeable

extremums for the states of e1-hl1, e1-hl2.

Fig.2. The average size of heavy-hole (a) and light-hole (b) excitons as function
of quantum well width L: solid line – e1-hh1, e1-hl2, dashed – e1-hl1, e1-h12.
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Conclusion.

The method of Green’s function is used to construct solutions of the Schrödinger equation

describing the excitonic states in a quantum well. The method allows calculating the binding

energy and building the wave functions of the different series of the excitonic states. The results

of the calculations show qualitative and quantitative agreement with known data. The calculated

quantum-mechanical average distance between the electron and hole forming an exciton

qualitatively and quantitatively follows the dependence of the binding energy of an exciton

versus QW width.
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