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Abstract

In the general form for the equation of the electroelasticity the generalized structural-

parametric model and the generalized matrix transfer function of the electroelastic actuator

with the output parameters displacements are determined from the solutions of the wave

equation with using the Laplace transform. The parametric structural schematic diagram and

the transfer functions of the electroelastic actuator are obtained. The structural-parametric

model of the piezoactuator for the transverse, longitudinal, shift piezoelectric effects are

constructed. The dynamic and static characteristics of the piezoactuator with the output

parameter displacement are obtained.
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1. Introduction and statement of problem

The electroelastic actuator on the piezoeffect and the electrostriction effect is used for precise

alignment in the adaptive optics and the nanotechnology [1 − 26]. The piezoactuator uses the

inverse piezoeffect and serves for the actuation of mechanisms or the management and

converts the electrical signals into the displacement and the force [1, 2, 3, 6]. The

piezoactuator is applied for the drives of the scanning tunneling microscopes and the atomic

force microscopes [14, 15, 16]. Let us consider the generalized structural-parametric model

and the generalized parametric structural schematic diagram of the electroelastic actuator are

constructed by solving the wave equation with the Laplace transform for the equation of the

electromagnetolasticity, the boundary conditions on loaded working surfaces of the actuator,

the strains along the coordinate axes. The transfer functions and the parametric structural

schematic diagrams of the piezoactuator are obtained from the generalized structural-

parametric model. In [6, 7, 8] was determined the solution of the wave equation of the

piezoactuator. The structural-parametric model of the electroelastic actuator was determined

in contrast electrical equivalent circuit types Cady and Mason for calculation of piezoelectric

transmitter and receiver [9, 10, 11]. In the paper [12] presents the classic analytical two-port

lumped-element model (LEM) types Cady and Mason of the piezoelectric composite circular

plate with the output pressure. In the paper [13] considers the development of various

lumped-element models as practical tools to design and manufacture the actuators with the

output velocity. In the [14, 16, 21] were obtained the structural-parametric models, the

schematic diagrams for simple piezoactuator and were transformed to the structural-

parametric model of the electroelastic actuator. In [8, 18] was used the transfer functions of

the piezoactuator for the decision problem absolute stability conditions of system controlling

the deformation of the electroelastic actuator. The elastic compliances and the mechanical and

adjusting characteristics of the piezoactuator were found in [19] for calculation its transfer

functions and the structural-parametric models. The structural-parametric model of the

multilayer and compound piezoactuator was determined in [19] with the output displacement.

In this paper is solving the problem of building the generalized structural parametric model

and the generalized parametric structural schematic diagram of the electroelastic actuator for

the equation of the electroelasticity. The difference of this work from the papers [20, 21, 23,

26] is that the construction of the structure-parametric model of the electroelastic actuator is

produced immediately in the general form, and not by the method of mathematical induction

from the individual examples for the models of the piezoactuators.
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2. Structural-parametric model and matrix transfer functions of

electroelastic actuator

Let us consider the general structural-parametric model and the parametric structural

schematic diagram of the electroelastic actuator with the output parameter displacement. For

the electroelastic actuator are presented six stress components 1T , 2T , 3T , 4T , 5T , 6T , where the

components 1T - 3T are related to extension-compression stresses, 4T - 6T to shear stresses. In

the electroelastic actuator its deformation corresponds to stressed state.

For polarized piezoceramics PZT the matrix state equations [11, 14] with the electric and

elastic variables have the form two equations, where the first equation represents the direct

piezoeffect, the second equation describes the inverse piezoeffect

EεdTD T (1)

EdTsS tE  (2)

where D is the column matrix of electric induction; S is the column matrix of relative

deformations; T is the column matrix of mechanical stresses; E is the column matrix of

electric field strength; Es is the elastic compliance matrix for constE ; Tε is the matrix of

dielectric constants for constT ; td is the transposed matrix of the piezoelectric modules.

Let us consider the electromagnetoelastic actuator. In general the equation of

electromagnetoelasticity [6, 11] has following form

   t,xTstdS jijmmii
 (3)

where   xt,xSi  is the relative displacement along axis i of the cross section of the

actuator,  mmm D,E is the control parameter E for the voltage control, D for the current

control along axis m, jT is the mechanical stress along axis j, mid is the coefficient of

electroelasticity, for example, piezomodule,

ijs is the elastic compliance for control parameter

const .

The piezoactuator (piezoplate) has the following properties:  is the thickness, h is the height,

b is the width, respectively  b,h,l  the length of the piezoactuator for the longitudinal,

transverse and shift piezoeffect. The direction of the polarization axis Р, i.e., the direction

along which polarization was performed, is usually taken as the direction of axis 3. The

equation of the inverse piezoeffect for controlling voltage [6, 11] has the form
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  xt,xSi  ,        tUtEt mm

where iS is the relative displacement of the cross section of the piezoactuator along axis i,

 t,x is the displacement of the section of the piezoactuator, mid is the piezomodule,  tEm is

the electric field strength along axis m,  tU is the voltage between the electrodes of actuator,
E
ijs is the elastic compliance for constE , indexes i, j = 1, 2, … , 6; m = 1, 2, 3. The main size

 b,h,l  for the piezoactuator, respectively, the thickness, the height, the width for the

longitudinal, transverse, shift piezoeffect.

For calculation of the electroelastic actuator is used the wave equation [6, 7, 11, 14] for the

wave propagation in a long line with damping but without distortions. After Laplace

transform is obtained the linear ordinary second-order differential equation with the parameter

p, where the original problem for the partial differential equation of hyperbolic type using the

Laplace transform is reduced to the simpler problem [6, 14, 21] for the linear ordinary

differential equation

    02
2

2


 p,x
dx

p,xd (4)

with its solution

    xx BeCep,x (5)

where  p,x is the Laplace transform of the displacement of the section of the electroelastic

actuator,  cp is the propagation coefficient, c is the sound speed for const ,  is

the damping coefficient.

The constants C and B of the solution the linear ordinary second-order differential equation [7]

are determined from the boundary conditions for the electroelastic actuator

   pp, 10  for 0x (6)

   pp,l 2 for lx 

whence we obtain the constants in the form

 





l
eC
l

sh2
21 ,  






l
eB

l

sh2
12

Therefore, the solution (5) can be written in following form
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          
 




l
xpxlpp,x

sh
shsh 21 (7)

The equations for the forces on the faces of the electroelastic actuator

     ppMpFSp,T j 1
2

1100  for 0x , (8)

     ppMpFS)p,lT j 1
2

220  for lx  ,

where  p,T j 0 and  p,lT j are the mechanical stress.

From equations of forces acting on the faces of the electroelastic actuator we obtain the

boundary conditions on loaded surfaces

     p
s
d

dx
p,xd

s
p,T m

ij

mi

xij
j 


 




0

10 (9)

     p
s
d

dx
p,xd

s
p,lT m

ij

mi

hxij
j 


 




1

where 0S is the cross section area and 1M , 2M are the displaced mass on the faces of the

electroelastic actuator.

From (4), the boundary conditions on loaded surfaces (5), the strains along the axes the

system of equations for the generalized structural-parametric model and the generalized

parametric structural schematic diagram are determined for Figure 1 of the actuator with the

output parameters the Laplace transform for the displacements  p1 ,  p2 for the faces of

the electroelastic actuator in the form

   
 

         



































































  ppl

l

pd
pF

pM
p

mmi

ij 21
12

1
1 ch

sh

11

(10)

   
 

         






























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


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





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











  ppl

l

pd
pF

pM
p

mmi

ij 12
22

2
2 ch

sh

11

where
0S
sij

ij


 






153133

153133

g,g,g
d,d,d

dmi ,





133

133

D,D,D
E,E,E

m ,





DDD

EEE

ij s,s,s
s,s,s

s
551133

551133 ,  b,h,l  ,  DE c,cc  ,

 DE , , mid is the coefficient of the electroelasticity (piezomodule),  pF1 ,  pF2 are the

Laplace transform of the forces on the faces. Figure 1 shows the generalized parametric
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structural schematic diagram of the electroelastic actuator corresponding to the set of

equations (10) for the Laplace transform of the displacements of the faces. The generalized

transfer functions of the of the electroelastic actuator are the ratio of the Laplace transform of

the displacement of the face actuator and the Laplace transform of the corresponding control

parameter or the force at zero initial conditions.

From (10) the generalized matrix equation of the transfer functions of electroelastic actuator

has the form

 
 

     
     

 
 
  




































pF
pF
p

pWpWpW
pWpWpW

p
p m

2

1
232221

131211

2

1 (11)

Figure 1. Generalized parametric structural schematic diagram of the of the electroelastic actuator

Let us consider the static displacements of the faces for the electroelastic actuator with the

output parameter displacement. For 1Mm  and 2Mm  the static displacements of the faces

of the piezoactuator for the transverse piezoeffect are obtained from (11) in the form
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   
 21

2031011

0
01 lim

MM
MhUd

p
UppW

p 








(12)

   
 21

1031021

0α
02 δδ

limξ
MM
MhUd

p
UppW

p 





(13)

For the piezoactuator from PZT under the transverse piezoeffect at 1Mm  and 2Mm  ,
10

31 1052  .d m/V, 20h , 150U V, 11 M kg and 42 M kg, the static displacements of the

faces are determined   600ξ1  nm,   150ξ2  nm,     750ξξ 21  nm.

Let us consider the dynamic displacement of the piezoactuator under the transverse

piezoeffect with one fixed face. Using equation (11) for unloaded piezoactuator under the

transverse piezoelectric effect, we write the expression for the transfer function at 1M and

02 M in the form

         hdpEppW cth313221 . (14)

We write the resonance condition for the piezoactuator under the transverse piezoeffect with

one fixed face

  0ctg  Ech (15)

This means that the piezoactuator is the quarter-wave vibrator with the resonance frequency

  .hcf E
r 4   (16)

Let us consider the resonance condition of the piezoactuator from PZT under the transverse

piezoeffect at 3103 Eс m/s and 21081  .h m, the resonance frequency is determined

60rf kHz.

For the approximation of the hyperbolic cotangent by two terms of the power series in

transfer function (11) the following expressions of the transfer function of the piezoactuator

with one fixed face is obtained for the elastic-inertial load at 1M , 2Mm  under the

transverse piezoeffect and control voltage (Figure 2) for the resistance 0R of the voltage

source in the form

   
     121 22

11

312









pTpTCC

hd
pU
ppW

ttt
E

e

(17)

 Eet CCMT 112  ,  




  E

e
EE

t CCMcCh 1111
2 3
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where  pU is the Laplace transform of the voltage, tT is the time constant and t is the

damping coefficient of the piezoactuator.

Figure 2. Parametric structural schematic diagram of the voltage-controlled piezoactuator with one

fixed face under transverse piezoeffect for elastic-inertial load

Let us consider the transient response of the electroelastic actuator with the output parameter

displacement. The expression for the transient response of the voltage-controlled

piezoactuator for the elastic-inertial load under the transverse piezoeffect is determined

   



























 tt

t

t

t

m t
T
t

et sin
1

1
2

(18)

 
E

e

m
m CC

Uhd

11

31

1
δξ


 ,

t

t
t T

21 
 , 


















t

t

t

21
arctg

where m is the steady-state value of displacement of the piezoactuator, mU is the amplitude

of the voltage. For the voltage-controlled piezoactuator from the piezoceramics PZT under the

transverse piezoelectric effect for the elastic-inertial load 1M , 2Mm  and input voltage

with amplitude 125mU V at 10
31 1052  .d m/V, 20h , 42 M kg, 7

11 102 EC N/m,

7105.0 eC N/m are obtained values 500ξ m nm, 31040  .Tt c.

For calculations control systems with the electroelastic actuator the parametric structural

schematic diagrams and the transfer functions of the electroelastic actuator are obtained

3. Results and Discussions

The electroelastic actuator solves problem of precise matching, compensation of temperature

and gravitational deformations. The structural-parametric model and parametric structural

schematic diagrams of the voltage-controlled piezoactuator for the longitudinal, transverse

and shift piezoelectric effects are determined from the generalized structural-parametric

model of the electroelastic actuator with the replacement of the generalized parameters on the

parameters of the piezoactuator.
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The transfer functions in matrix form are describe deformations of the electroelastic actuator.

The generalized structural-parametric model, the generalized parametric structural schematic

diagram and the matrix equation of the electroelastic actuator with the output parameters

displacements are obtained from the solutions of the wave equation with the Laplace

transform and from its deformations along the coordinate axes. From the generalized matrix

equation for the transfer functions of the electroelastic actuator after algebraic transformations

are constructed the matrix equations of the piezoactuator for the longitudinal, transverse and

shift piezoelectric effects.

4. Conclusions

The generalized structural-parametric model, the generalized parametric structural schematic

diagram, the matrix equation of the electroelastic actuator with the output parameters

displacements are obtained in the general form.

The structural-parametric model, the matrix equation and the parametric structural schematic

diagram of the piezoactuator for the transverse, longitudinal, shift piezoelectric effects are

determined from the generalized structural-parametric model of the electroelastic actuator.

From the solution of the wave equation, from the equation of the electroelasticity and the

deformations along the coordinate axes the generalized structural-parametric model and the

generalized parametric structural schematic diagram of the electroelastic actuator with the

output parameters displacements are constructed. The deformations of the electroelastic

actuator are described by the matrix equation for the transfer functions of the actuator.
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