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ABSTRACT

We present here an analytical approach to the theoretical model for the time evolution of

angular momentum of galaxies presented previously in Casuso and Beckman(2015), where

the Coriolis force acting on a galaxy situated at the sur-face of a rotating cosmic void could

play an important role in addition to tidal torques among proto-galaxies to explain the present

angular momentum distri-bution. We use the Emmy Noether theorem in Lagrangian

Mechanics to obtain a theoretical relation between the angular momentum of galaxies and the

cosmic time, and compare our results with both numerical models and observations.

Subject headings: (cosmology:) large-scale structure of Universe

1. Introduction

It has gradually come to be accepted that the origin of the angular momentum of galaxies can

be explained by some variant of Hoyle (1949) and Sciama (1945) idea that protogalaxies are

spun up by the tidal fields of their neighbours. The first detailed calculation of the acquisition

of angular momentum in the arly stages of protogalactic evolution was madeby

Peebles(1969),who used linear approximation to fi nd the growth rate of the spin angular
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momentum contained within a comoving spherical region of the expanding universe. He

found that the angular momentum in such regions grows only to second order in the

perturbation expansion and in proportion to t5/3 for an Einstein-de Sitter universe. But, as was

pointed out by Peebles(1969),the angular momentum of a protogalaxy normally grows at first

order in proportion to t for a fl at universe and Peebles ’ s result is a consequence of the

spherical symmetry he imposed(White1984). The in fl uence of the evolution of galactic

angular momentum on the evolution of galaxies was recognized early as a driver of galaxy

morphology(Doroshkevich1970, Hoyle1949). Later Peebles(1969)introduced the so called

spin parameter 2/5

1/2

GM
JE= λ where J is the dark matter halo angular momentum, E the

modulus of the energy, and M the total mass of the galaxy. This parameter was studied both

analytically and numerically within the framework of hierarchical galaxy formation (Barnes

1987, Heavens 1988, Warren 1992, Catelan 1996). Some authors (Maller 2002, Vitvitska2002,

Hetznecker2006)have pointed out that in addition to tidal torquing, galaxy mergers play a

driving role in the evolution of galactic spins (we use in this paper spin and angular

momentum as sinonymous). In the cold dark matter paradigm, baryonic disk galaxies form at

the centers of dark matter halos (Fall 1980, Fall 1983). At low redshift several authors(Fall

1983, Dutton 2012, Romanowsky 2012, Fall 2013, Courteau 2015) have studied the angular

momenta of both star forming disks and of passive spheroids. Fall(2013) fid jd/jDM～0.9 for

late type, star forming discs, and～ 0.3 for early type, passive spheroids, with Sa and S0

galaxies in between these extremes. This suggests loss or redistribution of angular momentum

after the gas has entered the virial radius, with spheroidal galaxies suffering a substantial

larger amount of loss than disks. The relative fraction of barionic-to-dark matter mass in the

half-light regions of z ～ 0 galaxies also depends on type and mass. Massive early type

spheroidal systems and massive disks, including the Milky Way, are baryon

dominated(Courteau2015). In contrast,the dark matter fraction is signifiant and becomes even

dominant for low-mass spheroids(dwarf ellipticals) and lower mass disks (Martinsson2013).

In the outer regions(10-30Kpc) z=0 disks are dark matter dominated, as shown by their flat

rotation curve(Courteau2015). At high z little is known empirically so far about the baryonic

angular momentum distribution(Forster2006). In Casuso and Beckman(2015) we presented a

theoretical model in which the origin of angular momentum of galaxies begins after

recombination epoch, when matter was organized around bubbles or voids which acquired

rotation by gravitational tidal torque interaction. Then, a combination of the effects of the

gravitational collapse of gas in protogalaxies and the Coriolis force due to the rotation of the

voids could produce and maintain the rotation of galaxies. The aim of the present article is to
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throw light on the time evolution of the angular momentum of galaxies. It is organized as

follows: in Section 2 we present the observational data and numerical simulations used as

constraints on the theoretical model; in Section 3 we develop the theoretical model; in Section

4 we compare the predictions of the model with data; and in Section 5 we present our

conclusions.

2. Observational data and numerical predictions to compare

The obtaining of angular momentum data of galaxies at high redshift is actually an

observational and also theretical numerical issue of increasing interest. We use to compare

with our theoretical predictions in the present paper the lastest published results in both:

Burkert(2015) and Zavala(2015). Burkert(2015) give us the observational data of angular

momenta of massive star forming galaxies at the peak of the cosmic star formation epoch (z

between 0.8 and 2.6), by taking advantage of the recent growth in sample sizes and coverage

of the stellar mass-star formation rate plane with Hα kinematics integral field unit (IFU) data

sets.This pogress has started in the last few years, for instance with the

SINS/zC-SINF(Mancini2011),MASSIV(Epinat2012) and HiZELS(Swinbank2012) surveys

with SINFONI on the VLT, as well as with surveys with OSIRIS on the Keck telescope

(Glazebrook2013). They also have used the KMOS
3D

survey (Wisnioski 2015) with the

multiplexed near-infrared IFU spectrometer KMOS on the VLT(Sharples2012), which will

deliver IFU data for at least 600 star forming galaxies with z between 0.76 and 3. The

combined data of these surveys provide a 450 galaxy sample with a good coverage of

massive star forming galaxies in the z～0.8-2.6 redshift range. We also compare

our results with the last numerical simulation of Zavala et al. (2015). They explore the

co-evolution of the specific angular momentum of dark matter haloes and the cold baryons

that comprise the galaxies within. They study over two thousand central galaxies within the

reference cosmological hydrodynamical simulation of the Evolution and Assembly of

Galaxies and their Environments(EAGLE) project.They employ a methodology within which

the evolutionary history of a system is specified by the time-evolving properties of the

Lagrangian particles that define it at z=0.

3. The theoretical model

We begin by constructing the Lagrangian function of a typical galaxy like the Milky Way in
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the assumption of a galaxy rotating around one axis, and using the virial theorem to obtain the

gravitational potential energy for simplicity:

where EC is the kinetic energy of a rotating galaxy, EP its potential energy, IG its inertia

momentum, ωG its angular velocity, MG its total mass (baryonic and dark), and RG the radius

of the galaxy or protogalaxy. Due to

and that the angular momentum of galaxy is

and also due to the Coriolis force on a galaxy like a rotating object on the surface of a rotating

cosmic void (Casuso and Beckman 2015):

where Ω is the angular velocity of the cosmic void, φ the angular distance from the void

equator, and v the first time derivative of RG , we have from the equations (3) and (4)

where we have taken q = RG and q′ = v. Then the Lagrangian function of a typical galaxy

rotating around one axis and inside the surface of a rotating cosmic void is now:

Now, to be realistic, and due to the dynamical friction between the two voids interacting, the

rotation decays exponentially as is derived from the proportionality between the time deriva-

tive of Ω and Ω (see equation 7.18 of Binney and Tremaine 1987) we have exp(−λ

t), where Ω 0 is the Ω at t = 0 and λ =
BT

1 being TB ≫TU the time of breaking for the

rotation of a cosmic void and TU the age of the Universe. Then we can assume constant.

Now, following Emmy Noether theorem, we can make the linear

transformation , which assure the condition .Then

So
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and

assuring the Emmy Noether theorem condition that . Then we have by Emmy

Noether theorem that

where

Then we have

So

And by Emmy Noether theorem

Operating and simplifying equation (14) we have,

And equating (15) and (16) through (6) and (9), we have,

which using j = 2qq′Ωt taken from equation (5) leads to an expression for the especific

angular momentum of a galaxy on the surface of a cosmic void rotating:
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At the other hand, and by comparison, we use the usual expresion for the especific angular

momentum of a galaxy without Coriolis force:

with

being TN the time scale of decaying galactic angular velocity.

4. Probability distribution of spins of galactic dark matter halos

In order to make a cleaner test our model we must compare our predictions for the probability

distribution of spins P(j) of dark matter halos associated to galaxies, with those of

cosmological simulations. To do so we follow Casuso and Beckman (2015) and then we

derive, in a simple way but with clear physical meaning, a probability distribution of specific

angular momentum of dark halos as the product of three effects: one is the consecuence of the

pure Coriolis effect, and so proportional to sinθ where θ is the angle between the equator of

void (θ=0) and the rotation axis of the void (θ=π/2); the second is the factor cosθ due to the

assumption that the galaxies formed near the equator of the void have 2πRcos0 of length in

which to interact directly with galaxies at the surface of the other void in contact and after

rotation, while galaxies formed at other latitudes have values 2πRcosθ of length; and the third

is the factor associated with a Gaussian function due to the random nature assumed for the

relative position of interaction between two voids (equator of one void with equator of the

other one, or with the rotation axis, or interaction at any intermediate position angle θ). Then

our model predicts:

5. Comparison of the model predictions with observations

In Fig. 1 we can see the time evolution of the especific angular momentum of a typical galaxy

like the Milky Way, taken from equation (18) with Coriolis Force due to the rotation of the

cosmic void hosing the galaxy in its surface. We can compare upper curve (full line)
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corresponds to Ω =constant, and the lower curve (dotted line) is as in the

standard cosmology, with , t in years. We can see how both curves

maintain nearly constant the galactic spin. Long dashed line corresponds to equation (19)

without Coriolis force and time scale of decaying 109 yr. The short dashed line is the result

without Coriolis force and time scale of decaying galactic angular velocity 108 yr. In Fig. 2

we can see, at lower time scales, the effect of bump (increasing and then decreasing) for the

model without Coriolis force, effect which is again obtained by Zavala (2015) for their

numerical models (see Fig. 3). Zavala et al.(2015) uses the EAGLE simulation (see Schaye et

al. (2015)) which present a full hydrodynamical simulation and a full cosmological setting,

but does not include Coriolis effect associated with the rotation of cosmic voids. In fact the

EAGLE simulation focuses mainly on the feedback from supernova explosions which would,

in principle, play an important role in angular momentum conservation. But as Schaye et al.

(2015) point out the importance of physical impact of feedback on angular momentum

conservation is not well established. In Fig. 3 we compare our model predictions from eq. (18)

with both last numerical model of Zavala et al.(2015) and the observational data. Full line

represents the theoretical predictions of the analytical model presented in this paper. Short

dashed lines are the limits for the theoretical predictions of Zavala et al. (2015)

hydrodynamical numerical EAGLE simulation for disc-dominated galaxies. Long dashed

lines are the limits for the theoretical predictions of Zavala et al. (2015) hydrodynamical

numerical EAGLE simulation for bulge-dominated galaxies. Full triangles are the limits of

Burkert (2015) observational data for star forming galaxies at the peak of the cosmic star

formation epoch. Empty squares are the limits for the Romanowsky (2012) observational data

for spiral galaxies, including The Galaxy in the range. And empty triangles are the limits for

the Romanowsky (2012) observational data for early-type galaxies. We can see how our

model explain better the spiral galaxies angular momentum evolution, because the numerical

model predictions fall down at present epoch to almost go out of the observational range for

spiral galaxies of Romanowsky (2012). And taking into account the broad range of masses of

galaxies (from 108 M⊙ to 1012 M⊙) our model (equation 18) predicts a range of 1.3 dex above

and below the central value, which include all the data shown in Fig. 3 with the only

exception of the smallest values of the range of data from Romanowsky (2012) for early-type

galaxies.



170

6. Conclusions

The most usual results from numerical models are those of the dark matter component of

galaxies have angular momenta evolving with time (or with redshift, or with cosmological

expansion rate) increasing until some z value and thereafter nearly constant (until now), but

for the baryonic component (that observed) predict increasing until some z value like dark

matter and thereafter decrease until now. In our model, however, the baryonic component also

remains nearly constant (see Fig. 3) until now, due to the supply of angular momentum from

cosmic voids to individual galaxies through the Coriolis effect. In a preliminary work Wesson

(1981) shown how every object in the universe (planets, doble stars, star clusters, spiral

galaxies and superclusters) follow very nearly the same law for the especific angular

momentum vs. mass. We can interpret this observational result like a cosmic (global) non-

scale hierarchical supply of angular momentum from the big scales (voids) to the lower scales

(planets). And the mechanism more simple to do this is the inertial Coriolis force. Although

one needs clearly more fine observational data to distinguiss between our model (almost

constant angular momentum evolution for spiral galaxies) and the predictions of numerical

models, we consider in the present paper a very interesting analytical approach to simplify the

comprehension of physics underlying the origin and evolution of angular momentum of

galaxies in the Universe.

Figure Captions

Fig. 1.— Time evolution of the especific angular momentum of a typical galaxy such as the

Milky Way taken from equation (18) with Coriolis force due to the rotation of the cosmic

void which hosts the galaxy on its surface. The units for j are arbitrary. Full line corresponds

to Ω =constant, and dotted line is as in the standard cosmology, with

, t in years. Long dashed line corresponds to equation (19) without

Coriolis force and time scale of decaying: 10 9 yr. The short dashed line is the result without

Coriolis force and time scale oof decaying for galactic angular velocity: 108 yr.

Fig. 2.— The same as in Fig. 1 but in a shorter time scale.

Fig. 3.— Angular momentum of galaxies vs. cosmic time. The especific angular momentum j

is shown on a log scale and normalized to the mean value of the observational data for disc-

dominated galaxies. Full line represents the theoretical predictions of the analytical model

presented in this paper. Short dashed lines are the limits for the theoretical predictions of
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Zavala et al. (2015) hydrodynamical numerical EAGLE simulation for disc-dominated

galaxies. Long dashed lines are the limits for the theoretical predictions of Zavala et al. (2015)

hydrodynamical numerical EAGLE simulation for bulge-dominated galaxies. Full triangles

are the limits of Burkert (2015) observational data for star forming galaxies at the peak of the

cosmic star formation epoch. Empty squares are the limits for the Romanowsky (2012)

observational data for spiral galaxies, including The Galaxy in the range. And empty triangles

are the limits for the Romanowsky (2012) observational data for early-type galaxies.

Fig. 4.— Distribution of logaritmic specific angular momentum of dark halos, jP(j). The solid

curve shows our analytic result given by equation (21). The triangles show the Mon- tecarlo

simulations for both non-spherical collapse model and for the Press-Schechter model taken

form Chiueh et al. (2002).

Fig. 1.
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Fig. 2.
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Fig. 3.
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Fig. 4.
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