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Abstract

One of the authors of the present study has already investigated chiral phases in a system of

biaxial molecules based on the theory of biaxial liquid crystals, which we introduced in a

previous work. In the earlier investigation, we assumed that the direction of the orientational

ordering of the molecular long axis is perpendicular to the axis of the spiral structure. In this

article, our premise is that this is not perpendicular to the axis of the spiral structure. In this

assumption, the free energy of the system depends on the angle between the direction of the

orientational ordering of the long axis and the axis of the spiral. The equilibrium value of this

angle is determined based on the obtained free energy. As a result, we can show the presence

of the cholesteric phase, new chiral phases, and the possible appearance of a twist-bend

nematic phase.

Keywords: cholesteric phase, new chiral phases, twist-bend nematic phase

SCIREA Journal of Chemistry

http://www.scirea.org/journal/Chemistry

March 7, 2021

Volume 6, Issue 1, February 2021



22

1. Introduction

Since the discovery of liquid crystals, all researchers in liquid crystals were thinking that the

shape of their constituent molecules was rod-like one, despite their slightly biaxial shapes,

and that this biaxiality did not affect properties of liquid crystals as their constituent

molecules were rotating around their molecular long axis. The temperature dependence of

cholesteric pitch was thought firstly as the phenomenon in which the molecular biaxiality

results. It was thought that either the biaxiality of the molecular shape or the biaxial

orientational orderings in the assembly of these molecules was one of three causes of the

cholesteric pitch temperature dependence [1]. Although the temperature dependence of the

cholesteric pitch was theoretically shown in the assembly of molecules with a hard repulsive

core interacting via an attractive diversion force [2, 3], the effect of the molecular biaxiality

on the cholesteric pitch temperature dependence has only recently been theoretically made

clear [4].

Since the experimental discoveries of biaxial nematic [5 – 7] liquid crystals and the discotic

[8 – 10] liquid crystals, it has became to be necessary that these liquid crystals should be

theoretically discussed, basing on the assembly of biaxial molecules. In addition, the uniaxial

phases, biaxial phases, and discotic phases appear in the assembly of molecules having

rod-like shapes, and / or the anisotropy of the molecular interaction, plate-like shapes, and /

or the anisotropy of the molecular interaction, and disc-like shapes, and / or the anisotropy of

the molecular interaction, respectively. Thus, the relation between the shapes of the

molecules and / or the anisotropies of the molecular interactions and the phases appear in the

system of such molecules had to be clarified. Freiser [11] first proposed the model of the

biaxial molecule and was able to show that the biaxial phase appeared at lower temperatures

after the uniaxial phase. However, he could not explain the relationships described above.

After this, Straley [12] – by analogy with the intermolecular potential energy achieved as a

repulsive forces, with a hard core between rectangular parallelepipeds with length L, breadth

B, and depth D – proposed a molecular model where the intermolecular potential energy

resulted from an attractive force interacting between pairs of molecules. He was able to

describe the relationship between liquid crystal phases and the shapes of the molecule and /

or the anisotropies of the molecular interaction composing their phases. In particular, his

investigation showed the “self-dual” condition, B2 = LD, which gives the boundary between

the phases appearing in the assembly of rod-like molecules and those appearing in the
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assembly of disc-like molecules. However, this theory was inconsistent as it is based on the

intermolecular potential achieved through attractive forces between pairs of molecules, while

the intermolecular potential strength parameters is determined by analogy with the

intermolecular potential energy achieved through repulsive forces, with the hard core

between rectangular parallelepipeds.

One of the present authors proposed that the intermolecular potential energy was the induced

dipole-dipole interaction potential in the multipole expansion of the intermolecular potential

energy of electrically neutral molecules, with three mutually orthogonal mirror planes with

inversion symmetry [13]. This was similar to the molecular interaction potential energy

proposed by Straley, except that it is physically consistent. Based on this molecular model,

the relationship between the shapes of the molecule and / or the anisotropies of the molecular

interaction and the phases observed could be explained, just as Straley did. The boundary

condition between the phases appearing in the assembly of rod-like molecules and those

appearing in the assembly of disc-like molecules was consistent with one shown in the

investigation carried out by Sonnet et al. after the present authors’ investigation [14].

Figure 1. Phase diagram on the plane of temperature versus the form factor, εx. The temperature is

normalized as uTkT B
~

, and form factor εx is changed from zero to 1, with εy being kept zero. This

figure is based on figure 2 in Hosino, M. & Nakano, H. [13], although with a revised temperature scale.
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In this article, the phase diagram on the plane of the anisotropy parameter ε x versus

temperature, with ε y vanishing, is shown (Fig. 1). ε x, and ε y are the parameters

representing the anisotropy of, respectively, the x-direction and y-direction of molecule

toward its z-direction. They had already defined in our previous paper [13]. Here, only the

isotropic phase I and the nematic phase N appear in the case where εx = 0, while, only the

isotropic phase I and the disco-nematic phase DN appear in the case where εx = 1. Hereafter,

the isotropic, nematic, and the disco-nematic phases are abbreviated symbolically to I, N, and

DN phase, respectively.

In the case where 0 ＜ εx ＜ 1, we have the nematic phase N, two sorts of biaxial nematic

phases, and the disco-nematic phase DN, as the ordered phases displayed by the system. The

two biaxial nematic phases was been divided each other by Priest and Lubensky [15], who

named them the molecular-biaxial phase NMB and phase-biaxial phase NPB, respectively. It is

shown that the disco-nematic phase does not appear in the region where the value of εx is

smaller than 0.705 and that the nematic phase does not appear in the region where the value

of εx is larger than 0.705. That is, the value εx = 0.705 is a boundary which separates the

region where the phases for the assembly of biaxial, rod-like molecules appear (abbreviated

to ‘rod-like region’) from that where the phases for the assembly of biaxial, disc-like

molecules appear (abbreviated to ‘disc-like region’).

One of the present authors also carried out an investigation based on the assembly of

molecules with a hard-core of rectangular parallelepipeds having length L, breadth B, and

depth D, and the results, which is similar to those achieved by the assembly of molecules in a

pair-wise manner via dispersive force, was obtained [16]. Notably, we also confirmed the

presence of a “self-dual” condition, as given by Straley. That is, the value B / D = 2.237,

where L / D = 5.0, and 3.10 where L / D = 10.0 constitute the boundary values that divides

the rod-like region from the disc-like region. These values are consistent with the “self-dual”

condition given by Straley.

Subsequently, one of the present authors investigated the chiral phases in the assembly of

biaxial molecules. As a result, the intermolecular potential energy due to the dispersion force

between the induced dipole and the induced quadrupole of the electrically neutral molecules

was added to that caused by the dispersion force between the induced dipoles of the

electrically neutral molecules. To obtain the expression of the term that depends on the

dispersion force between the induced dipole and the induced quadrupole of the electrically
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neutral molecules, we assume that the molecules have three, mutually orthogonal mirror

planes, with inversion symmetry [4]. All cholesteric (abbreviated symbolically as Ch or N*),

chiral molecular-biaxial nematic (abbreviated symbolically as NMB*), chiral phase-biaxial

nematic (abbreviated symbolically as NPB*), and chiral discotic (abbreviated symbolically as

DCh or DN*) phases appear in the assembly of chiral biaxial molecules. In particular, we

showed that the temperature dependence of cholesteric pitch appeared through the

temperature dependence of biaxial ordering parameters.

In the previous work, we assumed that the direction of orientational ordering of the molecular

long axis (hereafter denoted as the unit vector 1n


) was perpendicular to the axis of the

helical structure (hereafter denoted as the unit vector hn


), around which the direction of

orientational ordering of the molecular long axis helically rotated. However, in the present

investigation, we assume that the angle between 1n


and hn


is some arbitrary value

between zero and π /2, in order to make clear the chiral phases in the biaxial molecule

assembly. Under this assumption, the obtained free energy of the system depends on the

value of this angle, and we determine the equilibrium value of this angle based on this free

energy.

In the present article, we restrict the investigation to the rod-like region, for ease of

calculation. Three chiral phases appear in this region. One of them is the ordinary cholesteric

phase, where the word “ordinary” means that this phase is uniaxial. The direction of 1n


rotates spirally along the direction perpendicular to 1n


in this phase. The second chiral

phase is a biaxial cholesteric phase BCh, which has the orientational ordering of molecular

planes around 1n


, and where the direction of 1n


rotates spirally along the direction of

orientational ordering of molecular plane normal (hereafter denoted as the unit vector 3n


).

The last one is a new chiral phase, where the direction of 3n


spirally rotates along the one

of 1n


. This phase is now named as 2nd chiral phase-biaxial nematic NPB2*. (Biaxial

cholesteric phase is similarly named as 1st chiral phase-biaxial nematic NPB1*.) We also show

the possibility of one more chiral phase, where the direction of 1n


is declined from the one

of hn


and spirally rotates along the one of hn


. This phase is likely to be one called as a
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twist-bend nematic(NTB) phase [17].

In this paper, the order variables representing the orientation of the biaxial molecule, the

molecular interaction expressed with these order variables, and the free energy of the system

obtained, using the symmetry breaking potential method [18,19] are shown in Section 2, and

the results obtained, basing on this system’s free energy are shown in Section 3. Finally, the

conclusions in present study is explained Section 4.

2. Order variables, molecular interaction, and system free energy

To investigate the intermolecular potential energy, we define the following tensor, in

accordance with Priest and Lubensky [15] , for the I-th molecule:

ijpq
j

q
i
p

ij
pq IaIaIQ 

3
1)()()(  (p, q = 1, 2, 3; i, j = x, y, z) (1)

where api(I) denotes the orthogonal component of the unit vector,  Ia p


, parallel to the

p-th principal axis of the I-th molecule, and δpq and δij are Kronecker’s delta symbols.

Table I. Direction cosines between the molecular and laboratory frames

x y z

ξ cosθcosφcosψ- sinφsinψ cosθsinφcosψ+ cosφsinψ -sinθcosψ

η -cosθcosφsinψ- sinφcosψ -cosθsinφsinψ+ cosφcosψ sinθsinψ

ζ sinθcosφ sinθsinφ cosθ

(ξ, η, ζ): coordinate axes in the molecular reference frame.

(x, y, z): coordinate axes in the laboratory reference frame.

Table II. Euler angles and order variables of the six possible configurations

Ωn θn φn ψn 1̂ 2̂ 3̂ 4̂
'
4̂

Ω1 0 0 0 1 0 0 1/2 1/2

Ω2 0 0 π /2 1 0 0 - 1/2 - 1/2



27

Ω3 π /2 0 0 - 1/2 1 3/2 0 1/4

Ω4 π /2 0 π /2 - 1/2 1 - 3/2 0 - 1/4

Ω5 π /2 π /2 0 - 1/2 - 1 3/2 0 1/4

Ω6 π /2 π /2 π /2 - 1/2 - 1 - 3/2 0 - 1/4

Table I shows the interrelation between the directions of the orthogonal coordinate system

(ξ, η, ζ) in the molecular frame relative to the orthogonal coordinate system (x, y, z) of

the laboratory frame, where the direction cosines between the two coordinate systems are

shown in terms of the Eulerian angles θI, φI, ψI. As shown in Table II, the orientation of

the molecules is restricted to six possible configurations, following Zwanzig [19], who, when

discussing the uniaxial nematic phase, used a three-directional model in which the molecule

orientations were restricted to three mutually orthogonal directions.

The thermal averages of the orthogonal components of the tensor Qpqij(I) are expressed as

shown in Eqs. (2) – (5) below:

0)(
0
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

, (5)

in terms of the orthogonal i-component npi of the unit vector, pn


, which indicates the

average direction of the p-th principal axis. Here, 1n


defines the average direction of the

long-axis of the molecule. The order parameters σ1, σ2, σ3, and σ4′are obtained as

thermal averages of the order variables, which are defined in terms of the three Eulerian

angles, as shown in Eqs. (6) – (9) below:
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2
1cos

2
3)(ˆ 2

1  II  , (6)

III  2cossin)(ˆ 2
2  , (7)

III  2cossin
2
3)(ˆ 2

3  , (8)

IIII  2cos2cos)cos1(
4
1)('ˆ 2

4  , (9)

and whose thermal averages (Eqs.(10) and (11)) constitute the order parameters of the

system.

0
)(ˆ Iss   , (s = 1, 2, 3), (10)

044 )('ˆ' I  (11)

In Eqs. (2) – (5), (10), and (11), the angular brackets with suffix zero denote that the average

value is taken at thermal equilibrium. For convenience, )(ˆ 4 I , which is defined later in Eq.

(20), is substituted for )('ˆ 4 I . The types of structures indicated with these order parameters

shall be shown later in Table III based on the free energy determined in a previous study [13].

Table III. Phases characterized by four order parameters and their symbols

Name of the phase σ1 σ2 σ3 σ4 Symbol

Isotropic 0 0 0 0 I

Nematic finite 0 0 0 N

Molecular biaxial nematic finite 0 finite 0 NMB

Phase-biaxial nematic (y)

/ Phase-biaxial nematic (x)

finite

/ finite (+)

finite

/ 0

finite

/ 0

finite

/ finite (-)

NPB

Discotic (y)

/ Discotic (z)

finite

/ finite (-)

finite

/ 0

finite

/ finite (-)

finite

/ 0

DN

The molecular plate’s normal vector is assumed to be oriented along the y-axis. By replacing the y-axis

with the z-axis, we can distinguish between the NPB and DN phases. In the DN case, both σ 2 and σ 4
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vanish, with σ1 and σ3 being finite and negative (shown as “finite (-)” in the last row). In contrast, for

NPB, all the order parameters are finite and positive. In the last row, the notation “Discotic (α)” means

that the normal to the molecular plane is along the α–axis. By replacing the y-axis with the x-axis, we

can also distinguish the NPB phase. In this case, σ1 is almost equal to 1, and σ4 is finite and negative,

while σ2 and

σ 3 are both zero. In the fifth row, the notation “Phase-biaxial nematic (β )” means that the molecular

plane’s normal vector is aligned along the β-axis.

In the multipole expansion of intermolecular potential, we can assume that the centers of

mass of each biaxial molecule randomly distribute through the whole system space, and that

molecules have three mutually orthogonal mirror planes with inversion symmetry. We may

then write both the induced dipole – dipole interaction potential, and the additional induced

dipole – quadrupole interaction potential, between biaxial molecules, as shown in Eq. (12).

      
 


zyxi zyxj

ijij
IJIJ JQIQrU

,, ,,
11111

           
 


zyxi zyxj

ijijijij
IJ JQIRJRIQrU

,, ,,
11112

      
 


zyxi zyxj

ijij
IJ JRIRrU

,, ,,
3

       
  


zyx zyx zyx

yIJIJ JQIQyrK
,, ,, ,,

11111
  




       
  


zyx zyx zyx

yIJIJ JRIQyrK
,, ,,

11
..

21
 






       
  


zyx zyx zyx

yIJIJ JQIRyrK
,, ,, ,,

1122
  




       
  


zyx zyx zyx

yIJIJ JRIRyrK
,, ,, ,,

3
  


 (12)

In Eq. (12), we have defined
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     IQIQIR ijijij
3322  (13)

and the potentials  IJrU1 ,  IJrU 2 ,  IJrU 3 ,  IJrK1 ,  IJrK21 ,  IJrK22 ,

and  IJrK3 are functions of the distance IJr between the pair of molecules. In Eq. (12),

we have assumed that the molecular long-axis ordering direction rotates helically along the

y-axis. It should also be noted that, in general,  IJrK21 ≠  IJrK22 .

Although both van der Meer and Vertogen [21], and Priest and Lubensky [15] had already

proposed interactions between biaxial molecules similar to that expressed in Eq. (12), their

models did not completely account for these interactions. The interaction potential proposed

by van der Meer and Vertogen included only the  I1̂ and )(ˆ3 I terms, from among

all the order variables  Ii̂ (i = 1, 2, 3, 4) [21], while the potential proposed by Priest and

Lubensky only included some of the terms expressed in Eq. (12) [15]. Consequently, their

theories were not appropriate for discussing biaxial liquid crystalline phases at all. In

previous work, we had also proposed a potential similar to that expressed in Eq. (12), which

included only some of the terms from the induced dipole – quadrupole interaction [22]. The

potential proposed there was also unsuited for a discussion of the chirality of biaxial liquid

crystalline phases. Here, the interaction potential between biaxial molecules proposed in this

work is complete, and thus appropriate for discussing the chirality of biaxial liquid crystal

phases.

To investigate the long-range orderings in a system of N biaxial molecules, we apply the

symmetry-breaking potential method, using  Iss ˆ as the potential for the orderings s =

1, 2, 3, and 4, respectively. We will exclude the detailed calculations needed to obtaining the

system’s free energy, as these have been shown in previous works [4,13,16], focusing simply

on the key aspects, and just show the free energy itself.

We must understand the following respect regarding to the unit vector pn


, which

indicates the direction of the p-th principal axis ordering. In an achiral system, pn


is an

unchanged vector at all points across the entire space of the system, while in a chiral structure
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(i.e., considered in this work as the axis of helical structure lies along the y-axis), it changes

depending on the point r


in the system. Thus, in a system which exhibits a chiral structure,

if we consider (0,1,0), (0,0,1), and (1,0,0) as  Ip rn 
(with p = 1, 2, 3), respectively, the

following vectors are as shown in Eqs. (14), (15), and (16):

      IJIJJ qyqyrn cossin,cos,sinsin1 


, (14)

      IJIJJ qyqyrn coscos,sin,sincos2 


, (15)

      IJIJJ qyqyrn sin,0,cos3 


, (16)

Figure 2. The angle Θ is that between the direction of the orientational ordering of molecular long axis,

which is shown as the ξ -axis in this Figure, and the axis of the helical structure of the direction of the

orientational ordering of the molecular long axis, which is along the y-axis. The angle φ (y) shows the

rotation of the ξ-axis about the y-axis.

where q is equal to 2π/p, with p defining the pitch of the chiral structure, and IJy as the y

component of the vector joining the centers of the I-th and J-th molecules, taken as the
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vectors  Jp rn 
. (Fig. 2) The present authors deduce molecular interaction expressed in Eq.

(12) on the assumption that the helical structure of the molecular long-axis ordering direction

lies along the y-axis. We can then adopt the assumption that IJqy is small, in which case,

we can expand  Jp rn 
as

          sin,0,0
2

0,0,sinsin,cos,0
2

1
IJ

IJJ
qyqyrn 

, (17)

          cos,0,0
2

0,0,coscos,sin,0
2

2
IJ

IJJ
qyqyrn 

, (18)

       0,0,1
2

)1,0,0(0,0,1
2

3
IJ

IJJ
qyqyrn 


. (19)

Although thermal averages of the orthogonal components of the tensors  IQ ij
pq ,

 IRij ,  JQ ij
pq , and  JRij are expressed as Eqs. (2) – (5), some caution is

necessary; the pn


term appearing in the expressions for  IQ ij
pq and  IRij is

 Ip rn 
in Eq. (12), while the term appearing in the expressions for  JQ ij

pq and

 JRij is  Jp rn 
in Eq. (12).

Secondly, we adopt the assumptions that the value of σ2 is zero, and that σ1 is some value

extremely close to 1, respectively, because we can think that their order parameters might be

such values near the NMB – NPB transition temperature in present case. The orientational

ordering of molecular planes around the molecular long axis appears at this transition point,

and this ordering parameter affects the behavior of the chiral phases. Then, under this

condition, we can make sufficiently clear the behavior of the chiral phase in the rod-like

region. Some value extremely close to 1 is used forσ 1, as a parameter in real numerical

calculation. Last of all, for ease of calculation, we use  I4̂ defined in Eq. (20), instead

of  I4̂  defined in Eq. (9).
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         IIIIIII  2cos2coscoscos
4
1ˆ21ˆ

3
1ˆ 42

144  . (20)

With these in mind, we finally obtain the free energy of system F({σ3,σ4}:q,Θ), as

        ,:,,,:, 4343043 qFFFqF   , (21)

where F0 is an arbitrary constant, and we have defined the terms Fσ(σ3,σ4) and

ΔF({σ3,σ4}:q,Θ) as

          4444
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2
3

43 21ln2121ln21
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 UUU , (22)
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4343 16sin,
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4
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43

2 16sin,  UUq 


. (23)

We have further defined the terms  43 ,K


and  43 ,U


as

       2
4

1
3

2
43

1
343

1
22

1
2143 1622,  KKKKK 


, (24)

      2
4

2
3

2
43

2
343

2
243 16222,  UUUU 


, (25)

which are given in terms of the integrals as shown in Eqs. (26) – (29):
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 drrUrU nn  20

3
4 

, (n = 1, 2, 3), (26)

 drrUrU nn  42

3
4 

, (n = 1, 2, 3), (27)

  drrKrK nn
20

9
4 

, (n = 1, 2, 3), (28)

  drrKrK nn
31

9
4 

. (n = 1, 2, 3). (29)

To determine the minimum free energy value of Eq. (21), with respect to the order parameters,

σs (s = 3, 4), the equilibrium configuration is defined, based on the requirement that

    0,,,, 434321 








ss

FF




 

. (s = 3, 4) (30)

Terms in Eq. (21) which are proportional to q and q2 are neglected when the order parameters

equilibrium values are determined using Eq. (30), given that we have considered q to be

small, and thus the terms which include them do not greatly influence the equilibrium values

of the order parameters. We can divide Eq. (30) into two equations, with respect as σ3 and

σ4, since the term including both σ3 and σ4 is not in Fσ. Therefore, the calculations

determining the minimum free energy value with respect to order parameters become easier.

The equilibrium value of q,Θ is determined using the equilibrium values of the order

parameters, based on the requirements

  0,:, 43 



q

qF 
, (31)
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and

 
0,:, 43 


 qF 

, (32)

which minimize the free energy of Eq. (21) with respect to q, and Θ , respectively. x in

Eqs. (31) and (32) denotes the equilibrium value of the quantity x. Then, we can obtain the

equilibrium value of q with Eq. (31) as

 
  2

4
2
3

2
43

2
4

1
3

2
43

16sin,
16sin,

2
1




UU
KKq




 


, (33)

and the following equation, with the equilibrium condition with respect to Θ with Eq. (32)

as:

     0,,cossin2 4343   UqKq


. (34)

This equation gives four solutions as (ⅰ ) q = 0, (ⅱ ) cos = 0, (ⅲ ) sin = 0, (ⅳ )

    0,, 4343   UqK


. In case (ⅰ), the solution is trivial, and is hereafter excluded

from the discussion, as the excessive energy, ΔF, is identical to zero, and it is thought that

no information is obtained based onΔ F. In case (ⅱ ), the orientational configuration is

similar to that for the cholesteric phase. In case (ⅲ ), the direction of the orientational

ordering of the molecular long axis, 1n

, is parallel to the axis of the helical structure, hn


,

and it is shown in the following that the direction of the orientational ordering of the

molecular plane normal 3n


, instead of 1n

, helically rotates along hn


, if the orientational

ordering of the molecular plane appears in this phase. Therefore, we can name this new chiral
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phase as a 2nd chiral phase-biaxial phase (abbreviated symbolically as NPB2*). Finally, in case

(ⅳ), the orientational configuration is similar to that for the twist-bend nematic(NTB) phase.

Based on two equations: Eq. (30),     0,, 4343   UqK


, we can determine the

equilibrium value of sin2Θ . It is necessary to verify whether this value exists in the region

from zero to 1. If the value of sin2Θ exists in this region, we can consider that NTB phase is

able to appear in the present system (Fig. 3).

(ii) Θ=π/2 (iv) 0<Θ<π/2 (iii) Θ= 0

Figure 3. Cases (ii), (iv), and (iii) shows cholesteric, twist-bend nematic, and 2nd chiral phase-biaxial

nematic phases, respectively, with 2nd chiral phase-biaxial nematic phase named for the first time in the

present article.

Using the equilibrium value of the excessive energy, ΔF, we can determine which phase

appears in the system at each temperature. In the following section, we obtain numerically

the free energy of the present system, showing the results obtained from these calculations.

3. Results based on a model for the molecular dipole and quadrupole

polarization

To begin the calculations, we need to investigate the relationship between the interaction

potentials, U1, U2, and U3, and those between the interaction potentials, K1, K21, K22, and K3,
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in Eq. (12). These have been previously investigated [4, 13] by assuming a simple model of

the molecule’s transition dipole and transition quadrupole moments and we can write the

ratios of
0
2U and

0
3U to

0
1U , of

2
2U and

2
3U to

2
1U , and those of

nK21 ,
nK22 ,

and
nK3 to

nK1 (n = 0,1), as shown in Eqs. (35) and (36):

n

n

U
U

1

2
,

2

1

3 n

n

U
U

, (n = 0, 2) (35)

n

n

K
K

1

21
, 3

1
1

22 n

n

K
K

, 3
1

1

3 n

n

K
K

(n = 0,1) (36)

where the parameter α represent the shape of the molecule defined as shown in Eq. (37):

 22

22

2 yx

yx








 . (37)

The results of our calculation depend on the reduced temperature and the reduced pitch terms,

defined as

0
1

~
U
TkT B , (38)

0
1

0
1

0

~
U
KRq

q
qq  . (39)

In the following, the reduced free energy defined in Eq. (40), is also used.

 20
1

0
1

~
UK
FF 

 . (40)
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As we have used the reduced temperature and the reduced pitch in our calculations up to now,

the free energy expressed in Eq. (21) only depends on the molecular shape through the shape

factor α, and the reduced pitch is determined

 
  2

4
2
3

2
43

2
4

1
3

2
43

16sin,
16sin,

2
1~




UU
KKq




 


. (41)

Numerical calculations were carried out for the anisotropy parameters εx = 0.2, 0.3, 0.4, 0.5,

0.6, and 0.7, subject to the condition that εy = 0.0. Each case corresponds to the value, α

= 0.0204, 0.0421, 0.0870, 0.1429, 0.2195, and 0.3245, respectively. Definitions of εx,

εy, and α have been given previously [13]. In these cases, the assumption regarding values

for σ2 and σ1 is adequate, especially near the NMB – NPB transition temperature, MPT~ . We

show the results in Fig. 4. The NMB – NPB transition, where the order parameter, σ4 changes

from zero to a positive value, occurs in each case by decreasing the temperature. The order

parameter, σ4 represents the rotating distribution of molecular planes around the molecular

long axis, with the direction of orientational ordering of the molecular plane normal

apparently denoted by the unit vector 3n

.
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Figure 4. Temperature versus anisotropy factor εx phase diagram. Temperature is reduced,

as shown in Eq. (38), and the changes to σ 4 and (sinΘ )2 at the transition temperature are shown here.

Symbols: (NTB) and (NPB2*) indicate that the orientational configurations corresponding to NTB and NPB2*

phases are the solutions of Eq. (34), in this region.
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In cases where εx = 0.2, 0.3, 0.4, and 0.5, the phase that appears in a system of molecules at

a temperature higher than MPT~ is a cholesteric phase. The normals of the molecular plane

distribute uniformly around the molecular long axis in this phase. While the phase that

appears at temperature lower than MPT~ is a cholesteric phase, as Θ is π/2, although σ4

is positive and finite. The orientational ordering of the molecular plane appears and the

direction of this orientational ordering of the molecular plane normal 3n


, is parallel to hn


,

in this phase. We name this phase as a biaxial cholesteric (abbreviated symbolically as BCh)

phase or 1st chiral phase-biaxial nematic phase (abbreviated symbolically as NPB1*).

Furthermore, the solutions of Eq. (34) corresponding to the orientational configurations

similar to those in the NTB phase and in NPB2* one exist at temperature lower than MPT~ , but

the phases having these orientational configurations do not appear, since the energies of these

phases are greater than that of the BCh phase.

In cases where εx = 0.6, or 0.7, the phase that appears at temperature higher than MPT~ is

also a Ch phase, which does not have the orientational ordering of the molecular plane,

although the NPB2* phase appears at temperature lower than MPT~ . However, the solution of

Eq. (34) corresponding to the orientational configuration in the NTB phase does not appear at

any temperature lower than MPT~ .

By additional calculation in the case where the value of εx exists between 0.5 and 0.6, it is

made clear that there are two types of helical structure in the phase where σ4 is finite. The

one is a helical structure of 1n


(hereafter this is called as a rod-like helix), and another one

is one of 3n


(hereafter this is called as a disc-like one). Furthermore, the transition from a

phase with rod-like helix to one with disc-like helix occurs as decreasing temperature,

although no order parameter indicates this transition point. (Fig. 1) This result suggests how

the difference between a ordinary cholesteric phase and a disco-cholesteric one occurs,

depending on the molecular shape and / or the anisotropy of molecular interaction. We shall

discuss this point in detail in the following section.
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Figure 5. Temperature dependence of the order parameter, σ 4, (sinΘ )2, the free energy of the biaxial

cholesteric phase, BChF~ , one of the NTB phase, NTBF~ , and one of the NPB2* phase, *2
~

PBN
F , in the case

where ε x = 0.5, as deduced in Eq. (40), are shown here. At a temperature above MPT~ , *2
~

PBN
F and

NTBF~ equal zero, and while, BChF~ does not equal zero, although its magnitude is too small to

show on this figure.
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Figure 6. Temperature dependence of the order parameter, σ4, the free energy of the biaxial cholesteric

phase, BChF~ , and one of the 2nd chiral phase-biaxial nematic phase, *2
~

PBN
F , for the case where εx =

0.6, and as deduced in Eq. (40), are shown here. At temperatures above the transition, *2
~

PBN
F is equal

to zero, and while BChF~ is not equal to zero, although it is too small to show in this figure.
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Figure 7. Temperature dependence of the order parameter, σ4, (sinΘ)2, the deduced pitch, q~ , defined in

Eq. (39), the free energy of the biaxial cholesteric phase, BChF~ , one of the 2nd chiral phase-biaxial

nematic phase, *2
~

PBN
F , and one of the twist-bend nematic phase, NTBF~ , for the case where εx = 0.54,

and as deduced in Eq. (40), are shown here. At higher temperatures than MPT~ , *2
~

PBN
F and NTBF~ are

equal to zero, and while the value of BChF~ is between 0 and -0.60 and is not shown in this figure.

q~ does not scarcely depend on temperature, although it changes at MPT~ and BCh-NPB2* transition

temperatures.
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The temperature dependence of the order parameter, σ4, (sinΘ)2, the free energy of the BCh

phase, BChF~ , one of the NTB phases, NTBF~ , and one of the NPB2* phase, *2

~
PBN

F are shown

in Figs 5 (for the case where εx = 0.5) and 6 (for the case where εx = 0.6). As decreasing

temperature in NPB phase, the order parameter, σ 4 increases slightly, and (sin Θ )2

decreases slightly. In the case where ε x = 0.5, at the temperature lower than MPT~ , both

*2

~
PBN

F and NTBF~ are certainly larger than BChF~ , and NTBF~ is also larger than *2

~
PBN

F .

In the case whereε x = 0.5, the value of q~ changes from -3.834 to -4.058 at MPT~ , as

decreasing temperature of the system, but q~ does not depend so much on temperature.

Temperature dependence of q~ at lower temperature than MPT~ is slightly larger than one at

higher temperature than MPT~ . In the case whereε x = 0.6, the value of q~ changes from

-1.480 to -3.459 at MPT~ , as decreasing temperature of the system, but q~ does not depend

so much on temperature. In the case whereεx = 0.54, the value of q~ firstly changes from

-2.618 to -2.808 at MPT~ , and secondly changes from -2.813 to -5.721 at the transition

temperature from BCh phase to NPB2* one, as decreasing temperature of the system, but q~

does not depend so much on temperature also in this case. (Fig. 7) It is thought that the

change of helix type causes the larger change of the value of q~ than one at MPT~ .

4. Conclusions

We have investigated the chiral phases in the system of chiral biaxial molecules located in the

rod-like region and have demonstrated that Ch, BCh, and NPB2* phases appear in this system.

We also concluded that the NTB phase might appear, as the solution to Eq. (34)

corresponding to the orientational configuration of the NTB phase exists at lower temperature

than MPT~ . However, the NTB phase does not appear as an equilibrium state, as the free

energy of this phase is larger than that of the other phases.
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In NPB phase, we are able to define two directors, 1n

, 3n


, as order parameterσ4 is finite.

Therefore, two types of helical structure appear in this phase. One is a rod-like helix and

another one is a disc-like one. In the case of rod-like region, as increasing temperature from

the temperature where a phase with a rod-like helix exists, the phase transition occurs at MPT~ ,

and σ4 becomes zero, therefore, orientational ordering of molecular plane around long axis

of molecule disappears. But, the structure of rod-like helix remains over MPT~ , although σ4

becomes zero. Thus, ordinary cholesteric phase appears. When a value of εx is larger than

0.55, BCh(NPB1*) phase does not appear and a direct transition from NPB2* phase to

Cholesteric one occurs, as increasing temperature. But, we can explain similarly the

appearance of cholesteric phase, as we can think that a rod-like helix exists at transition

temperature if we think that NPB2*－BCh(NPB1*) transition and BCh(NPB1*)－Ch one occur

simultaneously at transition temperature MPT~ .

We can assume similar mechanism mentioned above also in the case of disc-like region. In

this case, as increasing temperature from the temperature where a phase with a disc-like helix

exists, the phase transition occurs at MPT~ , andσ 4 becomes zero, therefore, orientational

ordering of molecular long axis around the normals of molecular plane disappears. However,

the structure of disc-like helix remains over MPT~ , although σ4 becomes zero. Thus, a chiral

disco-nematic(DN*) phase appears. After present investigation, it shall be necessary to study

chiral phases in the system of disc-like biaxial molecules. This will be comparatively simple

task, and we can expect to report these results soon.

If we introduce the smectic order parameter into present theory, it is able to make clear

whether the biaxial phase and the chiral phase with the smectic order exist or not. For

example, if NTB phase shown in present article have a smectic order and the normal of

smectic layer corresponds with the axis of helix structure of the direction of orientational

ordering of molecular long axis, this phase is apparently a smectic C* phase. Thus, we can

construct the theory of a smectic C* phase, introducing a smectic order parameter into

present theory. When we carry out such an investigation, it might be needed that the

mechanism stabilizing a smectic C phase is introduce into the theory. As an example of such

a mechanism, we can refer to the intermolecular potential energy proposed by van der Meer
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and Vertogen. This is the permanent dipole – induced dipole interaction potential and

explained the appearance of the smectic C phase [24].
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