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ABSTRACT

Epithelial cells comprise the surface layers that cover tissues and organs, and by definition,

exhibit an asymmetric surface domain and hence apical-basal polarity. The development of

early mammalian embryos, from a fertilized oocyte to a blastocyst and implanted embryo,

provides an excellent system to observe the formation and morphogenesis of several epithelia.

From our studies of early mouse embryonic development and morphogenesis, we propose

that there are at the least three distinct types of mechanisms for polarization of epithelial cells:

the classical tight junction and Par complexes; cell autonomous polarity established by

endocytosis; and the subtle polarization caused by the formation of an apical actin cap of

adjacent cells. Here, we describe the understanding of the genesis of four embryonic

epithelial structures, the trophectoderm, inner cell mass, primitive endoderm, and epiblast,

and the genes that are critical for their epithelial polarity and associated morphogenesis.

Keywords: blastocysts, early embryos, morphogenesis, cell sorting, embryonic stem cells,

epithelial polarity.

SCIREA Journal of Biology

http://www.scirea.org/journal/Biology

August 15, 2021

Volume 6, Issue 4, August 2021



62

Introduction

Early mammalian embryos, especially mouse blastocysts, provide a relatively simple,

excellent model to study developmental lineage differentiation and morphogenesis (Rossant,

2004; Lu et al., 2001; Stephenson et al., 2012; Zhang and Hiiragi, 2018). Cell proliferation

within a fertilized oocyte, and subsequent spontaneous assembly of cells in blastocysts and

pre-implanting embryos lead to the development of four simple epithelial structures: the

trophectoderm, the inner cell mass, and subsequent formation of the primitive endoderm and

epiblast (Figure 1). Particularly, the embryonic system allows us to observe the emergence

of the polarized epithelial structures from the aggregates of precursor cells (Eckert and

Fleming, 2008; Zhang and Hiiragi, 2018). Such analyses of the formation of cell polarity

may bring the most profound understanding of the simplest and essential features in cell

organization into epithelial structure.

Figure 1. Illustration of the progressive morphogenesis and structure formation in early mouse embryos.

One cell embryo (fertilized oocyte) divides to a multiple cell aggregate. At around 38 cell stage, the dividing embryo

undergoes compaction to form blastocoel cavity and inner cell mass (ICM), a stage known as the blastocysts. A polarized

trophectoderm layer is formed (*). The surface of ICM polarizes, signified by a layer of apical actin (**). Subsequently,

primitive endoderm differentiation occurs in cells randomly distributed in ICM. The primitive endoderm cells sort to the

surface, forming a polarized epithelium (***). A lumen is then developed, enveloped by a polarized ectoderm epithelium

(****).

Here, we discuss the studies supporting our proposal for three distinct types of mechanisms

for generating apical-basal polarity. Particularly, we describe the development of subtle

polarization by the formation of an apical actin cap on the surface of the inner cell mass, the

cell autonomous polarity established by Dab2-dependent directional endocytosis in the

primitive endoderm, and the epithelial polarity that occurs due to the classical tight junction

and Par complexes of the trophectoderm and epiblast. Our discussion is limited as several

excellent reviews on early embryogenesis and morphogenesis will provide more
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comprehensive reviews of the topics (Leung et al., 2016; Lim and Plachta, 2021; Martin et al.,

2021; Zhang and Hiiragi, 2018; Zhu et al., 2020). Several significant and informative recent

studies also provide additional advance beyond the scope of the current concise review (Kim

et al., 2021; Lim et al., 2020; Ryan et al., 2019; Shahbazi et al., 2016, 2017; Zenker et al.,

2018; Zhu et al., 2017).

Trophectoderm epithelium

The trophectoderm is the first epithelium established in the early mammalian

embryos/blastocysts. Extensive studies have mapped the development of the trophectoderm

lineage and the generation of a polarized epithelium (Stephenson et al., 2010). Prior to the

blastocyst stage, cells of the outer layer of the early mouse embryos (blastomeres)

differentiate into trophectoderm, which exhibits apical-basal polarity and envelops the apolar

cells of the inner cell mass (Stephenson et al., 2010). After cavitation occurs to form

blastocysts, the trophectoderm develops into a single layer of polarized epithelium

(Stephenson et al., 2010) (Figure 2), where F-actin, PKCzeta, and P-ERM are found at the

apical domain, and Na⁺/K⁺-ATPase, Jam-1, and FGFR2 segregate to the basal bilateral

domain (Salas-Vidal and Lomelí, 2004; Stephenson et al., 2010; Anani et al., 2014). E-

cadherin is critical for the formation of tight junction in the generation of polarity and

organization of the epithelium; however, trophectoderm apical-basal polarity and surface

positioning of the epithelial cells are independent of differentiation into the trophectoderm

and inner cell mass lineages (Stephenson et al., 2010).

Figure 2. Formation of trophectoderm. An E-cadherin dependent process of cell compaction leads to the progression of

the embryo to blastocyst stage. A polarized trophectoderm consisting of single cell layer jointed with tight junction is

formed (*).
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Prior to the formation of trophectoderm layer, the blastomere shows an outer/inner

configuration of cells within the embryonic cell aggregate, in which an actin cap forms on the

surface of the outer cell layer (Salas-Vidal and Lomelí, 2004; Stephenson et al., 2010; Anani

et al., 2014). Thus, the polarization of the trophectoderm may be initiated by asymmetric

distribution of apical actin cap (discussed further in a later section). However, the polarity of

the mature trophectoderm epithelium appears to fit the criteria of the classical tight junction

containing PKCzeta and ZO-1/ZO-2, components of the polarity complex. Several atypical

PKC (aPKC) isoforms appear to participate in the formation of trophectoderm polarity,

indicating possible redundancy of the PKC isoforms in early embryogenesis (Carracedo et al.,

2014). Disturbing the activity of the aPKC/PAR6 complex using siRNA to down-regulate

aPKClambda expression results in an absence of tight junctions. Although polarity of the

trophectoderm is not abolished at the earlier (8-cell) stage, it is severely defective at the 16-

cell stage (Dard et al., 2009). Thus, likely the actin cap formation with adherent junction

accounts for the polarity of the earlier stage, though tight junction is critical for the

maintenance of polarity of the more mature trophectoderm. The polarized surface cells

generally take on a trophectoderm cell fate, and the nonpolar cells eventually internalize to

become cells of the inner cell mass. Thus, polarity rather than cell position is important in

cell fate commitment (Anani et al., 2014). Although E-cadherin and the components of the

classical polarity complex are not essential for trophectoderm lineage differentiation

(Stephenson et al., 2010), the apical domain of the surface cells that contains the actin cap

serves as a cue that is required and sufficient to initiate the differentiation (Korotkevich et al.,

2017). Therefore, the initial polarization marked by the asymmetric distribution of actin at

the apical domain, due to inner/outer configuration, may be the initial cue in the initiation of

trophectoderm differentiation. However, polarization by tight junction plays a critical role in

maintaining surface positioning and epithelial organization of the trophectoderm.

Surface polarity of the cell of inner cell mass

Prior to differentiation, the cells of the inner cell mass (ICM) are pluripotent and resemble an

aggregation of embryonic stem (ES) cells. Studies of ES cell aggregates in culture revealed

that the outer layers of the ICM develop a subtle polarity, in which an actin cap involving

several adjacent cells can be found upon maturation of the ES cell aggregates (Yano et al.,

2017) (Figure 3). The presence and function of this polarity in the blastocysts are not

understood.
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Figure 3. Development of polarity on the surface of inner cell mass. Within the blastocyst covered by a layer of

trophectoderm cells, an aggregate of . A subtle polarity is formed on the surface by adjacent cells of the inner cell mass,

signified by apical actin cap spanning multiple adjacent cells (**). At this stage, no tight junction is established.

The significance of this subtle epithelial polarity was shown in studies of cell sorting between

highly adhesive wild type and less adhesive E-cadherin null ES cells. The highly adhesive

ES cells were able to sort and position on surface and envelop the E-cadherin deficient cells

(Tse et al., 2021). The sorting pattern was opposite that of predicted by the differential

adhesive affinity hypothesis (Steinberg, 2007). The force for the retention of the highly

adhesive cells on surface can be attributed to the ability of the cells to develop a subtle apical

polarity signified by an actin cap (Lim and Plachta, 2021; Yano et al., 2017). This type of

epithelial polarity differs apparently from the classic epithelial polarity that is formed by tight

junctions and involves Par6, PKC-alpha, and ZO-1/2. The subtle surface polarity may be

transient and the surface layer will then be disrupted and replaced by primitive endoderm that

subsequently develops.

The apical actin cap is also seen on the surface of blastomeres (Salas-Vidal and Lomelí, 2004;

Stephenson et al., 2010; Anani et al., 2014), and may be the initiation signal that triggers the

segregation of the outer trophectoderm from the cells of the inner cell mass lineages

(Korotkevich et al., 2017).

Cell sorting and the formation of primitive endoderm epithelium

Immediately prior to implantation at around E4.5, a primitive endoderm epithelial structure

develops that covers the epiblast (Figure 1). The initial differentiation of the primitive

endoderm lineage occurs randomly within the ICM (Rossant, 2004). Differentiation depends
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on the transcription factor GATA6 (Cai et al., 2008; Bessonnard et al., 2014), and the

Fgf/Ras/MAPK signaling pathway (Chazaud et al., 2006; Kang et al., 2013; Krawchuk et al.,

2013; Kuijk et al., 2012; Lanner and Rossant, 2010). Erk1/2 phosphorylation of GATA6

enables the activation of the GATA6 self-promoter in a positive feed forward mechanism

(Meng et al., 2018). Subsequently, the differentiated cells sort to the surface to form the

primitive endoderm layer (Chazaud and Yamanaka, 2016; Rula et al., 2007). The

progressive development of apical polarity has been well documented (Gerbe et al., 2008).

The embryonic phenotype of Dab2-deficient mice provides substantial clues to the

mechanism for the cell sorting and formation of the primitive endoderm (Yang et al., 2002;

2007; Moore et al., 2013). Primitive endoderm differentiation occurs in the absence of Dab2.

However, the differentiated cells fail to sort and form a surface layer; rather the primitive

endoderm cells instead intermingle with the epiblast cells. Dab2 is an endocytosis adaptor,

and links endocytic cargos to myosin VI, a motor that travels along actin bundles (Dance et

al., 2004; Morris et al., 2002). Dab2 mediates unique directional trafficking of endocytic

cargos that gives rise to apical polarity, and the Dab2-dependent polarity enables the sorting

and positioning of the primitive endoderm layer (Yang et al. 2007; Moore et al., 2013). Thus,

the initial polarity of the primitive endoderm cells is cell autonomous, and cell-cell adhesion

of multiple primitive endoderm cells is not required initially (Figure 4). This property would

allow the differentiated cells to reach surface gradually and independently, and form a

continuous outer layer subsequently. The cell-cell adhesion independent polarity of the

primitive may also allow the subsequent differentiation and migration of the cells to the

parietal endoderm to cover the blastocoel.

Figure 4. Formation of Apical polarity of primitive endoderm. At around E4.5, primitive endoderm differentiation

occurs, and Dab2 is a marker of primitive endoderm cells. The differentiated cells randomly distributed either superficially

or internally. Subsequently, the cells sort to surface by a Dab2-dependent mechanism to form a primitive endoderm

epithelial layer. The primitive endoderm epithelial cells are thought to position on surface by a cell autonomous mechanism

for intrinsic ability to establish polarity once reaching cell surface. The polarization of the primitive endoderm cells is

thought to rely on endocytosis by a Dab2-depedent directional endocytic trafficking of cargos along cytoskeletal network.
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As this type of apical polarity is considered to depend on Dab2-mediated directional

trafficking of endocytic cargos on actin filaments, it would be reasonable to assume that the

described polarity depends on the actin cytoskeleton. It has not been tested if the primitive

endoderm sorting to surface relies on the actin cytoskeleton.

At a later stage, the primitive endoderm matures into the visceral endoderm, and

differentiation involves the classical tight junction dependent apical basal polarity. It is

reported that ZO-1 and ZO-2 are required for extraembryonic endoderm in embryoid body

models (Phua et al., 2014). Although aPKC and PKCZ gene knockouts present a much later

embryonic lethality phenotype (Sengupta et al., 2011; Saiz et al., 2013), suggesting the

classical tight junction dependent polarity mechanism is not essential for the formation of

primitive endoderm epithelium and neither is required for the formation of a polarized

epithelial layer. Likely, these genes participate in the proper function and fine regulation of

the primitive endoderm epithelium, but their functions may be redundant and their absence

does not stop the formation of the basic epithelial polarity.

Integrin beta1 is essential for embryonic development at the primitive endoderm stages

(Fässler and Meyer,1995; Stephens et al., 1995). Further analyses of integrin beta1 null

embryos and embryoid bodies indicated that a polarized primitive endoderm layer forms

initially; however, the differentiated endoderm cell layer rounds up and detaches because the

cells fail to bind the basement membrane (Moore et al., 2014). Although integrin beta1

apparently is required for organization of the primitive endoderm, the cell adhesion molecule

is not essential for polarity of the primitive endoderm cells (Moore et al., 2014).

Thus, so far only Dab2 has been clearly shown to be required for primitive endoderm

polarization and organization (Yang et al. 2007; Moore et al., 2013). Another, similar-

functioning endocytosis adaptor, Arh, is also expressed in the early embryos, but is not

essential for primitive endoderm development (Maurer and Cooper, 2005; Tao et al., 2016).

The Dab2 protein is found in many epithelia including the kidney, lactating mammary gland,

ovary, and other tissues (Tao et al., 2017); however, Dab2 does not appear to be essential for

the formation of other epithelium in the embryos, since deletion of Dab2 in the embryo

proper but not in extraembryonic tissues using Sox2-Cre can bypass embryonic lethality

(Moore et al., 2013).
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Embryonic cavitation and the formation of the epiblast epithelium

In mouse embryos at around the E5.5 stage, the proamniotic cavity forms in the center of the

epiblast, and the epiblast cells organize into a layer of polarized epithelium (Figure 1).

Proamniotic cavitation has traditionally been thought to occur by apoptotic cell death

(Coucouvanis and Martin, 1995; 1999). However, recent observations indicate that the

cavity forms by the expansion of an adhesion rosette, rather than cell death (Bedzhov and

Zernicka-Goetz, 2014; Christodoulou et al., 2018). Expansion of the rosette creates a luminal

surface and thus establishes polarity of the epithelial cells. One idea is that the polarity is

created by ligation of integrins to the basement membrane on the basal side (Bedzhov and

Zernicka-Goetz, 2014).

Figure 5. Epithelial polarity of embryonic ectoderm and the formation of proamniotic lumen. At around E5.5 stage,

E-cadherin mediated cell–cell adhesion intensifies in the epiblast and stimulates increased Pten focal expression that initiates

the formation of a dominant rosette (multiple ZO-1 focal stainings and Pten positive). The epithelial tight junction and

apical surface are matured at the rosette, which expands into the proamniotic lumen composed of polarized epithelial cells.

Excessive cells located within the lumen may be removed by apoptosis. When Pten is absent, cell adherent junctions form at

random cell–cell contact sites, but no concentrated localization of tight junctions are initiated to establish a dominant rosette.

Thus, Pten is required for proamniotic cavitation of mouse embryos before gastrulation, by the mechanism of epiblast cell

polarization and rosette formation rather than apoptosis. Pten activity initiates apical polarity and subsequent expansion of

the rosette into the proamniotic lumen.

The analysis of Pten deficient embryos provides additional clues to the mechanism of

cavitation and the origin of epiblast epithelial polarity (Meng et al., 2017) (Figure 5).

Despite the presence of a well-developed visceral endoderm, a proamniotic lumen fails to

form in Pten knockout embryos, suggesting an essential role of Pten in the creation of the

lumen (Meng et al., 2017). Pten expression was found to concentrate at the site of a rosette

in the pre-cavitation embryos and embryoid bodies, suggesting the localization of Pten there

may be an initiating signal of polarity (Meng et al., 2017). PKCa and ZO-1 are also present

at the site of the lumen opening, indicating the formation of tight junction is required for the

initiation of epiblast lumen polarity (Christodoulou et al., 2018). The developing luminal
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epithelium exhibits strong ZO-1 marked tight junctions (Meng et al., 2017), which indicates

that the epiblast/ectoderm epithelial polarity is established via a classical tight junction

mechanism. Additionally, cortical actin also presents along with tight junction markers as

the rosette expands to form a lumen (Meng et al., 2017). The initiation of polarity from the

rosette structure may be accounted for by strong lateral E-cadherin bonding of the adjacent

cells. Consistently, it is reported that E-cadherin mediates the induction Pten expression (Lau

et al., 2011). Besides Pten, we are not aware of rigorous studies of embryos of any additional

gene deletions that exhibit a similar phenotype—a failure of cavitation and luminal formation

of the epiblast.

Consistently, the development of ectoderm fails in knockout mouse embryos lacking aPKC

or PKC zeta (Saiz et al., 2013; Sengupta et al., 2011), key components of the tight junction

polarity complex. In embryoid body models, the ectoderm does not organize when both ZO-

1 and ZO-2 are absent (Phua et al., 2014). Thus, establishment of ectoderm epithelium

requires the classical tight junction polarity complex.

Genes involved in embryonic epithelial polarity

The embryonic phenotypes of gene knockout mice may serve as an indication for the

involvement of a gene in the genesis of epithelial polarity (Table 1). Only a few genes

present an early lethality in knockout mice, and only a subset of these genes may act in

morphogenesis rather than cell survival, proliferation, and differentiation. Presumably, genes

affect morphogenesis and the assembly of cells, and act by affecting a few defined physical

mechanisms, by affecting such as cell-cell adhesion, cell-matrix adhesion, and cell polarity.

TABLE 1. Gene knockout affecting early mouse embryonic morphogenesis

Gene(s) Manipulation Phenotype(s) References

E-cadherin Gene Knockout E3.0: failed cell compaction to form blastocyst

cavity, failed trophectoderm formation

Larue et al., 1994;

Ohsugi et al., 1997;

Stephenson et al., 2010

Intigrin beta1 Gene Knockout E4.5-E5.5: primitive endoderm segregation from

epiblast

Moore et al., 2019

Dab2 Gene Knockout E5.0: extraembryonic endoderm disorganization Yang et al., 2002; 2007;
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Moore et al., 2013

Pten Gene Knockout E5.5 to E6.5: Fail to undergo proamniotic

cavitation

Meng et al., 2018

ZO-1 and ZO-2 Embryoid bodies of

knockout ES cells

ZO-1 and ZO-2 are required for extra-embryonic

endoderm integrity, primitive ectoderm survival

and normal cavitation in embryoid bodies.

Phua et al., 2014

ZO-2 Gene knockout E6.5, Fail to undergo proamniotic cavitation Xu et al., 2008

PI3KC3 Gene knockout Failed cavitation at E6.5-7.5 Zhou et al., 2011

Rho-Associated

Kinase

Inhibitors, RNAi Abnormal morphogenesis of ICM Laeno et al., 2013

Par3 Gene knockout Mid-gestation (E10.5-11.5) Hirose et al., 2006

Par6 Gene knockout Early (no detail)

CDC42 Gene knockout Failed cavitation at E6.5-7.5 Chen et al, 2000

aPKC Inhibitors, RNAi Deficient PrE maturation and organization Saiz et al., 2013

aPKCλ: Protein

kinase C-zeta

(PKCZ)

Gene knockout Very early embryonic lethality (no details) Sengupta et al., 2011

PARD6B siRNA trophectoderm formation in preimplantation Alarcon et al., 2010

Prkci Gene knockout,

embryoidbodies

cavitation Mah et al., 2016

Notes: The knockout of the following genes has later (later than E7.5 stage) embryonic phenotypes, including N-cadherin

(Radice et al., 1997), Arh (Tao et al., 2016), FAK (Furuta et al., 1995), collagens (Pöschl et al., 2004), laminins (Li et al.,

2003), Rac1 (Sugihara et al., 1998), aPKCζ (Leitges et al., 2001), Crumbs3 (Whiteman et al., 2014), PKCι (Forteza et al.,

2016).

The reasons for lack of an early embryonic phenotype may be redundant gene functions or the roles are not critical in

morphogenesis.

Here, we do not include knockout of genes that do not primarily impact morphogenesis, but rather affect lineage

differentiation and cell growth and survivals (such as GATA6, Grb2, Oct3/4, Nanog, etc.).

The trophectoderm is the first epithelial structure that forms in mammalian embryos, and

several of polarity genes are known to affect trophectoderm development, such as PARD6B

(Alarcon et al., 2010). At the end, trophectoderm polarity appears to be the classic type that

requires formation of tight junctions (Salas-Vidal and Lomelí, 2004; Stephenson et al., 2010;

Anani et al., 2014). The trophectoderm epithelium progressively recruits proteins to the tight

junction complexes, correlating with an increased loss in permeability (Wiley et al., 1990).
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Polarity complex proteins such as ZO-1 and ZO-2, PI3KC3, Rho-Associated Kinase, Par3;

Par6, CDC42, and aPKCλ, affect the epiblast (Phua et al., 2014; Zhou et al., 2011; Laeno et

al., 2013; Hirose et al., 2006; Chen et al, 2000; Saiz et al., 2013; Sengupta et al., 2011)

(Table 1), suggesting that tight junction polarity is critical for the development of the

ectoderm layer.

Pten is involved in the formation of epiblast epithelial structure; however, Pten deletion does

not affect the trophectoderm layer (Meng et al., 2018). It is possible that Pten plays a critical

role in the initiation of polarization in the interior of cell aggregates by providing the first cue,

but in trophectoderm differentiation the initiation cue is given by the inner/outer cells

configuration.

Dab2 is required for polarization and formation of the primitive endoderm. Surprisingly,

however, deletion of Dab2 within the inner cell mass using Sox2-cre does not at all affect the

development of embryo proper (Moore et al., 2013). Thus, it appears that Dab2-mediated

endocytosis to achieve cell polarization is only required for the development and organization

of primitive endoderm. The mechanism may be used again during development, but those

are non-essential, likely because of redundant functions from other endocytic adaptor

proteins or another redundant mechanism to achieve cell polarization.

Summary: Variations in types and mechanisms of epithelial polarity

Epithelial polarity is commonly recognized as a structural feature signified by the presence of

tight junctions (Johnson and McConnell, 2004; Chen and Zhang, 2013; Nance, 2014;

Campanale et al., 2017). Indeed, this classic type of polarity is probably present in the

majority of epithelial structures, particularly in mature adult tissues (Joberty et al., 2000).

Our investigation of polarity in embryonic epithelia recognizes additional distinct types, one

of which depends upon Dab2 and the other formed by an apical actin cap. Studies in

embryonic tissues have also allowed us to better understand the mechanisms responsible for

initiation and formation of polarized epithelial structures.

Thus, we propose that epithelial polarity at the least can be classified into three different

types, discussed below.

Epithelial polarity signified by the Par complex, which includes Par6, Par3, ZO-1/2, and

aPKC (Joberty et al., 2000; Chen and Zhang, 2013), requires the adhesion of multiple cells to
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form a layer. The epiblast/embryonic ectoderm epithelium is an example of this classic type

of polarity in early mammalian embryos. A second type requires directional endocytic

trafficking to establish an asymmetric distribution of cellular components, and is dependent

upon Dab2 (or additional endocytic adaptors). This polarity can be cell autonomous, and

may entail asymmetrically arranged actin or microtubule cytoskeletons. We also observe a

type of subtle polarity presented by an actin cap spanning the apical surfaces of multiple

adjacent cells (Tse et al., 2021). This third type of epithelial polarity often appears to first

emerge from E-cadherin-mediated cell-cell adhesion on a tissue surface, but the polarized

organization is then replaced by tight junction protein complex (Eckert and Fleming, 2008).

Furthermore, actual polarity in epithelial tissues may be a combination of two, or perhaps all

three, of the discussed mechanisms. The uncoupling of these mechanisms in the presentation

of epithelial polarity has been observed. For example, apical polarity is not eliminated when

tight junctions are eliminated (Vega-Salas et al., 1987). Also, polarity is still retained with

actin and microtubule cytoskeletons are disrupted (Salas et al., 1986). These studies indicate

various mechanisms and multiple types of epithelial polarity are involved in achieving the

asymmetric structure.

Epithelial polarity may be established initially with only minimal and essential features. The

early epithelium may be highly dynamic and changeable to allow rapid expansion and

development. However, many of the epithelial structures may undergo maturation with

increasingly complex features and higher stability, to reach a homeostatic state. Thus, in

more established epithelial structure, two or more mechanisms (an apical actin network,

directional endocytic transport, and/or formation of tight junctions) may cooperate to

facilitate epithelial polarity that is robust and exhibits redundant processes.

Likely, recognition of these mechanisms will allow us to approach understanding the

principles in cell assembly and technical ability for application in regenerative medicine.
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