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Abstract

Discrete element method is employed to numerically investigate the granular packing of

frictional cohesive particles with a Bimodal distribution. In the granular particle system, the

diameter of the small particle is 50μm and the diameter of the large particle is 100μm.

Different particle population ratios including 2:8, 4:6, 5:5, 4:6, and 8:2 are considered.

Different forces including viscoelastic force, frictional force, van der Waals force, and

gravitational force are incorporated in the mathematical modeling. The effect of the friction

between the colliding particles on the structure of the finally formed granular matter is studied.

The values of the sliding friction coefficient are 0, 0.1, 0.2, 0.3, 0.4, and 0.5 in different cases.
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It is found that the finally formed granular structure becomes looser as the sliding frictional

coefficient increases. The coordination number and packing density are used to quantify the

compactness of the granular structure, the characteristics of the radial distribution function

and the distribution of the forces in the granular matter are investigated.

Keyword: granular matter; Discrete element method; Bimodal distribution; sliding friction
coefficient;

1 Introduction

Granular matter is a special kind of matter in Nature. It shows the behaviors of dual phases

including solid phase and liquid phase. It is solid-like when being packed, but it is fluid-like

when flowing. The investigation of the behavior of granular matter composed of a large

amount of particles has interested a lot of scientists and engineers. In nature, there are many

granular matters such as sand, sugar, and salt. The unique character of granular matters is that

they can flow like fluids but pack like solids. The simulation of granular particles flow based

on the combination of the fluid-like and solid-like methods was carried out [1]. Granular

multiphase flow was numerically investigated and the stochastic nature of the granular matter

in the fluid flow was studied based on the assumption of the unilateral compressibility of the

granular material [2]. An impulse-based dynamic simulation was conducted to investigate the

granular flow in a hopper [3]. The crystallization phenomenon was founded in nearly jammed

configurations in granular flows simulated by Discrete Element Method [4].

Discrete–element-based method [4-8] is based on the idea that if we know the behavior of

each particle in a system, then we know the behavior of the whole system; the whole is the

sum of the parts. The gravity-driven granular flows in which there were many interacting

particles was experimentally investigated, and it was found that the interdiffusion migration

caused the interaction between nonuniform particles [9]. A state of polydirectional stability

was found in jammed granular matter and the stability was self-organized [10]. The ergodicity

of a tapped granular system whose behavior was affected by the tapping amplitude was

investigated and it was shown that there was nonergodicity under the condition of low tapping

amplitude [11]. The behavior of granular matter in the process of superheating was

experimentally studied and the phenomena such as spontaneous evaporation, coexistence and

metastability were observed [12]. The mechanism of the agglomeration of the granular



3

particles is the energy dissipation during the collision of the particles. The frictional force and

the viscoelastic force between the colliding particles causes the energy dissipation. The

normal viscoelastic force and the tangential frictional force are often modeled based on

Nonlinear Hertz theory [13] and Mindlin-Deresiewicz theory [14] respectively. Both the two

theories are rooted on the ides that there is a virtual spring between the two colliding particles.

As the collision occurs, the virtual spring is compressed in both the normal and the tangential

directions. The normal compression is the cause of the elastic force and the tangential

compression leads to the frictional force. According to Mindlin-Deresiewicz theory [14], a

maximum tangential compression displacement is fixed as the normal compression

deformation is known, and the friction is static friction if the tangential compression

displacement is less than or equal to the maximum tangential compression displacement, the

tangential compression displacement would stop increasing as soon as it reaches the

maximum value; this corresponds to sliding motion in which sliding frictional force plays a

role.

The difference between frictionless particles packing and frictional particles packing is that

the frictionless packing is isostatic and independent of the construction history, while the

frictional packing is hyperstatic and dependent on the construction history [15]. In granular

gas system there two granular temperatures including the translational granular temperature

representing the translational motion of the granular particles and the rotational granular

temperature representing the rotational motion of the granular particles [16]. The repose angel

of the cone of a conical heap formed by pouring a lot of granular particles from a hopper onto

a table was experimentally investigated, and it was shown that the repose angel depended on

the surface roughness of the granular particle [17]. Based on event-driven molecular dynamics

simulations, cooling process of the force-free granular gas was studied. In the simulation, the

restitution coefficient is dependent on the relative impacting velocity between colliding

particles [18]. The character of interstellar granular dust particles was manifested by the

vibrational spectroscopy [19]. The effect of particle anisotropy on the saturated granular

packing are investigated. It was found that an optimal level of anisotropy existed to make the

densest packing [20]. Computational modeling is proved to be an effective way to investigate

the dynamics of interstellar granular dust system because it can reveal many information that

can not be obtained by observations and experiments [21].

The packing of monosized fine frictional particles was studied based on Discrete Element

Method, and it was shown that the simulation can reveal the relationship between the packing
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structure and the force distribution inside the packed granular matter. The relationship was

difficult to be obtained by experiments due to the difficulty of experimentally measuring the

forces between the particles [22].

The above research works all focus on the granular packing of monosized particles packing.

We have investigated granular packing of the particles with Gaussian distribution, and we

studied the effect of the frictional coefficient on the packing structure [23]. The present paper

studies the granular packing of particles with Bimodal size distribution. The packing

geometric structure of the granular matter is quantified by porosity, coordination number, and

radial distribution function, and the distributions of the forces inside the granular matter

composed of Bimodal-sized particles are investigated.

2 Mathematical Model and Numerical Simulation

Newtonian mechanics is employed to describe the motion of each particle in the granular

system. The translational and rotational movements of the particle are described by Eq.(1) and

Eq.(2) respectively.

2

2 ( )n t vi
i i ij ij ij i

j

dm m
dt
r F F F F g     (1)

( )t ri
i i ij ij

j
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I
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ω

T T T   (2)

where im is the mass of the particle, ir the position of the particle, iω the angular

velocity of the particle, iI the inertial moment of the particle. iF the resultant force

exerting on the particle, and iT the torque acting on the particle. The subscripts ij indicates

acting on the particle i by particle j, where n
ijF and t

ijF are the normal contact force and the

tangential frictional force respectively, v
ijF the van der Waals force which actually always

exists no matter how apart two particles are, t
ijT the torque caused by the tangential contact

force, and r
ijT the torque caused by the rolling frictional force.

According to nonlinear Hertz theory [13], the normal contact force on particle i is calculated

as:
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n
ij n n ij ij ijE R E R  F v n n  (3)

where Y is Young’s modulus and  Poisson’s ratio, 2/ (1 )E Y   , R is the effective

radius calculated as / ( )i j i jR R R R R  in which iR and jR are the position vectors.

The direction of the vector iR is pointing to the contact point between particle i and

particle j from the center of particle i . Similarly the direction of the vector jR is

pointing to the contact point between particle i and particle j from the center of particle

j ,  is the damping coefficient, ijv is the velocity of particle i relative to particle j,

| |n i j ijR R R    is the deformation between the two particles, ijR is the distance

between the centers of particle i and the center of particle j , and ijn is the unit vector

pointing to the center of particle i from the center of particle j.

Based on Mindlin-Deresiewicz theory [14], the frictional force in the tangential is determined

as:

1.5

max

1 1
| |

t n
ij ij ij


tξF F t

  
    
   

(4)

where n
ijF is the absolute value of the normal contact force between the two colliding

particles : particle i and particle j ,  is the sliding friction coefficient between the two

colliding particles,
0

t

t

dtt tξ v  , it is the tangential displacement which is integrated from the

starting time of the contact between the two colliding time to the time when the tangential

displacement stops increasing. tv is the relative velocity in the tangential direction at the

contact point where particles i and particles jmeet. It is calculated as the following:

( ) ( )v v v t ω R ω Rt i j ij i i j j       (5)

where iω and jω are angular velocities of particles i and j respectively, ijt is the unit

vector in tangential direction. In the simulation, according to Mindlin-Deresiewicz theory [14],

the tangential displacement tξ is set as maxξ , if tξ is larger than maxξ which is the maximum

tangential displacement maxξ and is calculated as the following:
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2
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


max nξ ξ



(6)

As the particle size comes to micrometer scale, the van der Waals force comes to play a role

and it is determined as:

3 3

2 2 2 2

64 ( )
6 ( 2 2 ) ( 2 2 4 )

i j i jv a
ij

i j i j i j

R R h R RH
h R h R h h R h R h R R

 
  

     ijF n (7)

where aH is Hamaker constant which depends on the material of the particle, and h is the

distance between the fronts of particle i and particle j.

The above is the introduction of the forces involved in the simulation. Now the torque acting

on the particle needs to be investigated. There are two types of torques including the torque

caused by the tangential contact force and the torque caused by the rolling frictional force.

The torque caused by the tangential contact force is denoted as t
ijT which is calculated as:

t t
ij i ijT R F  (8)

The torque acting on particle i by particle j due to the rolling frictional force between the

two particles is the following:

r n
ij r i ij iRT F ω  (9)

where r is the coefficient of the rolling friction between the two particles. Verlet method

[23-25] is employed to solve eq. (1) and (2).

At the beginning stage of the simulation, 3375(15×15×15) particles are put in a rectangular

box. This arrangement is that there are 15 layers in each coordinate direction in the

three-dimensional Cartesian system. At the boundaries in the horizontal directions periodical

boundary condition is applied. The particle diameter value can only be two distinct values:

50μm or 100μm. Regarding the property of the granular particle, the sliding frictional

coefficient  takes six distinct values: 0( this corresponds to the situation of absolutely

smooth particle), 0.1, 0.2, 0.3, 0.4, and 0.5, the mass density is 2500 3/kg m ,Young’s modulus

Y is 7 210 /N m , Poisson’s ratio  is 0.3, rolling frictional coefficient r is 0.002, the

damping coefficient  is 52.0 10 s , and Hamaker constant aH is 206.5 10 J .
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3 Result and discussion

The finally formed granular matters composed of Bimodal particles are shown in Figure 1. In

this case the sliding frictional coefficient is 0.3. The configurations of the granular matters in

the cases of other sliding frictional coefficients are similar. So we do not plot them here.

Figure 1 Configurations of granular matters formed under the conditions of different particle

population ratios.

3.1 Coordination number and packing density

Coordination number and packing density are used to qualitatively measure the

small to large = 2:8 small to large = 4:6 small to large = 5:5

small to large = 6:4 small to large = 8:2
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compactness of the granular matter. In the granular matter, the coordination number of one

particle is the number of particles touching it. The average coordination number is the average

value of the coordination numbers of all particles. Packing density is fraction of the space

filled by the granular matter.

It is shown in Figure 2 and Figure 3 that the coordination number and the packing density all

decrease with the increase of the sliding frictional coefficient. This means that the increase of

the sliding frictional coefficient loosens the structure of the granular matter. This is same

under the condition of particles with Gaussian distribution [23].

Figure 2 The change of coordination number with sliding frictional coefficient

Fig 3

Figure 3 The change of packing density with sliding frictional coefficient
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3.2 Radial distribution function

To measure the probability of finding a granular particle at a place with a certain distance

from a reference point, Radial distribution function is commonly used. It is mathematically

defined as the following:

2

( )( )
4
dN rg r
r dr 

 (10)

where  is the number density of particles; the number of particles in unit space. ( )N r is

the particle number in a spherical space with radius r .

Figure 4 shows the radial distribution functions of the Bimodal granular particles in a granular

matter formed under the conditions of different particle population ratios (small to large). The

sliding frictional coefficient is 0.3. Since the radial distribution functions in the cases of other

sliding frictional coefficients are similar when plotted, we do not present them here. The

radius of the small particle is set as the unit of the distance r . The RDF functions have three

peak values at 2,3,4r  . The number 2 corresponds to the case of the contact between two

small particles. The number 3 corresponds to the case of the contact between a small

particle and a large particle.

The number 4 corresponds to the case of the contact between two large particles.

Figure 4 Radiation distribution functions of the packing structures with different particle

population ratio

3.3 Force distribution inside granular matter

For a spherical particle inside the granular matter, it is acted by contact force, can der Waals
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force, and gravitational force. The contact force is the resultant force of the normal

viscoelastic force and the tangential frictional force. Van der Waals force and gravitational

force are all long-range force. No matter how far apart the two particles are, van der Waals

force and gravitational force all exist. The difference between the two forces is that

gravitational force is always downward, while van der Waals force has no favorite direction; it

is randomly distributed inside the granular matter.

To calculate the distribution of the contact force and the van der Waals force inside the

granular matter, we first calculate the contact force and the van der Waals force acting on

every particle, and then the forces are scaled by the gravitational force acting on the particle,

as shown in Eq(11) and (12):

/c c
i ij i

j

z m F g (11)

/v v
i ij i

j
z m F g (12)

where c
iz is the ratio of the magnitude of the all contact forces acting on particle i to the

magnitude of the gravitational force acting on particle i , and v
iz is the ratio of the

magnitude of the all van der Waals forces acting on particle i to the magnitude of the

gravitational force acting on particle i . c
iz and v

iz are named nondimensionalized contact

force and nondimensionalized van der Waals force respectively here.

It can be seen from Figure 5 and Figure 6 that the probability distributions of the contact force

and the van der Waals force are different. The probability distribution of the contact force

shows exponential tail-like pattern, and the nondimensionalized contact force mainly focuses

between 0 and 100. As to the probability distribution of the van der Waals force, it shows

bell-shape-like pattern when the nondimensionalized van der Waals force is between 0 and 2,

and it has discrete peak values when the nondimensionalized van der Waals force is between 2

and 5. This is different from situation of Gaussian particles packing in which the probability

distribution of the van der Waals force inside granular matter shows bell-shape-like pattern

when the nondimensionalized van der Waals force is between 0 and 4, and decreases to zero

when it is larger than 4 [23].
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Figure 5 The distribution of contact force inside the granular matter

Figure 6 The distribution of van der waals force inside the granular matter
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Table 1. It can be seen in Table 1 that the smallest value of parameters a and the largest

value of parameters b occurs under the situation where the sliding frictional coefficient is 0.5

and the population ratio of small particle to large particle is 8:2.

For the probability distribution of the van der Waals force, the equation (14) fits the data when

the nondimensionalized van der Waals force is between 0 and 2. As mentioned before this is

different from the result of granular packing of particles with Gaussian size distribution [23]

where the probability decreases to zero when the value of the nondimensionalized van der

Waals force is larger than 2. In the current case of the bimodal particles packing, when the

nondimensionalized van der Waals force is larger than 2, the probability still has some

discrete peak values. The probability decreases to zeros when the nondimensionalized van der

Waals force is larger than 5.

2 2( ) /(2 )( ) vz c
vP z I e    (14)

where vz is the nondimensionalized van der Waals force, ( )vP z is the probability of the

nondimensionalized van der Waals force, I , c , and  are three constants. The different

values of I , c , and  under different conditions of particle population ratio and sliding

frictional coefficient are listed in Table 2. The largest value of  occurs under the condition

where the sliding frictional coefficient is 0 and the population ratio of small particle to large

particle is 8:2. The value of  determines the width of the bell-shape like curve described

by the equation (14), the larger is  , the wider range is the distribution. The physical

meaning of the parameter c is that the bell-shape like curve described by the equation (14) is

symmetric around vz c . Under the condition of the constant sliding frictional coefficient,

the value of c shows a general increasing tend as the population ratio of small particle to

large particle increases.

Table 1 Parameters in the formula (13) describing contact force distribution

Particle

Population ratio

(small particle

to large particle)
0  0.1  0.2  0.3  0.4  0.5 
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Table 2 Parameters in the formula (14) describing van der Waals force distribution

2:8 a=0.14

b=0.015

a=0.195

b=0.018

a=0.195

b=0.024

a=0.195

b=0.026

a=0.1

b=0.02

a=0.22

b=0.024

4:6 a=0.14

b=0.016

a=0.09

b=0.014

a=0.18

b=0.025

a=0.125

b=0.025

a=0.2

b=0.025

a=0.16

b=0.025

5:5 a=0.08

b=0.014

a=0.16

b=0.017

a=0.105

b=0.026

a=0.14

b=0.022

a=0.14

b=0.028

a=0.15

b=0.028

6:4 a=0.09

b=0.026

a=0.10

b=0.026

a=0.10

b=0.028

a=0.11

b=0.028

a=0.16

b=0.028

a=0.16

b=0.034

8:2 a=0.05

b=0.015

a=0.06

b=0.02

a=0.10

b=0.022

a=0.07

b=0.022

a=0.14

b=0.026

a=0.05

b=0.038

Particle

Population

ratio (small

particle to

large

particle)

0  0.1  0.2  0.3  0.4  0.5 

2:8 0.09I 

1c 

0.25 

0.08I 

1c 

0.25 

0.12I 

0.7c 

0.22 

0.13I 

0.75c 

0.22 

0.1I 

0.75c 

0.24 

0.14I 

0.75c 

0.22 

4:6 0.06I 

1c 

0.26 

0.055I 

1c 

0.28 

0.08I 

0.8c 

0.28 

0.07I 

0.8c 

0.28 

0.07I 

0.75c 

0.26 

0.08I 

0.75c 

0.26 
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4 Conclusions

Discrete element method is employed to study the agglomeration of fine particles with

Bimodal size distribution. The agglomerations under the conditions of different are

investigated. The dissipative forces including viscoelastic and frictional forces act as the cause

of the agglomeration. It is found that the packing structure becomes less compact as the

sliding frictional coefficient increases. Both coordination number and packing density are

used to describe the compactness. To describe the change of the particle number density with

the change of the distance from a reference particle, radial distribution functions are

calculated. This reveals the different types inter-particle contacts including the contact

between large particle, the contact between small particles, and the contact between large

particles and small particles inside the granular matters. The probability distribution of the

contact force exhibits tail-like character and the probability distribution of the van der Waals

force shows bell-shape-like character.

5:5 0.045I 

1.3c 

0.34 

0.06I 

1c 

0.32 

0.075I 

1c 

0.24 

0.05I 

0.75c 

0.24 

0.05I 

0.75c 

0.26 

0.06I 

0.75c 

0.26 

6:4 0.05I 

1.25c 

0.26 

0.052I 

1c 

0.25 

0.055I 

1.25c 

0.26 

0.05I 

1c 

0.26 

0.075I 

1c 

0.23 

0.06I 

0.8c 

0.22 

8:2 0.04I 

1.5c 

0.34 

0.055I 

1.5c 

0.30 

0.06I 

1.5c 

0.31 

0.08I 

1.5c 

0.30 

0.06I 

1.5c 

0.30 

0.05I 

1c 

0.3 
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