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Abstract  

In this article, the parameters required for an acoustic waveguide (concentrator) to produce 

acoustic cavitation effects in an ultrasonicator are derived. The derivation is based on the 

solutions to complex valued wave equations. Based on the derived equations, the length of the 

concentrator required to produce acoustic cavitation effects for various concentrator shapes can 

be found. The theoretical results are confirmed through experiment.  
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Introduction 

Ultrasonic dispersers use ultrasonic vibrations to break up particle agglomerates in a liquid in 

order to create a homogeneous dispersion of the particles. Under the effects of ultrasonic 

dispersion, the resultant suspensions display a dispersity increase by several orders of 

magnitude compared to traditional mechanical dispersion techniques. Often, ultrasonic 

dispersion effects can be enhanced with acoustic cavitation. In acoustic cavitation, the sound 

wave energy is greatly increased upon the pulsation and collapse of the cavitation bubble and 

can lead to changes in chemical and physical properties as well as improve chemical processes 

[1]. 

In recent years, scientific interest in ultrasonic dispersion has increased due to the development 

of nanotechnology [2, 3]. The effective use of nanoparticles in many technologies requires a 

uniform distribution of the particles in a liquid and thus dispersion is an essential part of the 

production process. Investigations into the dispersion of nanoparticle have demonstrated 

significant advantages of ultrasound compared to other technologies [4, 5, 6]. Nanoparticles 

well dispersed through acoustic cavitation have been found to improve the properties of liquids 

such as paints (see for example [7, 8]).  Acoustic cavitation can also be used to improve 

sonochemical processes [9].  

In order to create the acoustic cavitation effect, special devices called waveguides are used. The 

waveguides used for ultrasonic cavitation are called "concentrators" [10]. The concentrator is a 

device used to magnify the ultrasound intensity. There are two types of concentrators: focusing 

and rod type; which work according to different principles of action [11]. The latter is the focus 

of our studies. The rod concentrator is a rigid solid in which either its cross-section or density 

varies along its length. The variation in the cross-section or density causes change in the 

displacement amplitude of particles through momentum conservation (the principle of action of 

rod-type concentrators). In this study, variations in the cross-section of rod-type concentrators 

are explored with the density kept constant.  

Theoretical Methods 

In order to efficiently use the energy of the ultrasonic vibrations for the dispersion of 

nanopowders by acoustic cavitation, it is necessary to correctly calculate the geometric 

parameters of the concentrator. Theoretical studies have been carried out to determine the 

resonant shape of rod concentrators based on their wave equations through the use of functions 

of complex variables. 
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We introduce three assumptions to derive the wave equation for the concentrators: 

1. The front of the stress wave propagating along the axis of the concentrator is flat.  

2. The stresses produced in the concentrator are uniformly distributed across the cross-section. 

3. The longitudinal deformations in the concentrator are elastic. 

Implementation of the first two conditions leads to diffusion of the longitudinal oscillation 

mode in the concentrator such that the diameter of the concentrator D is less or equal to half of 

the wavelength  of the sound oscillation  

2
D


 .                                                   (1) 

The third condition excludes heating of the concentrator and is met at m02 where m is the 

value of the stresses in the concentrator and 02 is the elastic limit of the concentrator material. 

Under these assumptions, the displacement u of a cross section S of the concentrator in the axial 

direction х is associated with the relative elongation 




u

x
 (deformation) by 

du
u

x
dx




                                           (2) 

The elastic force F causing this displacement is proportional to the product of the relative 

elongation and the cross-sectional area as described by 

F ES
u

x
 




                                   (3) 

where Е is the Young's modulus (elasticity) of the concentrator’s material. 

The differential equation of motion of a unit volume of the concentrator can be written as 

follows: 



 





V

t S

F

x
 

1
                                    (4) 

where V is oscillatory velocity of a given cross section of the concentrator,  is the density of 

the concentrator, and t is time. 
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Thus, by using equation (3) together with (4), it is a simple task to obtain the basic differential 

equation describing the change of the elastic force in time in relation to the change in the 

oscillatory velocity along the concentrator 









F

t
ES

V

x
   .                                        (5) 

Taking into account the harmonic nature of oscillations, we can represent the expression for 

elastic force and oscillatory velocity as follows: 

F = Fm sin( t + F) 

V = Vm sin( t + V). 

Transforming into a complex form using [12]: 

F F e
j t




 

V V e
j t




, 

where V V em
j V




1

2


 is the effective complex oscillatory velocity and       

F F em
j F




1

2


 is the effective complex oscillatory force. 

In the complex form, the differential equations (4) and (5) become: 

 




V
j S

d F

dx

1


                                                    (6) 

 




F
ES

j

dV

dx
.                                                   (7) 

In general, the cross-sectional area of the concentrator depends on the coordinate х. Thus by 

differentiating expression (6) with respect to х we obtain: 

  






















d F

dx
j V

dS

dx
S
dV

dx

2

2
                                (8) 
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When we substitute the values V


 and 
dV

dx



 from (6) and (7) in the last expression, we obtain 

the wave equation of the concentrator in the complex form: 

d F

dx

S

S

d F

dx
k F

2

2

2
0

 





  ,                                          (9) 

where 




/Е

f2

c

f2

c
k   is the wave number,   S

dS

dx
S R,  2

is 

the cross-sectional area of the concentrator. 

Taking into account the above relations, equation (9) can be rewritten as follows:  

d F

dx

R

R

d F

dx
k F

2

2

22
0

 





                                       (10) 

where  R
dR

dx
. 

Analogously, we can obtain the wave equation of the concentrator in the complex form with 

respect to oscillatory velocity: 

0Vk
dx

Vd

R

R2

dx

Vd 2

2

2









                                     (11) 

Thus, the calculation of the concentrator is reduced to determining its resonant length by 

solving the equation (10) or (11) under the following boundary conditions: 

    0lV0V 


                                                   (12) 

  


V V0 0                                                               (13) 

where l is the length of the concentrator, V0 is the vibrational velocity applied by the transducer, 

and  
dx

Vd
'V




 . 

A concentrator calculated on the basis of (12) will be resonant and its joining to the 

electromechanical transducer will not change its operational mode (i.e. the condition (13) will 
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be satisfied). Thus, based on these considerations, the most efficient rod concentrator length to 

produce ultrasonic cavitation effects for the dispersion of nanoparticles can be calculated.  

 

Experimental Methods 

An experimental setup was created to test if the theoretically calculated concentrators would 

produce the desired ultrasonic cavitation effects. As a test substance, silica nanopowders 

(Tarkosil, type T05B06) with an average particle size of 53 nm was subjected to ultrasonic 

vibrations in water with a concentrator calculated according to our theoretical results. Copper 

nanoparticles were also dispersed in base motor oil. The silica nanoparticles were dispersed at a 

concentration of 0.1 wt% and the copper nanoparticles 0.5 wt%. 

An ultrasonic generator IL10-0.63 with a magnetostrictive transducer and interchangeable 

concentrator were used for the dispersion of the nanopowders as shown in Figure 1. The 

generator allows for adjustment of the frequency within a small range (± 5-10%) of the 

operating frequency. The operating frequency of the generator is 23000 Hz and power 630 

watts. 

The concentrator was constructed from the titanium alloy VTZ-1. The ultrasonication time was 

3 minutes unless otherwise stated. 

Results and discussion 

Based on the derived complex form wave equation (11), we calculate several resonant rod 

concentrator shapes. First, we identify the family of generatrices R(х), in which the wave 

equation has an analytical solution. To do this, we represent the complex oscillatory velocity in 

the form 
 

 
V

u x

R x




 and substitute it into equation (11). After reducing the equation into a 

canonical form, we obtain:  

d u

dx
k

R

R
u

2

2

2
0




 








                                            (14) 

The substitution applied to the boundary conditions (12) and (13) give the following conditions: 

      
 

u V R0 0 0 ,                                                     (15) 



45 

 

   
lRlVlu 



,                                            (16) 

 u V R
 

0 0 0 .                                               (17) 

Then, equation (14) under the condition that 

k
R

R
k const

2 2
0


                               (18) 

has solutions of the form 

 


xksinAu ,                                          (19) 

where A


 and   are integration constants and k  is the wave number which takes into 

account the dispersion of the phase velocity in the concentrator. 

The constants of integration are determined from the boundary conditions (15 - 17): 

A V R
 

sin 0 0 ,                                             (20) 

Ak V R
 

  cos 0 0 ,                                           (21) 

 n
R

R
karctan

0

0 









 ,                                   (22) 

where 

 A

V

k
R k R

k

k
V R










   


0

0
2

0

2
0 0 .             (23) 

Therefore, equation (19) takes the form: 

  


















0

0
00

R

Rk
arctanxksinRV

k

k
xu .             (24) 

In order to determine the resonant length of the concentrator, we use the boundary condition on 

the outlet of the concentrator 
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 A k l u R
 

  sin  1 1 ,                                           (25) 

     
 

k A k l u Rcos  1 1 .                                        (26) 

Here,  
1

1

R

R
klktan


   and taking into account that

0

0

R

R
ktan


 , we obtain 

2

1

1

0

0

1

1

0

0

k
R

R

R

R

R

R

R

R
k

lktan











 





  .                                            (27) 

Using equation (27), the resonant length of concentrators of various shapes can be determined. 

There are three types of functions that satisfy condition (18). They are characteristic in that 
R

R
 

is constant for them. The functions are: 

1) R(x) = a x + b; a straight line. If а  0, the concentrator is conical; if a = 0, the concentrator is 

cylindrical.  

2) R(x) = a e 
- x 

 + b e 
 x

 ; a catenary line. If b = 0, the concentrator is exponential; if а = b , the 

concentrator is a catenoid.  

3) R(x) = a cos ( x + o) ; trigonometric curves. The concentrator will have a dumbbell shape.  

For all the other functions that do not satisfy condition (18), the wave equation does not have an 

analytical solution.  

We now give an analysis of the solutions for the resonant length of conical concentrators as 

they are common concentrator shapes and easy to produce.  

For the concentrators whose radius varies linearly, R(x) = a x  + b, R(x) = a, and  k = k. Thus,  

 R x
R R

l
x R




1 0
0 . 

Using N
R

R


0

1

, the correlation between the input and output radius of the concentrator, the 

resonant length for a conical concentrator is calculated by 
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 
 

1
N1

klN

kl
kltan

2

2




 .                                        (28) 

In case of Ro= R1, a cylinder (where N = 1), the resonant length is equal to 

l
n

k



.                                                                    (29) 

where n = 1, 2, 3, … 

If N =  (i.e. for a pointed cone), we obtain from equation (28) 

tan k l = k l  .                                                             (30) 

The wave equations for the vibrational force and speed given in equations (10) and (11), 

respectively, are approximate but reflect well the physics of the phenomenon. In deriving these 

equation, the radial deformation of the concentrators was not taken into consideration. However, 

it is known that the longitudinal and radial deformations are related by the Poisson ratio . For 

metals, the value of  is in the range of 0.25 - 0.35. The first calculation for the change in the 

resonant length of a cylindrical rod (constant cross-section) in the presence of radial 

deformations was given by Rayleigh [13]. He calculated that by taking into account radial 

deformations, the new resonant length lr=l(1-Δ) where l is the resonant length in the absence or 

radial deformations and 

 








n
R

l

2 2
2

4



,                               (31) 

where   n = 1, 2, 3, ... In general, if the radius of a cylindrical concentrator is increased given a 

constant length, the value of the Rayleigh correction will increase. 

To verify the theoretical calculations, we tested a cylindrical rod concentrator fabricated with a 

length according to equation (29). Cylindrical concentrators possess the maximal surface area 

for a given length and maximal radius when compared to the exponential, conical and catenoid 

shapes. In [12], it was show that the cavitation region is formed not only in the longitudinal 

direction but also around the entire lateral surface. Thus, the greater the lateral surface area, the 

greater the region of cavitation. Although Merkulov [14,15] stated that the catenoidal ("horn") 

shape has the maximum gain of acoustic energy in the longitudinal direction, as the surface area 

is smaller than for cylindrical cylinders the effects of cavitation may be less.  
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For the VTZ-1 used for our concentrator, the elasticity modulus (Young's modulus) was Е = 

1.15×10
11

 Pa, density ρ = 4500 kg/m
3
, and Poisson ratio  = 0.3. The frequency of the 

ultrasonic oscillation of the generator was f = 23,000 ± 1,000 Hz. 

Thus, the wave number for our case was 

57.28
/Е

f2
k 




 

and so our cylindrical concentrator required a length of 

m11.0
k

n
l 


. 

For our calculated cylindrical concentrator with n = 1 and a ratio R/l ≈ 0.2, the correction to the 

resonant length given by Rayleigh is Δ ≈ 3×10
-3

 which insignificantly changes the resonant 

length. The fabricated cylindrical concentrator is shown in Figure 2. 

The experiments performed with the fabricated cylindrical concentrator were observed to 

produce cavitation bubbles when subjected to ultrasonic frequencies about 23000 Hz. If the 

frequency was changed by about ±500 Hz (≈3 %), cavitation bubbles ceased to be formed. The 

maximum production of cavitation bubbles were observed at 23277 Hz for the silica 

nanoparticles in water and at 22900 Hz for the copper nanoparticles in base motor oil. Thus, the 

experimental results support the validity of the derived equations. 

UV spectra  (Lumos SF-56) of the solutions produced were measured to determine how well the 

nanoparticles were dispersed in the media. Spectra were measured for silica nanopowders 

mixed into water by stirring, dispersed by ultrasonication at a frequency above the cavitation 

regime, and dispersed in the cavitation regime 7 days after dispersion. The results are shown in 

Figure 3. It was observed that nearly 100 % transmittance was obtained for the hand-mixed 

samples. The samples ultrasonicated without cavitation had less transmittance and the samples 

ultrasonicated with cavitation had the lowest transmittance. Thus, the reduced light 

transmittance through the sample prepared by acoustic cavitation compared to the other 

samples showed a higher degree of dispersion of the nanoparticles within the sample. Indeed, if 

observed visually, only the samples produced with acoustic cavitation had no nanoparticles 

sediment out of suspension. These samples were also found to be stable for several months [16]. 

Similar results were obtained for copper nanoparticles dispersed in base motor oil. Figure 4 

shows copper nanoparticles dispersed in base motor oil by hand, with 1 min of acoustic 
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cavitation, and 3 min of acoustic cavitation. Increasing times of acoustic cavitation reduced the 

suspension light transmittance showing a higher degree of particle dispersion. Particle size 

analysis of suspensions showed that after being mixed by acoustic cavitation, the particles were 

deagglomerrated as the average size closely matched the average particle size as measured 

through TEM as shown in Figure 5 for silica nanoparticles dispersed in water. Thus, 

suspensions produced through acoustic cavitation had much higher stability and dispersion 

compared to the other samples and support the validity of the derived equations.  

 

Conclusions  

Equations for resonant length of rod-type ultrasonic concentrators were developed through 

theoretical analyses of complex-variable wave equations. The analysis was simplified due to 

the exclusion of the time variable t from the sinusoidal function. The introduction of the 

assumption that longitudinal deformations are elastic in the concentrator lead to a lack of active 

losses and so wave attenuation would not be observed. The theoretical conclusions were tested 

by fabricating a cylindrical concentrator based on the theoretical calculations and using it to 

disperse silica nanoparticles in water and copper nanoparticles in base motor oil. The 

constructed concentrator, when subjected to the resonant frequency it was designed for, 

successfully demonstrated acoustic cavitation while acoustic cavitation did not occur if the 

frequency was changed by 3%. Thus, the experimental results supported the validity of the 

developed equations. The derived resonant length equations should prove useful to the 

enhancement of various ultrasonic processes. 
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Figures 

 

Figure 1. Experimental setup for the ultrasonication of silica nanopowders in water. 

 

Figure 2. Experimental setup for the ultrasonication of silica nanopowders in water. 

 

Figure 3. UV-vis spectra of silica nanoparticles dispersed in water by a) hand mixing, b) 

ultrasonication outside the acoustic cavitation regime, and c) ultrasonication within the acoustic 

cavitation regime. 
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Figure 4. UV-vis spectra of copper nanoparticles dispersed in base motor oil by a) hand mixing, b) 

ultrasonication within the acoustic cavitation regime for 1 min, and c) ultrasonication within the 

acoustic cavitation regime for 3 min. 

 

Figure 5. Particle size analysis of silica nanoparticles dispersed in water by a) hand mixing and b) 

ultrasonication within the acoustic cavitation regime. 
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