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Abstract

Human hair colorization, concerning given model hair image without changing neither

hairstyle nor hair texture, is a challenging task. The principle problem making this task

complicated is the difference in the texture and the illumination between a user and model

images. The natural human hair consists of a mix of hair swatches. Each swatch has its

chromaticity distribution, which, generally, is non-Gaussian. These swatches can be

determined as color clusters in the hair image. In this case, the problem can be solved by

matching between the user and the model hair swatches or color clusters. After this matching,

the color transfer between the relevant model and user swatches is applied. Besides, the

model’s hair should be compressed to a reasonable size to provide simultaneous

representation for a variety of hair colors. The model’s hair colors are taken from the images

of hair color packs usually available in decorative cosmetic stores. These images, however,

are taken in standard illumination condition, so appropriate relighting should be applied to

provide photorealistic user’s image. Experimental results with 530 different color models, and

more than 20,000 users show that the proposed technique achieves high photorealistic
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perception and a reasonable compression ratio.

Keywords: Color measurement, Image color analysis, Chromaticity distribution, Probability

distributions matching

1. Introduction

The automatic human hair colorization task is motivated by the hair color marketing incentive.

Hair color products cannot be easily applied to the user’s hair, and for a user, it is difficult to

decide which of the model hair colors that are shown up in the hair color pack, fits best to the

user’s hair. One of the possible techniques alleviating the user choice is hair color modeling

available via the user photo uploading to the WEB sites [16], [17], or via automatic kiosk, e.g.

[16]. Precise color transferring from the model to the user hair photo is a challenging problem

due to the different hairstyles, hair textures, and illumination sources. Besides, the model’s

hair color description length is limited because it should be transferred online to the client site.

As well, hair colorization should be applied fully automatically online, so Photoshop-based

interactive methods like [18], which are widely used for advertising, cannot be used in

real-life marketing.

Automatic hair recoloring technique supposes as an input a fuzzy user hair mask � ��� � ��h ,

where ��� are the spatial coordinates of the user image and hair mask � � � outside the

hair area and � � h inside the hair area. Fuzziness � 䪘 � 䪘 h is a powerful tool, allows

overcoming uncertainness around hair roots, separate thin swatches, and margins. This mask

can be painted either manually [18] or using user-assisted scribbles [7] or filly automatically

[15], [9]. An example of a fully automatically created fuzzy hair mask [9], superimposed in

the user photo, is displayed in Figure 1b.
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(a) (b) (c) (d)

Figure 1. The original user’s photo (a), fuzzy user hair mask (b), L’Oreal Paris Excellence 654 model photo (c), along

with a superimposed manually painted hair mask, the user’s photo after hair recoloring (d).

The existing solutions for image recoloring could be subdivided into user-assisted recoloring

techniques and automatic recoloring techniques. User-assisted methods suppose an interactive

color component transfer using the Photoshop hair colorization tool [18] in HSV color space,

or using the color transfer brush tool [10]. The latter method is based on the local Gaussian

distribution transfer (GDF) in the decorrelated color space ��t independently for each color

component. Initially, this method was suggested by E. Reinhard et al. [12] in 2001. In the user

image ��, the transferred color at the pixel �� is calculated as:

� �� � �� � �� ����� ��, (1)

where ��� �� are the averages of the underlying user’s and model’s Gaussian distribution (cf.

images Figure 1a and 1c). The values ��� �� are the standard deviations of the user and

model Gaussian distributions.

Typically, there are three challenging problems in automatic recoloring for all kinds of natural

images [4]: natural color image segmentation, image region mapping, and color transferring.

The segmentation is applied to separate the whole picture into color support areas or

superpixels [8] for further matching between the user’s and the model’s segments. Pyramidal

edge merging [2] or Expectation-Maximization (EM) techniques [13], [14], accomplished with

K-Mean [14] or Mean-Shift [2] clustering are power tools for the color image segmentation.

Deep convolutional network SegNet [1], based on the VGG-16 encoder-decoder, can also be

used for hair image segmentation.

The superpixels of the model’s hair create a set of classes. Every user’s hair superpixel has a

chromaticity distribution. We can define a fitness function between this distribution and the

model’s superpixel, using, e.g., the Hotelling criterion. Thus, after an appropriate

normalization, we have a fuzzy region mapping between the user’s and the model’s hair.
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Besides the Hotelling test, a Gaussian Mixture Model (GMM) along with gentle boosting [13],

[14] is another technique for this mapping. Eventually, GDF is used for local color transfer in

��t [14], ��� or ��h [2] color spaces. These techniques provide photorealistic results for

many natural images.

However, human hair images have five differences from typical natural scenes. First, the color

distribution is not always Gaussian; second, ��t chrominance components have a high

correlation ratio for human color. Some examples, given in table 1, show that the correlation

ratio varies from 0.53 to 0.98 in a dataset of 530 human hair samples. That causes the GDF to

produce false colors. Third, hair segments (swatches) are not separated one from another but

smoothly transfer to each other. Besides, to provide a photo-realistic appearance, all hair

swatches, mapped in the model, have to be reproduced in the user hair image. Thus, instead of

the classification task, the matching between the superpixels of the user’s and the model’s

images becomes a variation of the assignment problem [6].

Fourth, the entire model image is inaccessible for the end-user, but only a limited amount of

color distribution parameters transferred online. Fifth, since only the hair is colorized

independently from the rest parts of the facial image, generally speaking, the color could be

unnatural because of the different illumination between the model and user images. So, the

user image should be relighted by an appropriate white balance corrector to provide the

photorealistic appearance.

This paper addresses the above issues, and it is proposed a method to transfer chrominance

distribution (possible non-Gaussian) from the model to the user hair image. The proposed

method is based on color lookup table (CLUT) usage in the different color spaces [2] along

with the local chromaticity distribution transfer per each swatch with respect to GMM between

the hair swatches. The process is accomplished with the white patch-based white rebalance [11]

between the user’s and the model’s hairs.



24

Table 1. ��㤵 Chrominance correlation

Hair Color Number Maximal l correlation ratio

200 0.6853

210 0.8368

300 0.8077

316 0.7145

400 0.8191

415 0.8852

426 0.6172

500 0.8849

565 0.7565

600 0.8271

643 0.8501

645 0.8024

656 0.5288

700 0.8752

713 0.9754

724 0.7955

810 0.9582

832 0.9762

834 0.7288

930 0.9711

Average 0.8148
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2. Automatic Hair Color Transfer

Hair color transferring is processed in ����� color space, where � denotes the intensity

component of ��� ��� color space and ��� �� are the chromaticity components of the

�������� color space. The choosing of the �������� color space is motivated by its

apparent reciprocal transformability into ��� ��� color space [17]. Therefore, this color

space also admits a smooth component-wise transfer for a specific swatch. The chromaticity is

transformed into the hue and the saturation components as � � �� � � �� � and � �

����� �� �� . Figure 2 shows the graphic illustration of the ��� color space. Hair brightness

� is the most crucial component, affecting hair appearance. However, its typical distribution

(see Figure 3d) is not similar to the Gaussian distribution, so the CLUT technique [7], [18], is

adopted for component � transfer and is denoted as YLUT. Let us denote ��, � = 1...256 the

cumulative histogram of the model and �� is the user’s cumulative histogram, � =1…256 (see

Figure 3). Then, the direct YLUT is �� � � ������ �� � �� and the reverse is �� � �

������ �� � �� . Since � is a continuous variable and YLUT is a digital sampled value, the

final transformed intensity is defined as follows:

�� � � �� � ��� � � h�� �� � ��� � �, (2)

where � � � � � , symbol � denotes the ceiling and � the flooring functions. If the

dynamic range of the user’s photo is significantly low than the model’s one, some bins are

missing in the transformed histogram (see Figure 3). In this case, the Parzen-window

estimator allows restoring the missed bins.

(a) (b)

Figure 2. �Ր⾬ Color space (a) and hair swatch cluster (petal) in �� �� space (b).
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2.1. Chromaticity Distribution Modeling

The ��� color space is modeled by the color cone (see Figure 2a). The cone vertex

corresponds to the darkest hair swatch that is: �� � �� , where �� is the upper value below

of which the color cannot be distinct by a customer; typically, �� � t for 256 bins transform.

These swatches are less sensitive to the false-color injection and can be described by the

correlated 2D Gaussian in the ���� color space. The user’s ���� distribution is transformed

into the model distribution using the 2D extension of Gaussian distribution function (GDF):

�t� � ������� � ������� � ��� (3)

�t� � ������� � ������� � ���. (4)

In (3) and (4), ��� and ��� denotes the model averages. The rotation angle of the

two-dimensional GDF is calculated as � � ����� ������ ������� � . Let us denote ��
the rotation angle for the model data and �� for the user data. The distribution parameters

�� and �� are the standard deviations and � is the Pearson correlation ratio between the

chrominance components �� and ��. Values �� and �� are calculated as follows:

�� � �� �� ����� � �� �� ����� ��� ��� (5)

�� � �� �� ����� � �� �� ����� ��� ���, (6)

where � and � are the user chromaticity for each pixel, �� and �� are the user averages, ��� ,

��� , ���and ��� are the eigenvalues for user and model ���� distribution. These eigenvalues

and are defined as follows:

���� � �������� �������
�� ������ � �. (7)

The transformed user’s chromaticity ��� �� has to be clipped into the ����
� � ����� �

����
� � ����� interval, consisting of the minimal and maximal values of the �� and ��

components of the model’s image, to prevent false colors appearance. Besides, to provide the

correct color consistency, let us demand that transformed distribution should be spread over

the 95% -quantile of the model distribution. The following limitation on the Mahalanobis

distance is applied to supply this requirement [9].

��������������� h���� ����� h�h , (8)



27

27

where �� � ������ ��� , �� � ������ ��� and �� is the correlation ratio between the

chrominance �� and �� on the model data.

(a) (b) (c)

(d) (e) (f)

Figure 3. The model photo (a) (L’Oreal Paris Excellence 800) and its Y-histogram (b); The User photo (c)

and its Y-histogram (d), YLUT function (e) and transformed Y-channel (��): user histogram (blue)

superimposed with model histogram (red) (f).

To avoid heavy tails in the transformed distribution, the pixels, having (�� , �� ) values that

violate inequality (8) are replaced with the model’s average chromaticity ������� .

2.2. Hair Color Descriptor

The obtained � histogram is split into no more than 20 clusters or slices (see Figure 2b) in

such a way that each slice contains at least 5% of the distribution volume and has at least five

bins. Since the human visual system (HVS) is susceptible to the blond colors, the brightest

slice is recursively split into two slices if it contains more than 100 bins and more than 2.5%

of the total distribution volume. Furthermore, the neighbor clusters having similar ����

distributions by Hotelling criterion of multi-variance comparison with significance level 0.05,

are merged (see Figure 4). This process is repeated until there exist two clusters, which have

merged. The bounds of the final slices are saved at the training stage for each model and are

applied to the user’s hair at the color application stage (see Figure 4b). For each slice, the hole

and petals are detected. The hole is the circular area in Figure 2b; it is defined as a cloud of

pixels, having low saturation value (typically, � � t ) inside these holes hue values are

unstable and cannot be appropriately detected. The pixels inside this area are transferred using
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(3) and (4). The hue distribution for each slice is split into petals (see Figure 2b) using branch

and bound clustering in the circular hue histogram. Every petal corresponds to a hair swatch;

therefore, there are very few such petals for natural hair colors. Since the hue distribution is

circular, a false zero is calculated and saved for every pie separately. The false zero is

expected to be as far as possible from two nearest swatches. For the most natural hairs, it is

around green color (148º). The circular shift is applied to the hue histogram. Thus, the false

zero becomes a new origin, which prevents false cluster creation around the red color (0º).

The process is accomplished with the clusters aggregation using the saturation distribution

and the Student criterion about averages equivalence with significance level 0.05. If the final

Hue-histogram has more than one petal, the histogram is quantized for 256 bins and saved;

otherwise, parameters �� Σ  ,M  of the ��� normal distribution are kept for further

applying to the user’s hair.

(a) (b)

(c) (d)

Figure 4. Slice merging for L’Oreal Paris Excellence 842 model (a), ��� �� distribution for slices 11 (b)

and 12 (c), are merged using the Hotelling criterion with significance value 0.31. Original histogram,

along with the final slices of intensity distribution (d).

2.3. Transferring of the Chromaticity Distribution in non-Gaussian Case

For each cone slice associated with a hair swatch, a Hue LUT (HLUT) is applying (Figure 5b)

with the Gaussian-shaped Parzen window, having the standard deviation of 1.5/360°. This
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process is the same 1D transform as YLUT (2) described above. The circularly of Hue

histogram is carried out by using an optimal false zero angle ��
� , calculated using the model

Hue histogram. However, simple HLUT applying causes false-colors because of the high

correlation between � and � components, so the following correction is applied.

The average correction for every pixel can be obtained as a conditional expectation of the 2D

Gaussian distribution:

� �t� � ��� � �� ��� ��� ������ ��� , (9)

where ��� is the average model hue value for the slice �� ��� is the model correlation

ratio between � and � components for the given slice, ��� and ��� are the model standard

deviations for � and � components. In (9), �� is the user intensity value, transformed by

YLUT and symbol ��� denotes the average model slice intensity. This linear correction is

processed using the cumulative hue distribution function (HCFD).

(a) (b)

(c) (d)

Figure 5. L’Oreal Paris Couleor Experte 500 model (a), Hue distribution for slice 3 (b), (HLUT example), and for slice

8 (c), (Gaussian example); saturation distribution for merged petals with the Student’s significance 0.29 (d).
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Let us suppose that h � � ��h denotes the HCFD of the hue value � . In this case, the

corrected HCFD is:

�� � h �� �h � �t� � h ��� � (10)

where notation �� denotes the HLUT-transformed hue value. The average model hue value

is ��� and the expectation� �t� is calculated by (9). The transform (10) is applied only to

the pixels, having the corrected hue shifted towards the average:

�� �h ��� h � �t� � h ��� � �. (11)

The applying (10) under condition (11) allows preventing false coloring, showing up at the

tails of the Hue distribution. Thus, the resulted hue for the given intensity is as follows:

�� � � �t� � ��h �� �� �t� h � ��� ��� , (12)

where ��h �� denotes a function, which is the inverse to HCFD. Eventually, the

transformed hue values have to be clipped into the model bounds for the given slice

��������� .

The saturation is supposed to be always Gaussian, so for each slice, there is a conditional 2D

Gaussian distribution �� � , depending on � (see Figure 6). The conditional hue average is

� �t� and the predicted conditional average of the saturation is written as:

� �t� � ��� � �� ��� ��� ������ ��� , (13)

where �� ��� is the model correlation ratio between � and � components for the given

slice and the symbol ��� denotes the model standard deviations for the saturation.

Figure 6. Luminance (Y) – Saturation (S) scatter-plot for L’Oreal Paris Couleor Experte 535 mod

el, slice 10.
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The conditional standard deviations are:

� �t� � ��� h � ��� ��� , (14)

� �t� � ��� h � ��� ��� . (15)

The conditional correlation ratio between them is:

� ���t� � �� ��� ��� ��� �� ���

h���� ��� h���� ��� . (16)

The resulted saturation is calculated, using expressions (13)-(15) as follows:

�� � � �t� � � �t� ���� ��, (17)

where � is the user’s saturation at the transformed pixel. Value �� is the average saturation

over the user’s slice distribution and �� denotes the standard deviation of the user’s slice.

Finally, the saturation (17) is clipped into the model bounds for the given slice �� �

����� ���� .

2.4. Transferring of the Chromaticity Distribution in the Gaussian Case

In the Gaussian case (cf. Figure 5c), the model hue distribution for a slice consists of a small

number of 2D Gaussian distributions �� �� � or petals of hue and saturation with relative

volumes �� � ���h� . In this case, the color transferring is based on a greedy solution of the

assignment problem [6] that minimizes the sum of the absolute hue differences between the

model and user images. This solution depends on the user’s hue distribution. If the user’s hue

distribution cannot be decomposed into the separated Gaussian petals, (see Figure 5b, e.g.),

then the matching is based on the circular shift of the user’s hue distribution by the ��
� � ��

�

angle, where the angle ��
� denotes the user’s optimal false zero. The user to model petal

assignment is processed as follows.
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(a) (b)

Figure 7. Scatter plot of Y(Hue) distribution over the dominant petal of the brightest slice. User: see

Figure 8a, model: L’Oreal Paris Couleor Experte 500 (see Figure 8b). The assignment, based on hue

histogram color shift (a) and the dominant petal (b).

Let us denote as ��� � the user’s cumulative hue distribution for the given slice. The

collection of ��� � is starting from ��
� in the counterclockwise direction. Let �� �

��h
� ��� is the sum of relative model’s petal volumes, starting from ��

� also in the

counterclockwise direction. Obviously, �h � � and �� � h , where � is the total number of

the model’s petals in the given slice. Let �� is the root of the equation �� � ��� �� , then

the user’s petal, assigned to the model’s petal �� consists of the user’s pixels, having the hue

values �� � � 䪘 ���h , where � � h���� and �h � ���h � ��
� because of the circularity

of the hue distribution.

If the user’s hue distribution can be decomposed into the petals (see Figure 5c), then a

dominant petal, meaning the petal, having maximal relative volume, i.e., ���max
�
�� , can be

defined as for the user as for the model distribution. For adopted greedy matching, the user’s

dominant petal is assigned to the model’s dominant petal. Let t� , � � h���� are the relative

volumes of the user’s petals, then the user’s petals ������h� are assigned to the model’s petal

�� to the right and the left to the dominant petal if t� � t��h� � ��.

The transformed hue value in the user’s petal is calculated as follows:

�� � ��h � ��� �� �t� , (18)

where

��h � � �t� � � �� h��� ���t� �� and (19)

��� � � �t� � ���t� ���� ��. (20)
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Finally, the transformed hue the saturation values are clipped into the model’s petal

Hue-Saturation 2D-interval ����� ���� � ����� ���� . Besides, to prevent false colors

appearance condition (8) is applied to the transformed hue and saturation values as follows:

��
����

��������� ���

h���� ���
�� ��� h � h , (21)

where �� � ������ ��� , �� � ������ ��� , ��� and ��� are the averages of the

saturation and hue for the model’s petal, values ��� and ��� denote are their standard

deviations. In (21), the quantile h � �L�t. If a pair of transformed values ����� violates (21)

it is replaced with the model’s average ������� .

(a) (b)

(c) (d)

Figure 8. Hair colorization using Gaussian petals matching (c) and hue-histogram matching (d) of the

user’s image (a) with the L’Oreal Paris Couleor Experte 500 model (b).

To prevent false coloring, causing due to dependency on the intensity � (see Figures 6, 7), let

us introduce the relative intensity deviation from the given model average over the given slice:
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�� � ������ ��� , where �� denotes the transformed intensity. Then the Mahalanobis

distance to the center of the 3D-model’s distribution is:

�� �
� ����������� ������������������

������������ � h��� ��� �� ��� �� ���
, (22)

where

��� � h� ��� ��� , (23)

��� � h� ��� ��� , (24)

��� � h� ��� ��� , (25)

��� � �� ��� �� ��� � ������ ��� , (26)

��� � �� ��� �� ��� � ������ ��� , (27)

��� � �� ��� �� ��� � ������ ��� . (28)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Colorization with the L’Oreal Paris Excellence models: EX-100 (a), EX-416 (b), EX-654 (c),

and EX-842 (d) of the original user’s image from Figure 1 (a).User’s colorized images: with EX-100

(e), EX-416 (f), EX-654 (f), and EX-842 (h).

The outliers are detected by using the inequality:

�� �������� � �� h , (29)

where �� �������� is calculated by (22)-(28) and �� h is a root of the equation:
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���� �� � � �����h ���
� � �� � h (30)

The transformed �������� that satisfies (29), (30) with quantile h � �L�t is replaced with the

model’s average ������� .

The results of the hue distribution transferring for the brightest intensity slice of the L’Oreal

Paris Couleor Experte 500 model (see Figure 8b) to the user (see Figure 8a) are shown in

Figure 7. Figure 7a displays the case of the non-Gaussian transferring, based on the

hue-histogram. The distribution in the scatter plot in Figure 7a is concentrated close to the

dominant petal. In the Gaussian case (Figure 7b), there are also other petals, alongside the

dominant petal. Figure 8c depicts the results of the recolorization in the Gaussian case and

Figure 8d for hue-histogram matching. The non-Gaussian case produces a bit less false colors

and less vivid hair at the expense of the compression rate.

3. Experiments with Real Data

The proposed method was implemented in the EZface virtual colorist system and has been

evaluated using EZface.com web site [16]. We use the set of 530 model images of different

L’Oreal Paris hair color brands (see some examples in Figures 9a-9d) for quantitative

evaluation. For the experiments, the model RGB images of 1200x1605 pixels were provided

along with � hair mask. Figure 1c shows an example of a mask. Typically this mask is about

20 - 30% of the total model’s hair area. The hair color model is created and saved separately

for each model image, using this model image and the hair mask.

Table 2. Comparative study of hair colorization quality by different color transferring algorithms

(PSNR in decibels)

Hair color

number

Model description

length (bytes)

Color transfer

brush [10]

Tai et

al. [13]

Xiang et

al. [14]

The proposed

method

200 2,974 26,8 32.0 31.2 33.0

210 2,874 27.8 30.8 31.9 38.0

300 2,413 30.7 38.8 39.3 40.9

316 2,744 21.8 26.0 26.7 27.9
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400 2,744 28.9 36.9 37.0 40.2

415 1,571 25.3 32.8 33.5 37.7

426 1,859 26.1 36.9 36.8 41.4

500 565 25.8 31.6 31.4 31.7

565 1,738 24.0 30.2 30.2 36.4

600 888 26.0 36.1 34.6 37.9

643 1,153 25.9 37.3 37.3 46.5

645 997 24.9 34.0 34.0 40.5

656 763 26.1 38.0 38.0 45.2

700 1,197 26.8 39.7 39.6 41.4

713 1,903 25.8 39.1 39.4 44.0

724 697 26.5 36.9 36.9 47.2

810 837 26.2 40.5 40.8 40.9

832 653 25.5 34.0 34.0 39.7

834 960 23.8 30.9 30.9 35.3

930 969 31.8 32.3 28.2 34.4

Average 1,525 26.3 34.7 34.6 39.0

The user’s image (see Figure 1a) is processed by the algorithm [9] for hair detection (see

Figure 1b). Then, the hair color transfer is applied to the detected hair area, using the saved

hair color models. At every user’s hair pixel, the transformed color �������� is converted

into the RGB color space and as a result, we get pixel �� � �������� . Eventually, this pixel is

blended with the original RGB user’s hair color pixel, providing the hair mask � ��� � ��h .

Therefore, the final image is:

�� � ��� � h � � ��, (31)

where �� is the original image and �� denotes the transformed image. The examples of the

finally colorized user images are shown in Figure 9e-9h for the models, provided above in
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Figure 9a-9d.

To evaluative quantitatively the quality of the hair colorization, let us colorize the model’s hair.

The first time the hair color distribution is created, using a small hair mask (cf. Figure 1c) and

is kept for the next stage. The second time this hair color distribution is applied to the full

model’s hair mask (cf. Figure 1b). The resulted colorized hair is compared to the original

model’s hair, and the difference is measured. Thus, it is possible to compare the proposed

method with other existing color transferring algorithms.

(a) (b) (c) (d)

Figure 10. Hair maximal intensity: Original user’s image with hair mask (a), maximal intensity defined on the hair

area (b), on the hair and open skin areas (c), and the hair, skin, and near background areas(32) (e).

The quality of the color transferring is compares using peak signal to noise ratio (PSNR)

value, which is defined as follows:

���� � h���� ��� �t〵 �

��� ���� �������
� �

��
, (32)

where �� is the number of pixels in the hair mask � ��� � �Lh, ��� is original hair image

and ���
� is finally transformed image (31).

The PSNR value (32) is more proffered in cosmetic applications than standard ���� measure

because of higher sensitivity to peak false-color errors, making simulation non-realistic [13],

[14]. The quality of the color transferring is comparing using PSNR values (32), which are

collected in Table 2 for different colorization techniques. There are 20 illustrative examples of

the colors in Table 2, which are compared using four algorithms: Color transfer brush

algorithm [10], EM-segmentation in ��t color space [13], GMM color transfer [14] and the

proposed method. The first column (Hair Color Number) of the table denotes the number of

L’Oreal Paris Excellence hair color, which typically looks like the image in Figure 9. This

result is compared with the original model image, and the PSNR value is measured. Columns
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3-5 of the table contain the PSNR values for different color transferring algorithm and the

second column indicates the model description length in bytes. The last row in the table

summarizes average values for the overall set of 530 model images.

4. Hair Relighting

The proposed hair colorization algorithm supposed the hair color reproduction of the model’s

hair in the user’s photo exactly as far as possible. However, sometimes the illumination in the

user image is too different from the standard light source in the model image. This difference

causes the colorized hair looks unnatural over the user’s face and its background. In this case,

the user’s colorized hair should be adjusted to the user image illumination.

(a) (b) (c)

Figure 11. Examples of automatic sclera detection in the user’s (a, b) and the model’s (c) images.

The visible reflected hair color � � can be modeled [5] as a product of the incident light �

and the albedo of the colorized user’s hair � � , i.e., � � � �� � . However, the light

source in the user’s image is unknown and should be estimated. Then, colorized hair should

be changed to fit the estimated user photo illumination.

4.1. Intensity Relighting

The problem of unnatural hair intensity is shown up mainly over the blond hair. Therefore,

only the maximal available light intensity of the hair should be estimated in the user image.

The hair intensity map estimation is the maximum of three components:

���h � ��� ������ ������ ��� , (32)

where ����� is the intensity of the original user’s hair, ����� is the intensity face skin, close

to the user’s hair area, and ��� denotes the intensity of the background in the user’s hair
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vicinity.

The user’s hair intensity map is � component of the ����� color space, calculated using hair

map � ��� � t (see Figure 10a), where threshold t � �L��t� �L�h . The hair image is

blurred with Gaussian filter � � , where � � �L�ht� , where � is the intraocular distance.

The Gaussian blur helps to diminish the effect of the uneven hair intensity distribution and

create a homogeneous map. Finally,

����� ��� � ��t� ��� � t � � � , (33)

where �� is the initial intensity of the user’s hair and � denotes the convolution operation.

Figure 10b shows an example of (33) convolution.

The hair intensity map, based on facial region intensity, ����� in (32) is estimated using

detected facial skin [9]. The open facial skin detection is a by-product of the automatic hair

mask detection [9]. Figure 11 illustrates examples of the open facial skin along with other

facial features detection for the users and the model images. Using this open skin, facial mask

� ��� , mouth and eyes location, the face is approximated with an ellipse, having the axis

�� � [9]. The intensity of the open skin is propagated towards the hair mask, using recurrent

dilation on the intensity component with radial dilation kernel, having the radius �� �

��� �� � �. Finally, this dilated hair image is blurred with Gaussian filter � � , where � is

the same as for ����� map. Figure 10c shows the result of the maximal intensity between

����� and ����� i.e.,��� ������ ����� .

(a) (b) (c) (d)

Figure 12. Examples of the luminance only hair relighting: Original image (a), intensity hair map (32)

(b), Initial hair recoloring in EX-800 (c), Hair intensity correction for the map (b) (d)

The hair intensity map, based on background intensity close to the hair, ��� in (32), is

estimated using small hair vicinity outwards the user’s face. This vicinity is empirically

defined as �L�Ft� , where � is the intraocular distance. The distance transform allows
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delineating the vicinity region. A radial dilation kernel, having the radius ���= 4 pixels is

used to fill the hair region with the background intensity. Figure 10d depicts an example of the

final hair map (32).

The hair relighting is processed if the estimated map (32) is significantly darker than the

blond hair color. As a reference for the blond hair, L’Oreal Paris Excellence 800 (EX-800) has

been selected. Initially, the user’s hair is colored in EX-800 (see Figure 12), then the average

intensity over the hair mask is estimated as:

���� � ������� ��t� ��� � t , (34)

where �� denotes the transformed intensity in the user’s hair. Using the average (34) the

relative environmental darkness is calculated as:

���� � h�� � ��� �t ���h ��� 䪘�����

� ��� �t�
% (35)

The relighting is applied if ���� � t��� , where an empirical threshold t��� is selected as

t��� = 8%. In this case, the average transformed hair intensity should be reduced by ����� ,

where

����� � ��� ��t�� � ����� ���� �����t�� � ����� , (36)

where ��� L denotes the median. Finally, the target hair intensity average after the

relighting is �� � ���� � �����.

The hair relighting is processed via gamma-correction of intensity channel � � �� h :

�� �
������
h�����

�
’ (37)

where the minimal intensity over transformed hair intensity ���� � ��� �� . Parameter � is

constant per user’s image and is calculated as the root of the equation:

��h
� ��

�� � ���’ (37)

where �� � ������ h����� . Figure 12d displays an example of the hair relighting

with � � hL��.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Examples of the hair relighting and white rebalancing: Original user’s photo (a), hair

illumination map (32) (b), facial features map (c), model’s image of EX-930(d), initial hair

recoloring(e), hair after relighting and white rebalancing (f).

4.2. White Rebalancing

When the light source of the captured user’s photo significantly differs from the light source

of the model’s image, the colorized hair also gets a color cast. This cast causes the hair to look

unnaturally different from the user’s face. In this case, the hair appears with a reddish cast

under a low color temperature light source and with a bluish cast under a high-temperature

light source.

To define the color temperature of the light source, the white patch method of the white

balancing [3], [11] is used. Typically, for a white patch, a bright white area of the image is

used [5], [3]. For a human face, such a spot is eye sclera, which is detected as a by-product of

automatic hair detection [9]. Figures 11 and 13c give some cases of eye sclera detection.

Only 30% of the top brightest pixels of the eye sclera are considered as a white patch to

reduce the impact of the artifacts of the eye sclera detection. The average saturation of the

white patch ��F� is calculated separately for both eyes as follows:

��F� � ������� � ��� t� ��� � �F� , (38)
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where �F� is the root of the equation: ��� � � �LF , where � is the intensity distribution

over the eye sclera and ��� � is the cumulative distribution function of �. If the saturation

is significantly different between the two eyes, i.e.

�� � ��F� ���� ���F� �����
��� ��F� ���� � ��F� �����

� �L�, (39)

where ��F� ���� is the saturation of the left eye and ��F� ����� of the right eye, then

��F� � ��� ��F� ���� � ��F� ����� . If the condition (39) is false, then calculation (38) is

processed for the merged distribution of both eyes. If the average saturation is low, say ��F� 䪘

�t, it is supposed the hair color is already correct. Otherwise, the first iteration [3] is applied

as: �t � � � ���, �t � � � ���, where �� � is transformed hair chromaticity in ��� color

space, �t� �t is white rebalanced hair chromaticity and corrector ���� ��� is define as

follows: ��� � ��F� � ���� and ��� � ��F� � ���� . The values ��F� and ��F� are calculated

using (38) for the components �� � over the eyes sclera and the reference constants ����
= 0.043 and ���� = 0.015 are derived from the eye sclera of L’Oreal Paris Excellence 800

model image (see Figure 3a).

(a) (b) (c)

(d) (e)
Figure 14. Examples Chinese Girl Problem: Model’s image of CE-910 (a), original users’ image (b, c),

colorized users’ image (d, e).
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An example of hair relighting, including white rebalancing, is provided in Figure 13 for the

blond hair L’Oreal Paris Excellence 930 (EX-930).

5. Conclusion

In this paper, the hair colorization technique, based on the mixing of 3D Gaussian and

non-Gaussian color transferring, has been proposed and evaluated for the virtual hair color

modeling. Experiments, based on the results of EZface product exploitation [16], show that

the proposed algorithm outperforms state-of-the-art techniques for the hair colorization for all

types of hair colors (see table 2) and has reasonable model description length, suitable for

transferring via the Internet. The proposed hair relighting, accomplished with white

rebalancing, allows adjusting a standard hair model light source to the user’s light source. The

light source adjustment makes the user’s colorized hair vivid and photorealistic. Numerical

experiments with more than 20,0000 users’ hair recolorization (see, e.g., figures 9, 12, 13)

have been done for a variety of hair colors. These experiments show high colorization quality

almost at just-noticeable distortion levels. Eventually, the proposed colorization produces a

photorealistic effect.

A natural limitation of the method, derived from the requirement of the user’s hair texture

preserving, shows up when wide dynamic range blond hair, like EX-930 (Figure 13d) or

CE-910 (Figure 14a), is transferred to the black hair users depicted in Figures 9a, 14b, 14c. In

this case, which we call the Chinese Girl Problem (CGP), only a few different colors,

corresponding to the number of the different user’s hair swatches, are transferred to the

colorized user’s hair. Eventually, this causes a poster-effect that is illustrated in Figures 14d

and 14e, which is resulted in the recolorization of users, shown in Figures 14b and 14c in

Couleor Experte 910 color, given in Figure 14a.
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