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Abstract

Chromium (III) iodide (CrI3) is a layered 2-D semiconducting magnet in which strong

ferromagnetic order is present within individual layers with possibly weak magnetic coupling

between them. In this report we study the specific heat of this interesting compound as

functions of both temperature and magnetic field. The layered structure of this material

suggests that the specific heat may be theoretically described by either the two- or three-

dimensional models. Here we evaluate each model in terms of comparison to experimental

data taken on single crystals. It appears that the specific heat capacity of CrI3 is well

described by the combination of a structural (phonon) 3-D contribution and a 2-D magnetic

contribution. Spin wave theory applied to describe 2-D magnetic contribution to specific heat

capacity in the low temperature region shows the presence of a very strong anisotropy which

is required to keep magnetic moments in an off-plane orientation.

Keywords: 2-D semiconducting magnet, heat capacity

SCIREA Journal of Electrical Engineering

http://www.scirea.org/journal/DEE

December 3, 2020

Volume 5, Issue 6, December 2020



142

I. INTRODUCTION

A strong magnetic anisotropy is one of the critical requirements to establish 2-D magnetism

in a system. In some ultrathin metallic films, an easy anisotropy axis can originate from

symmetry reduction at the interface between the film and the substrate. A similar situation is

created in CrI3, a 2-D van der Waals gapped magnet where an intrinsic magneto-crystalline

anisotropy is created due to the reduced crystal symmetry in the layered structure. Recent

work has shown that CrI3, when exfoliated to the monolayer, retains magnetic order1, a

feature useful for device fabrication2,3.

CrI3 is a 2-D van der Waals gapped structure which exhibits coupled structural and magnetic

phase transitions4. The structure crystallizes at reaction temperatures of 650oC into the

monoclinic C2/m AlCl3-type space group. At ~ 215 K the structure transforms into a

rhombohedral structure (���). Ferromagnetism, with spins pointed along the c direction (see,

Fig.1), emerge at 61 K in bulk crystals and has been shown to persist down to the monolayer

with only a slight degradation in TC (45 K)5.

FIG. 1. Crystal structure of CrI3 below (a) and above (b) the structural transition temperature

TS ~ 200 K.

Chromium trihalides CrX3 (X = Cl, Br, I) are class of van der Waals (vdW) bonded, magnetic

layered semiconductors important for spintronic and magnetoelectronic applications6–9. As a

cleavable single crystal, they are especially an attractive as monolayer or as a few layers in

terms of applications. The Cr3+ ions are in a hexagonal arrangement with each cation located

in the center of edge sharing octahedra circumscribed by X- anions. The shared edges of the

octahedra are responsible for the exchange interaction between two Cr atoms (Cr – X – Cr).
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The resulting layers of CrX3 are stacked, with offsets determined by the specific symmetry of

the structural phase, via van der Waals bonded layers. The compounds adopt monoclinic or

rhombohedral crystallographic structures, as shown in Table I together with a summary of

magnetic (TC and TN) and structural (TS) phase transition temperatures in CrX3 crystals and

summaries of the type of magnetic ordering.

TABLE I. Partial magnetic and structural properties of chromium trihalides.

Magnetic

Transition

Structural

Transition

Magnetic

Moment

Magnetic

Order

vdW gap

(nm)

Cr Cl3 TN = 17 K TS = 240 K m ‖ layer AF/F 0.2698

Cr Br3 TC = 37 K TS = 420 K m ┴ layer F 0.2909

Cr I3 TC = 68 K TS = 210 K m ┴ layer F 0.3174

Our study concentrates on CrI3. It has been reported (Tab. I) that among chromium trihalides,

CrI3 has the highest bulk TC at 68 K, the strongest effective anisotropy with a magnetic

moment perpendicular to the CrI3 planes and is the easiest to cleave for device fabrication.

McGuire et al.4 discussed the correlation between magnetic and crystallographic properties of

CrI3 single crystals and demonstrated the existence of the magnetoelastic coupling between

magnetic and structural properties. The high-temperature monoclinic and low-temperature

rhombohedral structures of CrI3 is characterized by a change in the layer spacing from d =

0.6623 nm to d = 0.6602 nm, respectively. It takes place at TS = 210 K as a first-order

crystallographic phase transition. Near a magnetic phase transition of TC = 61 K, a presence

of the long-range order of the ferromagnetic phase is evidenced via the enhanced thermal

expansion along the stacking direction, suggesting a small anomaly/contraction in the layer

spacing of the crystallographic lattice. In Table II we summarize the magnetic parameters of

TC, saturation moment (ms), and Weiss temperature ( ) of CrI3 for both materials derived

from powder synthesis10-12 and for the single crystal work performed by McGuire et al.4.

TABLE II. Curie temperature (TC), saturation moment (mS), and Weiss temperature (θ) for

BrI3.

TC(K) mS(µB)/Cr θ(K)

Dillon/Olson (powder) [12] 68 3.10 70

McGuire et al. (crystal) [4] 61 3.10 72
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Previous specific heat capacity measurements of CrI3 crystals4 showed 1) a clear lambda-type

anomaly at TC, 2) the Curie-Weiss behavior due to magnetic correlations prevail up to

approximately 2TC, and 3) confirmation of the Delong-Petit value at high temperatures (CP =

R ln(2S+1) for S = 3/2, Cr3+). Low-temperature behavior of the specific heat capacity4 shows

a linear term in T due to magnetic excitations associated with 2-D ferromagnetic nature of

CrI313 in addition to the phonon contribution T3. By comparing theoretical and experimental

data to match relationship CP/T = 0.00117 + 9.8x10-5 T2, McGuire et al.4 estimated the Debye

temperature θD to be 134 K. Liu et al.1 investigated the suppression of the magnetic transition

temperature TC (bulk) = 61 K with the thickness of CrI3 crystals. It was observed also an

additional transition at 45 K, independent on the thickness of the film, corresponding to TC

for monolayer of 2-D CrI3. Lado et al.14 studied theoretically the origin of off-plane, strong

magnetic anisotropy in 2-D CrI3 responsible for the orientation of a magnetic moment of Cr3+

ion normal to layers. Their calculations based on the electron density functional theory that

include spin-orbit interactions to consider magnetic anisotropy, result in the values of an

isotropic exchange coupling J = 2.2 meV, an anisotropic exchange interaction λ = 0.09 meV,

and a single ion anisotropy D ≈ 0. The effective spin Hamiltonian describing 2-D CrI3 by

Lado et al.14 is an XXZ-type leading to the gapped spin waves excitations affecting the finite

temperature properties of the system. Lin et al.15 investigated the critical behavior of 2-D CrI3
in the vicinity of magnetic transition TC = 64 K by using a modified Arrott plot16, the critical

isotherm and Kouvel-Fischer method17, and they obtained the critical exponents and

concluded the presence of the crossover behavior of a 3-D Ising model with mean-field type

interactions. The spontaneous magnetization just below TC suggests that CrI3 possesses 3-D

Ising behavior in contrast to the inverse initial susceptibility just above TC and the

magnetization at TC which indicates mean field interactions. In addition, Lin et al.15 have

shown that the experimental specific heat capacity data as a function of temperature in the

vicinity of second order phase transition (the lambda-type anomaly at TC) is close to 3-D

Ising behavior18. Based on existing results, one of the interesting aspects of the bulk

properties of CrI3 is the fact that despite 2-D structural characteristics with a large van der

Waals gap (vdW, see Tab. I), the small cleavage energy19,20, and the strong magnetic

anisotropy4-5,14,21-22, there are distinct 3-D magnetic properties, at least in the vicinity of

transition temperature15. A main goal of our research is a first to measure the specific heat

capacity of CrI3 bulk single crystal in the range of temperature from 2 K to 200 K and in the

presence of the external magnetic field up to 5 T applied normal to the stacking direction to

determine the degree of 2D and/or 3D phonon and magnon contributions. The spin wave
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approximation valid at temperatures below TC allows one to find analytically magnetic

contribution for 2-D or 3-D CrI3 system.

II. EXPERIMENTAL METHODS

CrI3 crystals were grown by the vapor transport method using a reaction of the reduced Cr

powder (99.999%) with anhydrous I2 (99.999%)4. The ratio of Cr and I was stoichiometric.

The powders were sealed inside of a thick-walled (2mm) quartz ampoule of 14 cm length.

The ampoule was placed inside of a tube furnace with a temperature at the center of 650oC

(after a slow ramp up of 20oC/hr.). The tube was arranged in such a way the hot end

experienced a temperature of 650oC and the cold end saw a temperature of 560oC. The

sample was kept at temperature for 10 days, after which the tube furnace was slowly cooled

to room temperature. The extracted CrI3 crystals varied in size from the microscopic to ~1x1

cm2 in size, grew as platelets along the ab plane, and were micaceous in nature. Care was

taken to store the material in the absence of moisture, which has been shown to chemically

degrade the compound23.

The powder X-ray diffraction off of a crystal surface was performed by using a Bruker D8

Discover DaVinci system outfitted with a Co anode (Co K = 1.79026 Å) (see, Fig.2).

The diffraction data were fit using a LeBail fitting with the monoclinic angle artificially fixed

to 90o so as to obtain a layer thickness of 6.63299(11) Å (where one layer represents the sum

of one lamella and one van der Waals gap).
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FIG. 2. Powder XRD pattern of crystal surface taken with Co K radiation, = 1.79026 Å.

Specific heat measurements were performed using the heat capacity option on a 9 T Quantum

Design Physical Property Measurement System (PPMS). This technique uses the pulsed

calorimetry technique whereby a small amount of thermal energy is imparted to the sample

and the temperature decay over a period of time is recorded and fitted to Eq. (1)

CTOTAL (dT/dt) = – KW (T – TB) + P(t) (1)

where CTOTAL is the total heat capacity (sample, fixture grease, and sample platform), Kw is

the thermal conductance of the support wires, TB is the base temperature (i.e. of the system),

and P(t) is the applied heater power (equal to P0 during heating and 0 afterward). The specific

heat of the sample itself was isolated by us first performing the measurement on the sample

holder with only the fixture grease (Apiezon N) and then subtracting these measurements

from those performed with the sample included. After achieving a base temperature of 2 K,

samples were gradually increased in temperature with three measurements taking place at

each temperature setpoint. We performed measurements in external magnetic fields (H = 0 T,

2 T, 4 T, 5 T, and 9 T) applied along the c-axis of the CrI3 crystal (Fig.3a, b).
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FIG. 3a. Specific heat capacity C of CrI3 from T = 2 K to T = 200 K for H = 0 T. Inset: specific

heat capacity C of CrI3 from T = 2 K to T = 100 K in the external magnetic fields H = 0 T, 2 T, 4

T, 5 T, and 9 T.

FIG. 3b. Specific heat capacity C of CrI3 in the external magnetic field H = 0 T, 2 T, 4 T, 5 T,

and 9 T applied parallel to c-axis from 24 K to 25 K.
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III. THEORETICAL CONSIDERATIONS

Specific heat capacity of magnetic materials usually has three main contributions. First the

phonon contribution comes from lattice vibration. Second is the electronic contribution due

to the presence of free electrons in the material, which would obviously be diminished in a

semiconducting material. The third contribution is due to presence of magnetic moments with

ferromagnetic order below the Curie temperature TC and paramagnetic order above it.

Magnetic contributions to specific heat capacity are difficult to calculate analytically in the

entire range of the ferromagnetic phase. Until now, there is no physical model that can

described magnetic contribution with desired accuracy. Our effort will concentrate only on

the low-temperature approximation (T < TC) where we can use the spin-wave approach to

find magnetic contribution under assumption that magnon-magnon interaction is negligible.

A. The 3-D model

The 3-D phonon portion of heat capacity can be found by using the Debye model which

requires one to know the thermal energy U (Eq.(2)) of the system, the density of states D(ω)

(Eq.(3)), the average thermal equilibrium occupancy of the phonons <n(ω)>, the angular

frequency of the phonons ω, the velocity of sound vS, and the volume V of the system24,

U = ∫ dω D(ω) <n(ω)> ℏω (2)

D3-D(ω) = V ω2 /2 π2 vS 3 (3)

By substituting the density of states (Eq.(3)) into the thermal energy (Eq.(2)) and

differentiating with respect to temperature we can find the specific heat capacity due to

phonons in the entire range of temperatures (Eqs.(4) and (5)),

C = dU/dT (4)

Cph = 9 N kB
T
ϴD

3

0
ϴD T x4ex

ex−1 2 dx� (5)

where N is the number of lattice points per unit volume, kB is Boltzmann’s constant, and θD is

the Debye temperature24,25. For low temperature approximation, a phonon contribution of the

specific heat capacity (Eq. (5)) leads to the following version of Cph (Eq.(6)) for 3-D,

Cph = C3-D = 234 N kB (T/θD)3 = β3-DT3 (6)

where β3-D is a proportionality constant which depends on Debye temperature θD.
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To find the electron contribution to the specific heat capacity (Cel), we assume the available

free electrons (conduction electrons) in the ferromagnetic semiconductor CrI3 scale linearly

with temperature following the relation:

Cel= γ3-D T (7)

where the constant � is known as the Sommerfeld coefficient24.

The magnetic contribution to the specific heat capacity in a 3-D ferromagnet using the spin

wave (magnon) approximation at the low temperature range is represented by:

Cmag = A3-D T3/2 (8)

with a coefficient A3-D called the spin wave stiffness constant [24]. Combining together Eqs.

(6), (7), and (8), the total 3-D specific heat capacity (Eq. (9)) in the low-temperature regime

is given by:

Ctotal = C = C3-D = β3-DT3 + γ3-DT + A3-DT3/2 (9)

B. The 2-D model

For two-dimensional ferromagnetic system (2-D), at least three contributions are present;

phonon, electron, and magnon. The same method as above (Eqs. (2) and (4)) are used to

determine the specific heat capacity due to phonons with 2-D density of states described by

Eq. (10). In the entire temperature range, the specific heat capacity is described by Eq. (11),

and in the limit of the low temperature approximation, it leads to Eq. (12)7,

D2-D(ω) = A ω/ 2πvS2 (10)

Cph = 3 N kB
T
ϴD

2

0
ϴD T x3ex

ex−1 2� dx (11)

Cph = C2-D = 24 N kB (T/θD)2 = β2-DT2 (12)

where A is the area of the unit cell.

The electronic contribution to the heat capacity is also linear in two dimensions; however,

the Sommerfeld coefficient 2-D has a different value25:

Cel= γ2-D T (13)

The magnetic contribution to specific heat capacity, using the spin wave approximation in the

low temperature regime, reduces to14:

Cmag = C2-D = (Bα/2) [2 + αT-1 + 2Tα-1] exp(-α/T) (14)
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α = (Keff + g μBH)/kB (15)

where α is a parameter in units of Kelvin that is dependent on the externally applied

magnetic field H (Eq. (15)), g is the Landé g-factor, μB is the Bohr magneton, Keff is an

effective anisotropy constant, and B = 2/3. At very low temperatures (α/T >> 0) the following

term

Cmag = (Bα2/2T) exp(-α/T) (16)

dominates but when α/T < 1 is quickly overtaken by the linear term reducing Eq. (14) further

to:

Cmag = B T (17)

where B is a constant from Eq. (14).

It has been reported [26] that in the chromium halides and other semiconducting layered

ferromagnets with antiferromagnetic ordering27, the specific heat capacity has a linear

dependence on temperature (Eq. (17)). Eqs. (16), and (17) are valid in the low temperature

range and are related to the magnetic (spin wave) contribution to the specific heat capacity.

Establishing the global temperature dependence of the magnetic contribution to the specific

heat capacity is an intractable problem due to lack of physical model with the desired

precision. Our approach simplifies the issue by simply subtracting the theoretical electron

and phonon contributions described above by Eqs. (5) and (7) from experimental data.

IV. DISCUSSION OF EXPERIMENTAL RESULTS FOR SPECIFIC

HEAT CAPACITY OF CrI3

Based on Fig.3a, the heat capacity has a sharp discontinuity at TC = 61 K which is due to the

phase transition between ferromagnetic and paramagnetic order which happens at the Curie

temperature TC. Roughly at 216 K, there is another jump in heat capacity due to a shift in the

geometry of the lattice when the structure transforms from the high temperature monoclinic

phase to the low-temperature rhombohedral phase. Based on Figs.3a and b external magnetic

field applied to the system lows the specific heat capacity at low and raises it at high

temperatures (above TC) with a crossover point at about 70 K28.

In our physical interpretation of temperature dependence of specific heat capacity, we

consider first the 3-D model in low temperature range by fitting Eqs. (6)-(9) to match to
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experimental data depicted in Fig.3a. In order to find the constants in Eq. (9), namely, β3-D,

γ3-D and A3-D, we split Eq. (9) into two separate equations (Eqs. (18) and (19))

C/T3/2 = β3-DT3/2 + A3-D (18)

C/T = β3-DT2 + γ3-D (19)

which are valid in different temperature ranges. At very low temperatures only magnon (T <<

TC) and phonon contributions can play a role (Eq. (18)) followed by Eq. (19) at which the

phonon and electron contributions is true at slightly higher temperatures.

Figs.4 and 5 represent the fitting of Eqs. (18) and (19) to experimental data in the range of

temperatures between 2 K and 5 K for Eq. (18) and between 3 K to 6 K for Eq. (19).

FIG. 4. Theoretical specific heat capacity (Eq. (18)) as a function of temperature fitted to

experimental data in the range of temperatures between 2 K and 5 K at H = 0 T.
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FIG. 5. Theoretical specific heat capacity (Eq. (19)) as a function of temperature fitted to

experimental data in the range of temperature between 3 K and 6 K at H = 0 T.

The linear fit in Fig.4 gives β3-D = 3.651 (mJ/(mol*K4)) and A3-D = 7.32 (mJ/(mol*K5/2)) and

using β3-D defined by Eq.(6), the Debye temperature ϴD is found to be 128.7 K. Fitting in

Fig.5 gives β3-D = 3.854 (mJ/(mol*K4)) and γ3-D = 10.9 (mJ/(mol*K2)), and the Debye

temperature in this fitting is found to be 126.4 K.

For the 2-D model, Eqs. (12) and (13) are combined and then divided by T to give Eq. (20),

and then a linear fit on a plot of C/T vs T can be used to find the coefficients β2-D and γ2-D
(Fig.6),

C/T = β2-DT + γ2-D (20)
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FIG. 6, Theoretical specific heat capacity (Eq. (20)) as a function of temperature fitted to

experimental data in the temperature range between 14 K and 21 K at H = 0 T.

The linear fit in Fig.6 yields β2-D = 39.26 (mJ/(mol*K3)), γ2-D = 0.0603 (mJ/(mol*K2)), and a

Debye temperature of 71.3 K. The above methods of fitting of the experimental data to the

theoretical predictions were applied to low temperature regions only. It appears that the

electronic contribution in the 2-D model applied to our material has a very small value for the

γ2-D coefficient in contrast to the same coefficient in 3-D. However, in 3-D this linear

contribution can be based on the magnetic mechanism which is due to weak coupling

between layers in our system27. So, since our material is a semiconductor, this electronic

contribution should be small in the entire range of temperature. Under these conditions the

main contributions can be restricted to the phonon and magnetic mechanisms. Magnetic

contributions in the entire range of temperature are difficult to quantify in contrast to phonon

contribution which can be easily defined for 2-D (Eq. (11)) and 3-D (Eq. (5))25.

From our experimental data (Fig.3a) we would like to find for CrI3 the magnetic contribution

in entire temperature range by simply subtracting theoretical values of phonon contribution of

specific heat capacity (Eqs. (5) and (11)) from the experimental data (Eq. (21)),

Cmag = C – Cph (21)
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Figs.7 and 8 show the phonon contribution in 2-D and 3-D for the entire range of

temperatures together with experimental data of the specific heat capacity.

FIG. 7. Specific heat capacity as a function of temperature for the 2-D model for H = 0 T.

FIG. 8. Specific heat capacity as a function of temperature for the 3-D model at H = 0 T.

Subtraction of specific heat capacity data in Figs.7 and 8 from the theoretical phonon

contribution allows us to see how important the magnetic contribution is in our system15. This

analysis shows that a magnetic contribution is larger than the lattice contribution in the range
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of temperature up to around 70 K in 2-D and around 40 K in 3-D. Both Figs.7 and 8 have

discontinuities in specific heat capacity at the Curie temperature. In Fig.7 this is followed by

a slow rise in heat capacity with increasing temperature and in Fig.8 this is followed by an

exponential decay, which is the expended behavior of a paramagnetic phase.

FIG. 9. Magnetic specific heat capacity vs. temperature for different values of the external

magnetic fields.

The magnetic part of the specific heat capacity is higher for low values of magnetic fields at

low temperature region (see, Fig.3b), in contrast to a higher temperature range where

behavior follows the converse trend, namely, a higher heat capacity for high values of

magnetic fields (see, Fig.9). Qualitatively, such behavior is predicted by the molecular field

theory28. As the external magnetic field further increases, the discontinuity at the Curie

temperature TC smooths over and approaches a simple Schottky-type anomaly28.
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FIG. 10. Fit to the experimental data of the magnetic contribution to the specific heat capacity

calculated from Eq. (14) for the range of temperature between 2 K and 20 K at H = 0 T (the

theoretical low temperature approximation only for magnetic part of the specific heat capacity).

The best fit in Fig.10 between experimental magnetic specific heat capacity and theoretical 2-

D ferromagnetic contribution, based on spin wave method (Eq. (14)), gives α = 28.32 K for a

temperature range of 2 K to 20 K and H = 0 T. Fig.10 shows a magnetic contribution that is

slightly larger than theoretical at T < 20 K and that is smaller than the theoretical at high

temperatures (T > 20 K) where the magnetic contribution begins to approach a constant value

before rapidly rising into the discontinuity at the Curie temperature. A discrepancy which is

present for T > 20 K perfectly matches to the restriction imposed on the spin wave model (no

interaction between magnons) in deriving Eq. (14). Namely, the spin wave interaction must

be added to this approach when temperature is roughly higher than ~ (1/3) TC ≈ 20 K. Other

important aspects of our theoretical description of the magnetic contribution to the specific

heat capacity for the 2-D CrI3 system is to estimate magnetic parameters such as exchange

interaction, anisotropy, and involvement of magnetic field intensity when compared to the

experimental data (see e.g., Fig.10). The quantity B in Eq. (14) is related to the exchange

interaction J in the following way (Eq. (22)14)

B = N kB2/πJS (22)
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where S = 3/2 for Cr3+. The effective anisotropy constant Keff in Eq. (15) incorporates a

single ion anisotropy D and an exchange anisotropy λ (Eq. (23)) as follows14

Keff= 2DS + 3Sλ (23)

Both anisotropy constants (D and λ) favor off-plane easy axis (normal to the layers). On the

other hand, due to the crystallographic symmetry of the CrI3 crystal, single ion anisotropy is

negligible (D ≈ 0). The two other parameters J and λ must be specified to compare magnetic

specific heat capacity experimental data with the theoretical prediction (see Eq. (14) and

Fig.10). The results of these comparisons are summarized in Tab. III. The most striking result

of these calculations is the fact that for a reasonable choice of the J value (or B = 0.67 (2/3),

0.6, and 0.2) from J = 0.228 mJ to J = 0.762 mJ (Tab. III), the respective value of λ from

comparison of experimental data and theoretical model ends up with a very strong anisotropy

constants from 0.542 meV to 0.138 meV, respectively. This is exactly what we see in 2-D

CrI3 system where spins due to a very strong anisotropy constant are kept along the stacking

direction.

TABLE III. The exchange interaction J and anisotropy constant λ established from comparison

between theoretical model and experimental data for the CrI3 crystal (Eqs. (14), (15), (22), and (23)).

B

(J/mol K2)

α

(K)

J

(meV)

λ

(meV)

λ/J

0.67 28.32 0.228 0.542 2.38

0.60 26.52 0.254 0.508 2.00

0.20 7.23 0.762 0.138 0.18

Finally, Table IV list values of the α, γ, and A parameters that depend on effective anisotropy

as a function of magnetic field H.

TABLE IV. The α (Eq. (14)), γ (Eq. (19)), and A (Eq. (18)) parameters as a function of the magnetic

field at low temperature region for 2-D CrI3 at B = 2/3 (or J = 0.228 meV).

H (T) 0 2 4 5 9

α (T) 28.3 29.1 29.7 29.9 30.7

γ (mJ/mol K2) 10.9 9.1 6.7 0.3 0.1

A (mJ/mol K5/2) 7.3 3.6 0.5 0.1 0.2
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V. SUMMARY

Low dimensional magnetic systems have been studied thoroughly by many scientists

recently4,13,29-32. Despite these recent efforts, the question of whether the magnetic ordering of

many of these materials, including CrI3, is 2-D or 3-D in nature is as of yet unresolved. From

our study, it appears that magnetic and phonon contributions to the specific heat capacity are

the most significant contributions in both dimensions. However, the 2-D model for lattice

(phonon) contribution (Eq. (11)) to the specific heat capacity, shows (Fig.7) that the magnetic

contribution calculated from Eq. (21) is comparable to the lattice contribution in entire range

of temperatures in contrast to the 3-D model for lattice contribution (Eq.(5)), where in the

high temperature range the magnetic contribution (Fig.8) based on Eq. (21) goes to zero. The

behavior of the 3-D model as far as phonon contribution is concerned leads to the expected

dependence of the magnetic specific heat capacity as a function of temperature above the

Curie temperature. This leads to the phonon 3-D model as appropriate (Eq. (5)) in order to

achieve the correct behavior of the specific heat capacity at high temperatures. In the low-

temperature range (i.e. T< 20 K), the phonon 3-D model forces a 2-D magnetic contribution

described by Eq. (14) not by Eq. (8) to fit the experimental data (see, Fig.10). The main

conclusion coming out of this discussion confirms a van der Waals gapped and layered

structure of the system. It appears, based on our calculations, that this gap is not an obstacle

for the phonon contribution to be 3-D in nature. However, from the point of view of the

magnetic contribution to the specific heat capacity, the gap creates enough disruptions to

maintain a solely-2-D contribution, at least in the low temperature region.

The most important physical property of the magnetic material CrI3 determined from our

comparison of the theoretical and experimental data is the Debye temperature θD. Table V

summarizes the Debye temperatures for different models including parameter β, and there is

a clear discrepancy within the models. The linearization method (Eqs. 18 and 19) gives a

Debye temperature of approximately 129 K while the integral method (Eq.5) gives a Debye

temperature of 245 K. The latter value can change when during a process of comparing

experimental data to phonon contribution we include in Eq. (3) the longitudinal and

transverse propagation velocities instead of vS or the anharmonic nature of the lattice

vibrations at the elevated temperatures above TC33.
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FIG. 11. Second derivative of theoretical phonon contribution (Eq. 5) and the theoretical

magnetic contribution (Eq.14) for ϴD= 245 K and α = 28.32 K between 2 K and 25 K at H = 0 T.

For the linearization method (Eq. 19) to be valid both Eq. (5) and (14) must reduce to Eq. (6)

and (17) in the temperature range in which the approximation is made. Fig.11 shows the

second derivative of phonon contribution (Eq. 5) is linear until approximately 15 K, which

implies that Eq. (6) is only valid between 2 K and 15 K. Eq. (17) is linear and so its second

derivative must be zero in its entire range. Fig.11 shows that the magnetic contribution does

not approach the derivative of a linear line until after 25 K. With Eqs. (5) and (14) having

different temperature ranges in which they are valid there is no temperature range in which

the linearization method can be done leaving 245 K to be the Debye temperature which best

describes this material.

TABLE V. Average Debye temperatures ϴD for CrI3 calculated by using linearization and

integral methods for average value of β (see, Eq. (19)).

β (mJ/mol K) ϴD(K)

LINEARIZATION METHOD 3.62 129

INTEGRAL METHOD - 245

A standard procedure for the estimation of the Debye temperature is based on formula

described by Eq. (19) which expresses the specific heat capacity by two terms: the phonon

contribution ~ T3 and the electron contribution ~ T. This is true for a conducting material but

in our case, we are dealing with a magnetic semiconductor (CrI3) which surprisingly contains

a linear term according to the spin wave approach (due to magnetism), but at the elevated
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temperatures (see Eq. (17)). If we argue that the contribution to specific heat capacity at very

low temperatures has a linear term due a weak electronic term (Eq. (19)), the value of ϴD =

129 K (see, Tab. V) appears to be due to the linearization process of matching values of

specific heat capacity described by Eq. (19) and experimental data (Fig. 3a, H = 0 T). This

takes place in the very narrow temperature range between 3 K and 6 K. But as we show in

Fig. 10, since we have subtracted an optimized phonon contribution (with ϴD = 245 K) of the

specific heat capacity from the experimental data (Eq. (21)), the remaining part of heat

capacity matches well with the magnetic properties of CrI3 described by spin wave model (Eq.

(14)). Under these conditions, behaviors of the specific heat capacity as a function of

temperature described by Eq. (16), are exponential in nature; when we try to linearize

dependence in the form given be Eq. (19), it forces the coefficient γ to be negative

(unphysical) between the same range of temperatures (3 K < T < 6 K).

The specific heat capacity of CrI3 consists of structural (phonon) 3-D contribution and clearly

2-D magnetic contribution. The interesting aspect of our main conclusion is to suggest a

measurement of the thermal conductivity in direction which is perpendicular (and parallel) to

the layers of CrI3. The presence of vdW gap between layers in CrI3 creates a possibility for a

rapid heat transfer due to phenomenon called photon tunneling34 which is created by surface

polaritons and/or plasmons. Another very important result of our study is the conclusion that

2-D magnetic properties of CrI3 requires the presence a very strong anisotropy to maintain

off-plane magnetic moments (see Tab.III).
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