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Abstract

To mitigate the deleterious effects of clutter and jammer, modern radar have adopted adaptive
processing techniques such as CFAR detectors. The aim of these processors is to
automatically detect targets the casewhere the clutter environment is partially unknown
and/or has varying statistical properties maintaining the rate of false aléixeddbw level.

The CA scheme has an optimum detection performance among the mean level CFAR family
in the cas of homogeneous noise when the neighboring reference cells of sliding window
contain the noise data obeying the same PDF and having the same statistical parameters as the
data stored in the test cell of sliding window. However, the reference cells are oft
contaminated by power variations over range, clutter discretes, and other outliers.
Additionally, the strength of the clutter also fluctuates with terrain t@beyation, ground

cover and the presence of mawade structures. In these situations, thaneging cells may

not be representative of the disturbance in the test cell and the CA exhibits strong
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degradations both in the detection performance as well as in the CFAR behmather.real
world, still suboptimal performance might occur (high falserm rate and/or low detection
probability) as a consequence of heterogeneous clutter, dense target backgrounds, and large
discrete and spiky cluttefTherefore, the heterogeneous improvement possibility of this
algorithm is of primary concernlhis pape is devoted to the analysis of a sophisticated
version which is a combination of CA and GTMf CFAR schemesollectingdata from M
pulsesand operating in multitarget environment to detect fluctuating tacgefsdistribution

with two-degrees of freedom. This version optimizes good featurteeofeltknown CFAR
detectors with the goal @nhaning the detectiorprobabilityandkeeping the false alarm rate
unchangedOur numerical results are focused on theargmt SWI & SWII models because
of the prevalence of frequency diversity between noncoherent pulse butkes.presence of
postdetection integration of Jdulses, 1 is found that thdqhomogeneouperformanceof the
novel versiorsurpasses that of thexéd-thresholdschemeespecially for targets obeying SWII

model in their fluctuatios

Key words: Adaptive detection, noise and clutter, CA GTMFAR algorithm,

postdetection integration, target fluctuation models, multitarget environments.

Introduction

Radars have the objective of performigsignificant general functions, with all the specific
applications falling into one or more of thesensiderabldunctions. Depending on the type

of radar application, the system might be concerned with estimatin@aridpet radar cross
section (RCS), measuring and tracking its position or velocity, imaging it, or providing fire
control data to direct weapons to the target. The searching function represents the backbone
role of any radar system based on which it dextdecontinue or stop its operations. From this
point of view, radar is defined as an instrument that is utilized in observing a natural
environment and in detecting physical objects herein. athieve this goal, it emits
electromagnetic waves to illumimathe environment and receives echoes reflected by the
objects. In the illuminated environment, numerous objects may introduce reflection and
scattering of the transmitted radar signal, causing difficulties in identifying the objects of

interest which aréermed as targets whilst the interfering echoes are designated as clutter. At
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its receiving end, on the other hand, the incoming signal is processed, to see if it is regarded as
interference only, or interference plus echoes from a target of interest legodisplayed to

the user. The ability to detect objects at long distances, or in conditions of poor visgility,

the key feature of any radar system. This is of particular importance for aircrafts and ships in
order to navigate safely and avoid lsibns. Additionally, the radar needs to posses the
capability to suppress both clutter and jammindp@écomenear or below the noise level. In

this way the sensitivity of the radar is fully used in signal environments containing unwanted
interference. Mdern radar systems perform this detection automatically in the signal/data
processor. It is achieved by constructing a threshold signal level, on the basis of the current
interference, and deciding the presence of a target by comparing the incomingesighal

with that threshold. If the signal level exceeds the threshold, then the presence of a target is
declared, otherwise no target is proclaimedmost radar detectors, the threshold is set in
order to achieve a required probability of false alarmweleer, in most fielded systems,
unwanted clutter and interference sources mean that the noise level changes both spatially and
temporally. In this case, a changing threshold can be used, where the threshold level is raised
and lowered to maintain a constgmobability of false alarm. This is known as constant false
alarm rate (CFAR) detection. On the other hahd,dhallenges with automatic detection are
prediction of the clutter power, and handling of nonhomogeneous environments. If the
statistics of thanterference are known a priori, a threshold may be selected to guarantee a
specific rate of false alarm. In many cases, the form of the probability density function (PDF)
associated with the interference is known, but the parameters of the distrilnatieithar
unknown or change temporally or spatially. CFatRategiesare designed to track changes in

the interference and to adjust the detection threshokhfieguard thdevel of false alarm

constant [15].

Several variants of the CFAR algorithm haeeb proposed in the radar literature to deal with
different problems associated with radar applications. These techniques require linear
operations (such as getting the maximum, minimum, or average of a set of values) or
nonlinear operations like sortingsat of values and selecting one on a specific position before
performing a linear operation. Recentllye celtaveraging timmedmean (CA_TM) CFAR
detector optimizes good features of two welbwn schemes in the CFAR world depending

on the characterisss of clutter and present targets with the goal of increasing the detection
performance given that false alarm rate is held unchanged. It is realized by parallel operation
of CA- and TMCFAR procedurefs-9].

17



Normally, the detection process is performadtbe received signal after whatever processing

the signal experiences. It may be that a decision is made on the basis of a single transmitted
pulse, though this is rare. More often, several pulses are transmitted and the resulting received
signal is integated or processed in some way to improve digmatto-noise ratio ENR)
compared with the singlpulse case. In any case, to detect the target signal with some
reasonable probability and to reject noise, the signal must be larger than theAho@aegh

there are several techniques of pulse integration, the noncokezkenigueis the commonly

used ongeventhough it is not ideally preferredhis is owing to its ease of implementation
[10-13].

Realistically,the amplitude of the signal at the receiwvgut depends on the target radar cross
section (RCS) which is a measure of the amount of the electromagnetic energy that a radar
target intercepts and scatters back towards the receiver. The nonfluctaegietgis one in

which the RCS remains constaver the group of samples used for detection. While this is a
useful reference point, it is rarely a realistic model of-veadld radar targets. Because of the
effect of multiple scatterers constructively and destructively interfering with each otrstr, mo
targets of interest present echo voltages that vary randomly from pulse to pulse, from dwell to
dwell, or from scan to scaim addition variations in radatarget geometry, target vibration,

and radar frequency changes can lead to variations in ®@8t resulting in fluctuating
targets. In other words, the target RCS fluctuates duddcacteristicof the targets which
encompass many scattering elements and the returns from each ongecélémentsary.

These fluctuations in target RCS amndmly in their nature and must b&atistically
modeledto facilitate the processor performance evaluatidve $werlingnodels are the most

commonly used in this situatiqd8,4,8,12]

Our goal in this paper is to analyze the performance of the CA -GFAR detector in
nonideal background conditions when the radar receiver includes a postdetection integrator
amongst its contents. Section Il is devoted to the description of the processor under
consideration along with the formulation of the problem. Sectiodells withthe processor
heterogeneousperformance analysiswhilst our simulation results, to compare the
homogeneous as well as mtdtget performance of the underlined processor with that of
other weltknown CFAR schemes are displayed in sectionAvally, our concluded remarks

are discussed in section V.
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Detector Description andProblem Formulation

Noise is the unwanted energy that interferes with the ability of the receiver to detect the
wanted signal. It may enter the receiver through the aatelomg with the desired signal or it

may be generated within the receivEne automatic detection of signals (targets) in additive
interference (clutter and noise) is not a problem completely solved nowadays. CFAR
detection is a set of techniques desjrio provide predictable detection and false alarm
behavior in realistic interference scenarid$is setof detectionstrategiesis developed
according to clutter models and logic used to estimate the unknown clutter paraimeters.
these detection algdhnims, the noise strength around the cell under test (CUT) is estimated
and then the threshold level is calculated. The idea of this calculation is to employ a sliding
window consisting oN/2 reference cells in front of and behind the tested cell, as shown
Fig.(1). The CUT will be denoted by a random variaBleand the reference cells will be
represented by random variablés wh eir e Olrl dder to limit error in the adaptive
threshold due to the | eakage doefls, thehvwo, whiehr ge t 0 ¢
are termed as guard, cetlectly adjacent to the CUT will not be used in the estimation of

the clutter power. Values in the reference cells are used to calculate an estimate of the clutter
mean. After estimation, the local threkhwalue W is to be obtained. This is done by
multiplying the estimated mean with some scaling factor, commonly termed as the CFAR
multiplier, which is derived from a statistical distribution model fitted to the amplitude or
power of the clutter. Finallya decision rule is applied to determine whether a target is present

or absenfl].

An efficient CFAR circuit has to fulfill some requirements as: efficient implementation
regarding required processing power and production costs, low G¥s&Raccuratétting of

the CFAR threshold to the clutter scenario, ghedictedthreshold must pass point targets and
extended targets, closely spaced targets must not mask each other, and ficalhstheted
threshold must follow steep rises (or falls) in baokayd clutter amplitude with as little lead

(or lag) as possiblg1].

The aim of the CFAR algorithm is to maximize tleel of detection Pp) and to keep an
acceptable rate offalse alarm ga) through a variety of signaling environments:
homogeneous, mighle targets, and clutter wall. This achieved through thsetting of the
detection threshold based on #stimateof the backround noise power levahd herefore it

can automaticallyadjust it in order to follow thgarnations inthe background nagslevel.CA
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algorithm is the optimal detector, under a condition that the sampthe referencenvindow

are independent and identically distributed (IID) and obey exponential distribution. In
practice, its performance loss is seriouswo caseswhenthere is a clutter edge, e.g., at the
border of land and sea, atfidhere is an outlier, e.g., a clutter spike, an impulsive interference,
or another interfering targethis is because of the nonhomogeneity of clutter within a
referencewindow which makeghe above assumption invalidSo, theprocess of CFAR
detection cannot be realized and even affect the reliability of test results.ifTheplires

appropriate detection scheme to make the appropriate treatment for the specific circumstances.

Recently, anovel celtaveragingtrimmedmean (CATM)CFAR schemeéias been appeared
[7]. It optimizes good features of someell-known CFAR processorgdepending on the
characteristicsof clutter and present targets with the goal imfproving the detection
performanceholding thefalse alarm ratenchangedlt is realized by parallel operatiai CA
and TM algorithms These familiar schemegperatesimultaneouslyand independently but
with the same scalintactor of the detection threshol@”. They produce owmean cliter
power levelZ using the appropriate CFARBrocedure Next, they calculate own detection

thresholdsandfinally they decide about target presence independently.

Scientifically, it is known that wen several detectors are employed simultaneously, & cou
arise in the weak signal case, a fusion algorithm is used to arrive at a global decision. Based
on this rule, he finite decision about target presencemade in fusion center which is
composed obin AND logic gate If both the input single decisiomto the fusioncenter are
positive, theglobal decision of the fusion centés the targetpresence irthe content of the

CUT. In eachoutput ofothercasesfinite decision is negative aritie target isabsentat the

locationwhich correspondt the cell under test

After this general insight othe CFARworld, let us go to formulate our interesting problem.

In this formulation, iiis assumed that a narrowband matched filter is used at the IF section and
the radar receiver contains a squiaw® envelope dettor followed by a sampling circuit. The

input signal to the receiver is composed of the radar echo signal s(t) and additive zero mean
white Gaussian noise n(t) wi t h % &heiinput noése i§ assumed to be spatially
incoherent and uncorrelated with the signal. The output of the band pass IF filter is the signal
X(t), which can be written as

éx, (t) cosfrpt ) +%o(Y) sin(ut ) intrigonometric form

1 @
[ 1) coskt- 7€) incompact form

X() =
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wh eroe gis the operating frequenc, r(t) & G(t) represent
X(t), whilst the subscripts | & Q refer to its-phase and quadrature components, respectively.
The IF filter output is a complex random variable that is compo$either noise alone or
noiseplustarget return (sine wave of amplitude A). The quadrature components

corresponding to these cases are:

gen (t) ¢
N . : < t) U in thelst case
(0 g & cosf S:{SQQ( ) b .
& § &rsinf § 1eA+n(h g
ié (t) g in the2nd case
1e "o 8
A target is detected when r(t) exceeds the threshold vajluehere the decision hypotheses
are:
1) + Detection
s(t) + (9 S v .
n(t) False Alarm

On the othe hand, when the noise subtracts from the signal (while a target is present) to
make r(t) smaller than the threshold is known as a miss in the CFAR detection field.
Radar designer seeks to maximize the probability of detection for a given probability of
false alarm. The noise components (t) and ng(t) are uncorrelated zero mean low pass
Gaussianprocessesvi t h e q u a | % Thesefoie aheicj@ns PDE takes the form:
2
f(n,,rb)=2p exp§ 2 ;Sb
t

As a function of r(

“®

|00 Q

e () g2 ¢<rcos¢ ) A
o § & rsinE)

Taking into account Eq.(4), the above formula gives the joint BDEhe two random

)

oo
oo on

e

variables r(t) and G(t) which becomes:

r a r?+A® O arAcos¢ ) §
f(r.F) = " mrA Sexpgaicest) ¢
(r.7) op 2 enge 5> % gexQ > g.l ) ®)

U(.) symbolizes the unit step function. The PDF of r(t) aloae be easily obtained by
i ntegrating Eq. (6) over G which yields:

r arc+AZ O r A
f(r) = 5 eXPee o O'oge? 8U ¢) <o
C G

where §(.) stands for the zerorder modified Bessel function of the first kir@onditioned on

t

h

) and dcéntbg reformditedlasguadr at i



the value of the amplitude A, each sample 32=that originates froma signal at the input of

the squardaw detector is a random variable with a PDF given by:

1 a A2/2 & aA 0
f(y/A) = = expaeu Oloﬁ 6U(y) ®

S s g -

G - G g

It is well-known thatthe momengenerating function (MGF) of a random variable is an
alternative specification of its probability distribion and it can be used to find all the
moments of the distributioalso. Owing to the role that the PDF &f Y 0an play in our
analysis, it is of importance to compute its MG@HRe calculation of thistatistical parameter
can be obtained kyansformirg Eq . ( 8 ) -dbnaain vHickgives:

1 s2s/ O
W. (/ /s = ———— eX - 9
(7 /9) ey p%1+52,8

where s=A/ Z denoteghe average signab-noise ratio (SNR).

Generally, as the frequency diversity among pulse bursts is prevalent in radar detection
systems, performance analysis of the adapghemes with pulse integration is needed.
Although the postdetection technique of pulse integration is not the optimum one, it is the
most commoly employedin radar systems due to its ease of implementation. If the returns of
M pulses are now noncohetbBnintegrated, the integrator output can be mathematically

formulatedas:

Yy oay @0

Each ra]r_ldom variable in that sequence has a MGF similar to that given in Eq.(9). Since the
random variables;'g are assumed to be statistically independbatintegrator output Y has a

MGF of the form:

M. o ~
a 528/ o}

W (//S) ﬁ /_ 1+% E

The parameter S is the total-ilse, SNR which is M times the single pulse S[SR= Mxs)

1D

The unconditional MGF can be obtained by averaging Eqg.(11) over the target fluctuation
distribution of S. For thes® family of target models introduced by Swerling, the fluctuating

target is characterized by a PDF given by
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o K
fs(S/S.) o 2;%:% @ expa k—g U (S 12
In the above expression, &notes the average of S over the target fluctuation parameter, and
9 representsi gtintad cddagreegttvf fd uctuati om. I n
correspond to the SWI, SWII, SWIIl, SWIV and SWV, respectively. Therefore, the
unconditional MGF of the random variable Y can be easily obtained by calculating the

average value of Eq.(11)fakn g i nt o “alistibotionof S. Thiise 6

o M o k-M ag 5 -k
/)y —al 9 / 1 (r S Q 1l o 13)
W) e 8 iR B Y tuy

Practically CFAR algorithm is often implemented afigostdetectiorintegration as Fig.(1)
displays The difference between CFAR methods is how the mean estimate is obtained.
Becauseof the effectof multiple scatterers constructively and destructively interfering with
each other, mogargets of interest present echo voltages that vary randomly from pulse to
pulse, fromdwell to dwell, or from scan to scan. Therefore, the processtaicting the
presence oé target on the basis of the signal voltage is a statistical process, with a probability
of detection,Py, usually less than unity, and some probability of false al&mn, usually

greater than zerddathematically, the detectiqgerobability has a definition given by:

P, om P(Y2ZT) £(3 dz a4
Since Y and Z are stati-Bltletadsw| 'y i ndependent,
WQ(/):W(/) W(T )/ (15)

The substitution gyielddd in the definition of

B < f fla) da w0
4y () representsthePDFf t he random variable U which c
calculation of the Laplace inversion of Eq.(15). Thus, performing this inversion and

integrating the resulting form with an allowable change in the order of integration gives

P

an

B

C
<

\Y

é W, ( -T/ a
P, = -a resiV\Q(/)Z(/ ) {0 an
( II y
where the contour of i ntegrativoe) |l i asthe t
pl agbes, (@@a=1, 2, ¢€é) are its poles and res|[.]
Since the MGF of Y i sareacontemedchere withewellfknown a n d
Swerling models (SWII &WiI). For the SWII target fluctuat:.i
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detection probability can be <cal cuwyMtined by
Eq.(17) which yields:

_8ed S o0 f 1 dAW(T/) @
P.= g % ™M % I/'.rr}%G(M)d/M-lg‘* g
= M
— F T F ('1) B Y
S T a = =T 18
1,52(1+s)§(|v|-1)! d/ [ z( )] a=-T 4 S0+ (18)

dz(.), in the above fanula, stands for the Laplace transformation of the cumulative
distribution function (CDF) of the noise level estimate Z &depresents the average per

pulse SNR (S = S /M). On the other hand, if the target fluctuates obeying SWI model in its
fluctuation, the processor detection performance can be obtained by replacing Eq.(13) into
Eq.(17) after substitutng by 1 as Eq. (12) Il ndi cates. The

substitutionleads to:

é e a
|l o JA-M M-1 A N |
184S, @ (st am2€ vy (/)4 4
Pd l+S ':‘%—4- g YZ( )‘a:sz(:llsa) + G(M 1) /M 2?/ 1 : ,t:l (19)
i & ssH,_ L

From Eqs.(1819), it is evident that the key step in the processor performance evaluation is the
determination of th&éaplace transformation ohte C DB(F&-) it§|notsé power level Zor

this reasonye focus our attention on deriving it for thaderlined detection scherméhen it

IS operated iran environment which is contaminated by target returns other thaartgest of

interest The motiation of our choosing the nonhomogeneous case for the operating
environment is that it is more general than the homogeneous situation and the ideal operation

can be easily obtained as a special case by vanishing the returns from outlying targets.

HeterogeneousProcessor PerformanceEvaluation

In practical radar signal detection systems, the problem is to automatically detect a target in a
nonstationarynoise and clutter background while maintaining a constant probability of false
alarm CFAR detection igesignated to thsetechniqueghat areusedto generat adaptive
thresholds, antb safeguard the false alarm rate frdne environmental changebwo such

techniqueswvill be analyzedn this section and it is convenient to start with the @Ryorithm
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a) Cell-Averaging (CA) Detector

In the CACFAR processarthe adaptive threshold is obtairfeaim the arithmetic mean of the
reference cellsThis CFAR technique is very efficient in case of stationary and homogenous
interference. It is often used as baserence for comparison purposes when investigating
other CFAR schemesh€& CA detector performs well and its performaapproaches that of

the NeymarPearson detectpasthe number of range cells increase infinity, given that the
noise samples ohined from the range cells amedependent anddentically distributed
Actually, the real environments may include spurious targets and/or clutter edges. The CA
processor turns out to perform very poorly in these situatlossffers from some problems

of detection when close targets are observed in a-taoifet environment or when clutter
conditions changes for adjacent regions in the doapsther wordsijts detection performance
and false alarm regulation properties may be seriously degradetbrhomogeneous
background especially if thenterference is nonstationawhich is often caused by adjacent

radar or other radielectronic devices.

Since both the noise and Rayleigh targets have Gaussian quadrature components, the output of

the squardaw detector has a PDF of an exponential distributionorder to analyze th
detector performance when the lagging referencensnbow contains radar returns from a

heterogeneous background, as in the case of mulipgjet situations, the assumption of

statistical independence of the reference cells is retained as in homogeneous case. Suppose

that reference sulyindow contains Rcells coming from spurious targatsth strengthd®(1 +
), where | symbolizes the interferenttenoise ratio (INR),and N/27 R; cells from clear
backgroundwi t h  p o we 7. Théne theeebtimateld totdl noise power from the lagging

reference sulwindow can be formulated as:

1 gh Ni2 fl
ZOyp 48 Xt d Xed (20)
In the above expressiong Xepresents the content of the reference cellthsspurious target
return whilst X denotes the same thing for the clear background reference s&imgke.the
elements of each summation are statistically independent, their @s pondi ng

become:
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Taking into account that the two categories of samples are independent, the noise power level

estimate posses a mathematical formula favitsweepsVIGF given by:

0 MR & (N/,2 )
1 R

a
/) = (22)
W) TAL+1) /4 ) /49 ? it 2

Similarly, if the leading subwindow has R cells from outlying target returns and NRZ ones

from clear background, it has a similar expression of Hswdeps MGF. Thus,

M(N/

MR 12
0
0

W(/)'é 1 0
¢S 1+| /+1_ ? /%

The leading and lagging noise level estimates have MGF's which are givercésniiof

q1( . ) 2(.8thraygh the relation:

-R)
(23)

(24)

@ W o= W

= W/)|, _
N/2 N/2
Finally, the ceHaveraging estimates its unknown clutter power level via the addition of the

two estimatesZand%2. T hi s e st i-doraatn representat@os of thenforres

Zu°7 *Z & W) =W() Wiy 29

Si n c e-domairerepeesentation of the CDF of the noise power estimate represents the
backbone of the detection probability calculation, it is obvious that it is necessary to
accomplish this representation for our analysis to be completed. Indétives MGF of Za,

I t s CD Fdonmam sepresentation described by:

1
Vo) -t () e

b) Generalized TrimmedMean (GTM) Detector

The CA procedureis optimum in the sense of minimizing the detectability loss under
homogeneous operatio,3]. Howeve, the real environments may include spurious targets
and/or clutter edges. The CA processor turns out to perform very poorly in these situations,
and if some resilience against interferers and/or clutter edges is to be gained, alternative
techniques, whit trade some additional detectability loss under homogeneity for enhanced
robustness imeterogeneousnvironments, must be adopted. The censoring based algorithms,

on the other hand, rely on discarding out the highest and eventually the lowest ranked valu
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in the reference set prior to carrying on the estimate of the noise powerl12yE].[ The

linearly combined order statistic type of CFAkRchanismsonstitutes an efficient and robust

power level estimationfor exponentially distributed background sasvations The more

generalized versiownf the category is the GTMFAR scheme. In thiglass of adaptive

algorithms, the noise level estimation is obtained by sorting, in an increasing order, the

candidates of thefjgingsubwindow such that

X(l)¢ X(Z) ¢X(3) ¢ """"""""" X(/) ¢ """""""" X(&/Z)

Then L from the lower end and,Lfrom the upper end are discarded before addney

remaining samples for the noise level to be estimated. Thus,

N/2- L,

Z.'D a X

k=L,

In order to attain an unbiased estimate for the unknown noise poweasth&ample in the

above summation must be weighted in such a way that

N/2- L,
GTM

Z,

(=1,

fo dn the above expression is a weightipgrameterthe value of whichdepends on the

selected CFAR processor, as Tah)edlemonstratesThe ordered samples X,s ,

D ai X(f) g X(N/Z-LZ)

(27)

(28)

(29)

a=1,

N/2 are neither independentnor identically distributed random variables evemough the

original sample«6 are IID random variables. However, Xi's are exponentiallgtistributed

andfulfilled the IID property they can betransforned to another sequenad independent

elementsria the mathematical formula:

Cj QX(L1+j) B X(ij 13 U(J 2) '

(3¢

TABLE (1) Trimming and weighted parameter values for the welkknown CFAR processors

Parameter L, Lo 2
Processor
CA 0 0 0
OS(K) K - N/2 - K 0
CCA(K) 0 N/2 - K 0
CML(K) 0 N/2 - K N/2 - K
TM(T 4, T) T, T, 0
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The statistic of GTM processor can be simplified through the definition of another set of
i ndepend gsthe el@méntssof vich are given as acfiom of the elements of the set
Cobs by:

B{Q(Lt- f) C, ,LDON/2 4 &, & ¢ [iL] (31

In terms of the new RVBy's, theGTM noise level estimatis simplified to becone

GT™M

z:™ = 5 B. (32)
Since th:random variabl®&'s are independent, thdGF of Z; is simply the producof the
individual MGF's ofB;'s. To find the MGF of B;6,gt is convenient to calculate tiMGF of
Ci6 dn termsof the e~-domainrepresentatiorof the CDF of the ordered statisiig;'s, the

MGF of the random variablg6 san be easily obtained Hs3]:

f/ Y X(L1+1)( /) for j=1
WC (/) = { Y X(|_1+J) (/ ) (33)
' ! / for 1<j ¢L,
(R 1>( )

After obtaining the formula @, the computation of the MGF of the noise level estimate Z
becanes an easy task owing to the independency of its elements. Thus,
(34)

L
Wo)= 0 Wy,

I n order to complete the perfor mandomananal y:
depiction of CDF of orderestatistics X)'s must be calculated. To achietés goal, we are

goi ng to eval uthtamkedtsdample (GUDdTF a totdl of N/B sampes) when there

are R candidates of theabgng reference sulwvindow contaminated with spurious target

returns. This CDF has a mathematical form givendfy [

% Mingé%-&g éN_ 9 N | j i ”
Fopza a2 R R-RGITRO[L RO RO e
=0 | Max(0,i 2 J o :

In the above expressiong(F represents the CDF of the cell that contailezar noise only
whilst Fy(.) denotes the same thing for the cell that $@sious targeteturn.For M-sweeps,

these CDF's have mathematical formulas shah[.]:
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Foe i(s?) g e><|f>§e5°'2 5 da
w13y 91 Y 9
1 mao 8357 _Qsi(m ) exp ﬁg 9 (36)
Similarly,
w8 x 0 a o
Fx)=1- a g B 2 37)
") B (14) 8

To calculate the-domain representation of Eq5j3we rewrite it in another simpler form as:

NH N/2 Mln(|N/2 Rl)aN/Z RJ_OHRJ_ 6 ] i-j é@ _ 6 veo
= -1
FX(“)(y) |a:A j:Ma%,i»Rl)E;‘% ' 8%- ]@ ao é{ég?g Q ( )
Ri+g+j-i

(5-‘V.'.'1(y/sz)m a y? . ev- v
é expae —-al ea-————— 38
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Similarly, if the leading window possesses ®tlying target returns among its contents and
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N/2-R; cells containing clear background, we can follow the same $teps obt ai n t h
domain representation of the CDF of its noise power level simplydbgaieg L, L, L;, and

R1 by Q, @, Q, and R, respectively, where {Qepresents the discarded number of samples

from the lower end, @symbolizes the trimmed number of samples from the upper end, and
Q=N/2-Q1-Q, denotes the remaining number of sampliésch are summed to estimate the

unknown noise power levebdf the leading sulwindow. The final noise level is obtained by

adding the two noise power level& Z,. Thus,
A
Zew = @ £, & Y5 (/) =/ OY,() (41)

Oncetheed omai n represent at i ong;pdbtained, ¢he MGFlofther der e
noise power level estimatec4s, which is the backbone of the processor performance
evaluation, an be easily computed, as Eq)8&monstrates. Hence, the GIBFAR scheme

is ready to be combined with the €¥AR algorithm to develop CA_GTMFAR detector.

c) Cell-Averaging_Generalized TrimmedMean (CA_GTM) Detector

The CA_GTMCFAR processor is designed to exploit the advantages of both CA and GTM
detection schemes in ordes teach the highest performance in homogeneous as well as
heter@eneous background environments in simultaneous with keeping Hasgigeed rate

of false alarm constantt is realized by parallel operation of two types of CFaEhemes

CA- and GTM as Hi.(1) demonstratesn this novel version of CFAR techniques, CA and
GTM schemes process their operations simultaneously and independently in such a way that
the thresholding's constant "T" is common for achieving their own detection threshold against
which the content of CUT is compared to independently decide the presence or absence of the
searching target. The final decision about target presence is made in fusion center which is
composed of an "AND" gate circuit. If bothe input single decisiamin the fusion center are
positive, the final decision of the fusion center is presence of the tartyet tasted sample
Otherwise, the fusion center's decision is negative and target is not at the location which

corresponds to the cell under tgist].

Owing to the independency of the single decisions about target presence of CA and GTM
candidates of the CA_GTM resulting detector, the global false alarm and detection

probabilities can be mathematically formulated as:
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GTM

CA GTM _ CA
Pfa & Pd - Pd Pd

In the above expremn, andenotes the [Pprobability for the processor m; where n can

CA_GTM _ PCA GTM
- fa

o (42)
represent either false alarm or detection and m symbolizes CA, GTM, or CA_GTM. Since
each onef the right hand side of Eq.(##vas previously calculated, the performma of the
CA_GTM novel model of CFAR schemes is completely analyzed. Our scope in the next
section is to give the reader some numerical examples to take an idea about the new
contribution of the novel fashion of adaptive detectors to the world of CFABessimg

algorithms.

Performance Evaluation Results

In this sectionit is convenient toevaluateand comparethrough numerical methodghe
performance othe new version of CFAR schemeith that of the welknown detectorsn
the CFAR field To see towhat extent the novel processor improves the performahtiee
existing detectors, it is obvious to compare its features with those of the most familiar
schemes in the CFAR world. For therposeof comparison, g hasthevalueof 10 ° andthe

size ofthereference window Nk taken a®4.

Now, we will go to numerically analyze the detection performance of the underlined
processors in order to distinguish which one has the highest behavior against the
contamination of the backgrounenvironment. Our presentation results are categorized
according to the operating conditions. Firstly, we discuss the detection characteristics of the
tested schemes in the case where the functional environment is ideal; i.e. free of any
abnormalities excdpthe normal clutter which is homogeneously distributed among the
reference sample$he processor homogeneous performance is evaluated in terms of the false
alarm and detection probabilities. The numerical example provides some insight into the
influenceof the various variables on the detect ol
design of proper procedures for determination of dpimum values for itgparameters.
Owing to the importance of the SWII target fluctuation model in practical appinsakig.(2)

depicts the detection probability as a function of the strength of the primary target return
taking into account that theadar receiver collects data from two consecutive pulses (M=2)
and the targetf interestfluctuates following SWII modelin its fluctuation To see to what

extent the noncoherent integration can enhance the adaptive detection performance, the
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monopulse behavior of the underlined processors is also incorporated amongst the curves of
the considered plotn our displayed redts, we will represent each CFAR scheme with the
statistical role used in estimating the obscure noise levelifeoreference suwindows. This

figure encompasses a set of dagexihcludes the conventional CA; GTM(1, 12, 0), the well
known OS; GTM(10,10, 0), the familiar TM; GTM(3, 10, 0), the new version CA_OS;
CA_GTM(10, 10, 0), the novel model CA_GTM; CA_GTM(3, 10, 0), and the optimum;
fixed-threshold.The presented algorithms are designated in accordance with Talihe .
examination of the group®f curves of Fig.(2) demonstrates that the novel version
CA_GTM(3, 10, 0) has the nearest performance to the optimum detector for single sweep
case, the conventional OS(10) scheme gives the farthest detection behavior, whilst the other
tested processorsgsent a detection reaction in between. $ihawnresults illustrate that the

two new models give detection performance which is surpassed that of the CA scheme; the
king of homogeneous situation and the novel model of trirrmean with excision of two

cels from the upper end and two ones from the lower end has higher performance than that of
orderstatistic with ranked parameter of 10. The fithteshold detector has the top
performance as predicted. All these observations are associated with monagelseec
without noncoherent integratiolVhen the radar receiver includes a video integrator next to
the squardaw device, the novel model CA_GTM(3, 10, 0) outweighs the NeyRearson
detector in its homogeneous performance to bectiraeadaptive proasor that hashe

higheg detection reaction against the background clutter. The other schemes maintain their
locations as in the situation of single sweep. In other words, the sorting of the tested
algorithms remains as it is in the absence of noncoherigration except that the novel
version CA_GTM(3, 10, 0) and fixetthreshold detector exchange their positions in such a
way that the novel model exceeds the optimum processor which reserves the second position
instead of the first on&.his category otlassification is from the detection performance point

of view and for two integrated pulses (M=2Fig.(3) illustrates the same detection
characteristigsas Fig.(2),0f the underlined schemes when the primary target obeyiitg in
fluctuation SWI modelin this situation of operating conditions, the new versions present the
same behavior as the CA technique which is lower than that of the optimum detector. The
standard OS(10) procedure still exhibits the worst, relative to other processors considered
here, performance for postdetection integration of two pulses given that its opéiesgtin an

ideal environment.
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Let us now add more pulses to the CFAR circuit to see to what extent the processor
performance improves with increasing the number of mated pulses. Fig.(4) shows the
same thing, as Fig.(2), for the tested processors given that their processing data are based on
integration of three successive pulses (M=3) and the operating environratihtiee of any
abnormalities. The target undest fluctuags in accordance with SWII mod@&y comparing

the exhibitedresults of this family of curves with their corresponding ones of Fig.(2), it is
illustrated that they behave the same behavior as those of Fig.(2) with an increasing rate of
change.There is also an additional performance improvement, relative to the case of two
integrated pulses, of each processor and the sequediinduishing rests as it is in Fig.(2).

The novel version CA_GTM(3, 10, 0) performance exceeds that of the optistactor and

the difference between them becomes obvidilee standard GTM(10, 10, 0) resolves its
position where it has the lowest detection performance in comparison with the other tested
schemeskFor the same circumstances, what will happen if thedesirget obeys SWI model

in its fluctuation?. Fig.(5) answer this question by plotting detection probability against SNR
for the selected CFAR algorithms along with the feteoeshold scheme when the radar
receiver integrates three consecutive sweepst$oprocessing dataA big insight on the
variation of the curves of this graph reveals that they follow the same manner in their variation
as their correspaling ones of Fig.(3) with some ameliorations. The optimum processor
maintains its location as otieat has théop detection characteristics, whilst the new versions

exhibit the same detection reaction as the conventional CA procedure.

Since increasing M enhances the processor detection performance, Fig.(6) repeats the same
thing as Figs.(2 & 4) foM=4 to obtain more and more improvement in the detection reaction

of the under examination schemes in face of background cllittersame comments can be
observed about the behavior of the group of curves of this scene with the indication that the
distinction between the novel version and optimum detector becomes evident in such a way
that the performance of the novel model of adaptive threshold techniques is preferable than
that of fixedthreshold scheme. Fig.(7) iterates the similar object as Figs.(3 f&r SWI
fluctuation model ofthe targetof interestin the situation where the CFAR circuit has a
reference window the content of elements of which is a result of integration of four successive
pulses. By examininthe curves of the current graph, itnsted that there is no new in their
behavior, in comparison with those of the previous indicated figures, except that they possess

some additional gain to proceed towards regions of lower SNR.

33



Generally, the outlined results demonstrate that the techafquancoherent integration of M
consecutive sweeps plays an ortant part in enhancing the processor detection performance
and the rate of improvement attains its maximum at M=2. For M>2, the rate of enhancement
decreases as M increases. Aaially, for SWII fluctuating targets, some derived model of
adaptive schemesupass the fixedhreshold algorithm from the detection performance point

of view. In other words, these modified versions occupy the position of NeRewison
detector to become the idemles against which other detection techniguaas becompared.

When the tested target fluctuates in accordance with SWI model, thetivesthold rests the

optimum one which is taken as a reference of comparison in any detection problem.

As a meaure of the ability of a CFAR processor to detect fluctuating radar targets, let us go to
calculate the required SNR to achieve agssigned level of dettion for the tested schemes
when their operation lies in a homogeneous environment. Figs.(8 & @pacerned with the
presentation of the necessary signal strength as a function of the needed probability of
detection for the underlined detection algorithms operated without (M=1) and with (M>1)
noncoherent integration of M successive pulses. Fig.{&pnots the standard processors along
with the new version CA_OS whilst Fig.(9) depicts the same thing for the conventional CFAR
procedures including the novelodel CA_GTM for M=1, 2, and 4, given that the primary
target obeys SWII model in its fluctuatiomhe displayed results of the first dirg in this
category of curves show that the fixboleshold detector is the optimum one that requires the
minimum SNR to satisfy the needed detection level and the new version CA_GTM(10, 10, 0)
comes next, the staai CA reserves the third position whilst the traditional OS has the last
location in the queuds M increases, lower signal strength is demanded to realize a specified
level of detection which means that noncoherent integration enhances the processiondet
performance.The rate of enhancement decreases as M increases, ahaive results
demonstrate. The resulshown inFig.(9), on the other hand, reveal the superiority of the
novel version CA_GTM(3, 10, 0) in achieving the required probabilityetéation with least

SNR on the condition that the radar receiver contains a noncoherent integrator amongst its
fundamental components. As we have previously noted in the discussion of the detection
characteristics of the tested detectors, the superidritiyeonovel version than the Neyman

Pearson detector becomes more evident as M increases, which is very clear from the results of
Fig.(9).
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The contaminated environments are frequently encountered in practical applications. The
multiple target operation of radar systems represents one of these fundamental
contaminationsin this situation, th@resence of interfersmreturns among the contents bét
reference window constitutethe major source of performance impairment @FAR
algaithms To visualize the influence of multitarget operation on the CFAR processor
performance, we repeat all the aforementioned figures in the case where the background
environment comprises some spurious targets besides theafirgeresttaking intoaccount

that the primary as well asthesedoar y out | yi ng t ar geistributidnl uct ua
with two-degrees of freedom (SWII & SWI modelskig.(10) depicts the detection
performance of the considered algoridwhentheyoperate in an envirenent that contains

two, one in each suWwindow, interfering targetalong with the searched one and all of them
fluctuate in accordance with SWII moddlhe candidates of this figure are parametrithin
specified CFAR processand are drawin the absece (M=1) as well as in the presence of
noncoherent integration of two pulses (M=8% a reference of comparison, the performance

of the optimum detector is incorporated among the curves of this family to see to what extent
the processor performance canpmagach that of the fixethreshold scheme. The visual
inspection of the variation of the elements a$ figure illustrates that the CA scheme has the
worst performance whilst the trimmadean possesses the highest performance and the rest
models have p@rmance lies in between. Additionally, the new versions enhance the
multitarget performance of the CA procedure, where the novel model CA_GTM(3, 10, 0)
gives higher performance than the CA_GTM(10, 10, 0) model. However, the mtarigés
performance othe combination of CA and GTM algorithms remains modest, where the level

of improvement is insufficient for CA to behave like OSTM schemeFig.(11) iterates the

same thing for the indicated detectors when the targets following SWI model in their
fluctuation. The set of curves of this figure varies in the same sequence as the corresponding
ones in the previous figure with minor degradation in their detection perforntags€12 &

13) repeat the same detection characteristics as Figs.(10 & 11) fort\Ms=8oted that there

is no new in the variation of the curves of these plots except that there is some gain in
comparison with their situation in the case of M¥Be last category of curves in these groups

of multitarget detectionaracteristics incldes Figs.(14& 15). These plots generatethe

same family of curves as the previous ones in the case of noncoherent integration of four
consecutive sweeps in order to enhance the processor performance more and more. Each

CFAR scheme reserves its positiatich is unchanged with noncoherent integratidhe
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benefitof pulse integration is to improve the processor performance without any changes in
the ranks of the considered schemes with the fikeeshold detectooccupyingthe top

position.

Finally, weare going to evaluate the needed SNR to satisfy a given level of detection in the
presence of two (RR,=1) fluctuating interfering targets along with the target under test
when these targets follow SWII model in their fluctuatidime results of this cagory of
curves are summarized in Figs.(16 & 17). The first plot is concerned with the standard CFAR
schemes along with the new version which is CA_GTM(10, 10, 0) whilst the second one is
devoted to the same traditional detectors besides the novel mod&lT®A3, 10, 0) and the
results of the optimum processor are incorporated with the two figures for the purpose of
comparison.The displayedesults of Fig.(16) illustratéhat the conventional CA scheme is
unable to satisfy a detection level which is higher than a specified value. The new version
CA_0S(10) is also incapable to fulfill a desired level of detection beyond a particular value
which is higher than that of th@mventional CA algorithmT'he weltknown OS mechanism,

on the other hand, is capable to follow any required level of detestienethe number of
outlying target returns lies within its allowable randg [This detector gives a required SNR
versus a prassigned level of detectiavhich is the nearest one to that given by the optimum
algorithm.As it is shown from the curves of the current figure, the noncoherent integration
enhances the performance of the signal detection where lower signal strengtuesl mo

attain a given level of detection as long as the number of integrated pulses increases. Fig.(17)
regenerate the same characteristics as the previous figure for the novel model CA_TM(2, 2).
The exhibited family of curves illustrates that the inyemment in the behavior of the
traditional CA detector is higher than that obtained by combining it with the OS scheme. This
is obvious through the distance between the curve representing the CA and that denoting the
CA_TM(2, 2) for each number of integrdtpulsesThe normal TM(2, 2) detector is able to
fulfill whatever level of detectiobbecause the number of extraneous target returns is less than
the number ofsamples which is excised from thgperend of each sutvindow. This
processor possesses a reEe@NR variation against requiréglel of detection which is the

nearesbne to that obtained by Neym&®earson scheme.
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Conclusions

This paperis concerned withfluctuating target detection under homogeneous as well as
heterogeneous clutterabkground using analytical evaluation processwith the aim of
improving the detection probabilityn such a way that it surpasses that of @#d fixed-
thresholdschemes when the radar receiver collects data fresuddessive pulses txhieve

its detedbn puposes It is assumed that the considered targetigjinal and spurious are
fluctuating in accordance ith c>distribution of two-degrees of freedom (SWI & SWI
modelg, whilst the clutter has exponential distributidiere, we put forward combinghe
advantages of different CFAR techniques to get better detection perforriianicenefit the
distinguishable homogeneous detection performance of CA algorithm and the recognizable
heterogeneous detection performance of GTM processor, we incorporate teehniques to
develop the novel version CA_GTMVe have given a detailed derivation of the detection
performance of theew modelof CFAR procelures in multitargetsituationswhen thismodel

is supplemented bywdadeointegrator. This type of adaptivadar detectora/as found to give
noncoherent detection performance which surpasses that of theHirstiold strategy when

the backgroun@nvironment is homogeneous. In multhdeget environments, it possesses a
detection performance which is highban that of the CA mechanism but still insufficient to
reply any required level of detectiohhe numerical results provide an important insight into
the effect of t he syst e mbhese rsaultsavithdd wsefud foron it
designing thenew version ofCFAR techniqueswvith noncoherent integration because of the

prevalence of frequency diversity between noncoherent pulse bursts in real radar systems.
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[Fig: (1)) Aschitecture: off €A GIV adaptie threshiolls sclemre
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Fig.(2) Multipulse homogeneouddetectionperformance of GTM family of CFAR detectors for SWII
target fluctuation model when N=24 M=2, and P,=10°.
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Fig.(3) Multipulse homogeneous detection performance of GTM family of CFAR detectors for SWI
target fluctuation model when N=24, M=2, and Pfa=1®.
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Fig.(4) Mult ipulse homogeneous detection performance of GTM family of CFAR detectors for SWII
target fluctuation model when N=24, M=3, and Pfa=1®.
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Fig.(5) Multipulse homogeneous detection performance of GTM family of CFAR detectors for SWI
target fluctuation model when N=24, M=3, and Pfa=16.
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Fig.(6) Multipulse homogeneous detection performance of GTM family of CFAR detectors for SWII
target fluctuation model when N=24, M=4, and Pfa=1®.

100%

&0%

Levelof detection "Fd”

60%

40%

20%

0%
-5 -1 3 7 11 15 19 23 27 31
Primary target signal-to-noise ratio (SWE) in " dB"

Fig.(7) Multipulse homogeneous detection performance of GTM family of CAR detectors for SWI
target fluctuation model when N=24, M=4, and Pfa=1®.
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Fig.(8) Homogeneous mlti pulse required SNR to achieve givenlevel of detectionof OS as well as
the developed versiorof adaptive schemes for SWitarget fluctuati on modelwhen N=24, and
Pfa=10-6
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Fig.(9) Homogeneous maltipulse required SNR to achieve ajivenlevel of detection of TM as well as

the developed version of adaptive schemes for SWII target fluctuation model when N=24, and
Pfa=106
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Fig.(10) M ultipulse multitarget detection performance of GTM family of CFAR processors for SWiII
target fluctuation model when N=24, M=2 R1=R2=1, and Pfa=166

Fig.(11) Multipulse multitarget detection performance of GTM family of CFAR processors for SWI
target fluctuation model when N=21, M=2, R1=R2=1, and Pfa=1®
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