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Abstract

In view of the recently proposed acceleration particle swarm optimization with strong global

search capability, a chaos enhanced particles swarm optimization algorithm based chaos

theory is proposed. Hybrid chaotic sequence is introduced to adjust the global learning factor,

and the algorithm can further increase the global search ability. The performance of the

algorithm is verified by testing four typical multi-objective optimization functions, and

compared with the classic noninferiority classification multi-objective genetic algorithm,

multi-objective particle swarm optimization algorithm and acceleration particle swarm

optimization algorithm. The result shows that the Hybrid chaotic acceleration particle swarm

optimization algorithm has faster convergence speed and stronger ability to jump out of local

optimization, and the performance is superior.
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1. INTRODUCTION

Particle swarm optimization(PSO) algorithm is a swarm intelligence optimization algorithm,

it is the aggregation of biological behavior. Compared with other intelligent algorithm, PSO

algorithm has simple structure, less parameters and is easy to describe and implement, the

global search ability is stronger, without gradient information, and many other features in the

function optimization, a multi-objective problem solving, such as pattern recognition is

widely used in various fields[1-4]. However, the standard PSO algorithm also has

shortcomings such as precocious convergence and bad local search capability similar to other

intelligent algorithms[5-7]. If the application is optimized in high dimensional complex

problems, the population may have accumulated to a certain point of stagnation without

searching for the global optimum, and the problem of precocious convergence is formed[8].

At the same time, in the search process of PSO algorithm, the convergence rate becomes slow

when the particle is approaching or entering the most advantageous region, that is, the search

capability is poor in the latter. Thus, the application of PSO algorithm is restricted[9-12].

For the deficiency of PSO algorithm, the researchers propose many improvement

strategies[13] . Among them, introduce the inertia weight factor, contraction factor and

adaptive mutation operator are the most representative. Such as the inertia coefficient adaptive

adjustment method of linear degression method[14], fuzzy adaptive method[15] and distance

information method[16, 17]; PSO algorithm with compression factor; the PSO algorithm of

adaptive mutation operator. In addition, the PSO algorithm and collaborative strategy[18],

chaos theory[19] and other algorithms[20] combine to form a hybrid PSO algorithm which is

also attracted by the researchers. As quantum PSO algorithm with chaotic mutation operator;

in addition, there are many researches on discrete PSO algorithm and multi-objective PSO

algorithm[21-23]. At present, the improvement of PSO algorithm is mainly focused on two

aspects: adjustment of algorithm parameters and update of particle structure and trajectory.

The aim is to improve the performance of the algorithm solve or improve the problems of

local search slow, precocious convergence, and improve the convergence speed and precision

of the algorithm. Although the proposed particle swarm improvement algorithm improves

both in performance and efficiency, but it is difficult to improve the local search ability of the

algorithm while avoiding precocious convergence. To provide better, more efficient, and

cheaper particle swarm algorithms, academics and industry researchers have been exploring

and experimenting with new approach[24-27].
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In recent years, an improved variant with extremely strong global convergence, called

accelerated PSO (APSO) [25, 28-30], has attracted the attention of scholars. The main idea is

to fully consider the global excellent, and the particle is only constrained by global extremum

during the whole search process, thus speeding up the search speed. However, while the

APSO increases the convergence speed, the algorithm still has the precocious convergence

problem and may miss some extreme values. For this purpose, this paper proposes a new

optimization algorithm for chaos enhancement acceleration particle swarm optimization

algorithm (CAPSO) by integrating Hybrid chaos theory into APSO algorithm. The global

learning factor of APSO algorithm is optimized by the chaotic sequence generated by Hybrid

theory, so that the convergence accuracy can be improved when it enters precocious

convergence. Finally, the algorithm of multi-objective optimization is analyzed and compared

with other algorithms to verify the performance of CAPSO algorithm.

2. CAPSO

2.1 Standard PSOAlgorithm

Particle Swarm Optimization algorithm (PSO) was founded in 1995[31-33]. In the

optimization of PSO algorithm, the potential solution of the problem is assumed to be a

"particle" in the n-dimensional space, and the particle will fly at a certain speed and direction

in the solution space. In the process of iteration, all particles are expressed in two global

variables to the best position of the particle itself (pbest), also known as the individual

extreme value and the best position of all particles (gbest), also known as the global extremu.

Suppose in an n-dimensional search space, a population X of m particles,

 1, 2, ,
T

nX x x x K , the position of the i particle is represented  ,1, ,2, ,,
T

i i i i nx x x x K ,

the speed is represented  ,1, ,2 , ,,
T

i i i i nv v v v K . Its individual extreme value is

 ,1, ,2, ,,
T

i i i i np p p p K , the global extremum of the particle population is

 ,1, ,2, ,,
T

g g g g np p p p K , In the process of iteration k+1, particle by formula (1) and (2)

to update their speed and position.
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
k +1 k k k k k

i,d i, d 1 i, d i, d 2 g,d i, d
v = v + c (p - x ) + c (p - x ) (1)

k +1 k k +1

i,d i, d i, d
x = x + v (2)

Among, i=1,…,m;  is called an inertial weight factor, it keeps the particle motion inertia,

make its have ability to expand the search space; C1 and C2 are learning factors, on behalf of

each particle to the extreme value position statistical accelerate the weight of items. rand() is a

random numbers between (0, 1),
k

i,dv ,
k

i,dx are velocity and position of d dimension of

particle i in the k iteration.
k

i,dp is position of the individual extremum of particle i in d

dimension,
k

g,dp is global extreme value of the group in d dimension.

The standard PSO algorithm has its own limitations, such as the algorithm implementation

process and the value of parameters has a great relationship; when the algorithm is applied to

the complex optimization problem of high dimension, the algorithm tends to converge to

some extreme point stagnation when the global optimum position is not found, which is easy

to get precocious convergence. These points can be a point in the local extreme point or in

local extreme point area. In addition, the convergence rate of the algorithm becomes slow

when approaching or entering the optimal solution area. The early convergence rate of the

PSO algorithm is fast, but in the later stage, due to the lack of effective local search

mechanism in the local polar hour, the local search speed is slow.

2.2 CAPSO algorithm

In accelerating particle swarm optimization (APSO), will not be considered inertia weight

factors and cognitive factors of influence on particle, only use the contribution to the global

exploration factor to improve the algorithm, the main idea of the algorithm is fully responsible

for global search variables only unique rights, fully considering the exploration factor updates

of the particles, particles in the process of the whole search only by global extremum

constraints, so as to accelerate the search speed. The velocity formula is as follows:

k +1 k k k

i, d i, d 1 2 g,d i, d
v = v + c r(t) + c (p - x ) (3)
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r is the random number in (0,1). In APSO, the velocity items can be found to be negligible,

and the formula for the location update is as follows:

2 2 1
p C rk +1 k k

i, d i, d g,d
x = (1 - C x + C) (4)

C1r is random number, it can provide an algorithm to jump out of local optimal use.

Compared with the standard PSO algorithm, APSO use two parameters C1 and C2, to reduce

randomness in the iterative process, C1 is expressed as monotone decreasing function:

1
tC  , 0 1  , t is current iteration number. So, in APSO algorithm, the

performance of the algorithm is mainly affected by parameter C2, for general problems, its

value is in [0.2, 0.7]. When C2 is 1, the particle can converge to the current global extreme at

any time, and this global extreme may not be the real global extreme; Conversely, when C2 is

0, the global search speed of the algorithm is extremely slow. Therefore, it is very important

to optimize the optimization of C2 by analyzing the performance of APSO algorithm.

However, while the APSO increases the convergence speed, the algorithm still has the

precocious convergence problem and may miss some extreme values. From the analysis of the

change characteristics of learning factor C2 in APSO, its characteristics can be described by

chaotic mapping, and chaos theory can be used to optimize parameter C2. Therefore, this

paper uses Hybird mapping equation to generate chaotic sequences to achieve the

optimization of parameter C2. The formula is as follows:

2
1

1
2

(1 ), 1 0
1 ,0 1

k k
k

k k

b x x
x

x x

     
  


 (5)

When the parameters are 1 21.8, 2.0, 0.85b    , maps to a chaotic state.

The steps of CAPSO algorithm:

1) Initialize the particle group.

In the PSO algorithm, the particle is initialized and the optimal value is selected as the global

optimal value. And it creates a chaotic value.

2) Calculate the adaptive value of group particles.
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3) The adaptive value of each particle is compared with the adaptive value of the best

position of its own. If it is better, the current position is the best position of the particle.

4) The adaptive value of each particle is compared with that of the global best position, and

if it is better, the current position is the best position in the global.

5) The learning factor C2 is obtained from the Hybrid chaotic sequence (derived from

formula (5)), and the position of the particle is updated by formula (4).

6) If the end condition of the algorithm is satisfied, the global best position is the optimal

solution, saving the result and ending. Otherwise return steps (2).

3. Numerical Experiment

3.1 Experiment function and evaluation

In order to test the performance of CAPSO algorithm, this paper selects the multi-objective

optimization test function proposed by Schaffer and Deb [34-38] as an experimental case. The

solutions to such problems are usually not unique, but there are a series of optimal solutions,

also called non-inferior solutions, and the collection of non-inferior solutions is often call

Pareto optimal solution. Because intelligent algorithm can search multiple solutions of

solution space in parallel, so multi-objective optimization is more suitable to verify the

performance of intelligent algorithm. The multi-objective optimization functions used in this

article are shown in Table 1.

Table 1 Experimental test function

Function Definition

SCH1
min ( ) ( ( ), ( )) . . [ 5, 7]1 2f x f x f x s t x  

2
( )1f x x

2
( ) ( 2)2f x x 

SCH2

min ( ) ( ( ), ( )), . . [ 5, 10]1 2f x f x f x s t x  

, ( 1)
2 , (1 3)( )1 4 , (3 4)
4 , ( 4)

x x
x xf x x x
x x

 
   
  
  

 
 
 

2
( ) ( 5)2f x x 
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ZDT2

1 2min ( ) ( ( ), ( )), . . [ 5, 10]f x f x f x s t x  

1 1( )f x x  2

2
( ) ( ) 1 ( )

1
f x g x g xx   

( ) 1 9( ) ( 1)
2

n
g x nx ii

  


ZDT3

1 2min ( ) ( ( ), ( )), . . [0, 1]if x f x f x s t x 

1 1( )f x x 1
( ) ( )[1 ( ) sin(10 )]2 11

( )

x
f x g x x g x x

g x
  

( ) 1 9( ) ( 1)
2

n
g x nx ii

  


In order to evaluate the merits of non-inferior solutions, this paper adopts convergence index

and distribution index to evaluate the performance of the algorithm, and the convergence and

distribution of homogeneity are defined as follows:

1) The convergence index(GD), GD is used to describe the distance between the ungoverned

solution and the optimal front end of the real Pareto algorithm.

2

1

N
dii

GD
N





(6)

Among them, N represents the number of non-dominant solutions that the algorithm searches

for,
2

id indicating the shortest Euclidean distance of all solutions in the non-inferior

solution i and the optimal front-end of the real Pareto.

2) The distributive index (SP), SP is used to evaluate the uniformity of distribution of

ungoverned solution.

2

1 / 2

1

1
[ ]( )

n

i
SP

in

d

d d




 
(7)
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1

1

n
d d iin


 (8)

Among them, n is the number of non-dominant solution, id indicating the shortest

Euclidean distance of all solutions in the i non - inferior solution in the target space and the

optimal front-end of the real Pareto.

3.2 Experimental Result

The proposed CAPSO algorithm was used to experiment with SCH1, SCH2, ZDT2 and ZDT3.

The algorithm parameter is set to: particle size 50; the maximum iteration number is set 200.

The Pareto non-inferior solutions of each function are shown in Figure 1-4.

Figure 1 CAPSO algorithm solves the Pareto non-inferior solution of SCH1 function
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Figure 2 CAPSO algorithm solves the Pareto non-inferior solution of SCH2 function

Figure 3 CAPSO algorithm solves the Pareto non-inferior solution of ZDT2 function

Figure 4 CAPSO algorithm solves the Pareto non-inferior solution of ZDT3 function

In the target function space, the non-inferior optimal target domain is the boundary of the

fitness value region, which is the effective interface. It can be seen from the experimental

results that the four test functions accurately give the effective interface, and the complete

Pareto non-inferior solution can be obtained. Particularly the discrete problem of ZDT3, and

the algorithm also gives an accurate non-inferior solution. In general, the algorithm has a lot

of Pareto solutions, and distribution is more uniform. The accuracy and reliability of the

CAPSO algorithm are illustrated.
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Through CAPSO algorithm runs 30 times for each test function, statistics of the convergence

index GD, distribution index SP and calculating the average time of CT, and four statistical

test function evaluation index in each test function, the results are shown in Table 2.

Table 2 CAPSO optimize the performance statistics of test functions

Index SCH1 SCH2 ZDT2 ZDT3 Average

GDa 0.000332 0.000315 0.000321 0.000311 0.00032

SPb 0.00322 0.00321 0.00312 0.00316 0.00318

CTc 2.1 2.4 2.8 3.2 2.6

a is convergence index, b is distribution index, c is computation time

The evaluation index GD, SP and CT confirmed the feasibility, accuracy and efficiency of

CAPSO algorithm for solving multi-objective optimization problems. GD shows that the

non-inferior solution is very close to the optimal front end of the real Pareto; SP shows that

the non-inferior solution has good distribution; CT shows that the time spent running is within

acceptable limits.

In order to test the superiority of the algorithm in multi-objective optimization solution. In this

paper, CAPSO algorithm compare with the non-inferior multi-objective genetic

algorithm(NSGA - Ⅱ), multi-objective particle swarm optimization algorithm(MOPSO) and

acceleration particle swarm optimization (APSO), statistical comparison results as shown in

Table 3.

Table 3 Comparison of the results of four algorithms to optimize test functions

Index NSGA IIa MOPSOb APSO CAPSO

GD 0.000544 0.000811 0.000642 0.00032

SP 0.00601 0.00722 0.00631 0.00318

CT 13.8 12.7 3.1 2.6

a Non-inferior multi-objective genetic algorithm, b Multi-objective particle swarm

optimization algorithm

According to GD from table 3, the convergence of CAPSO algorithm is better than other three

algorithms, indicates that the optimal front-end distance between the non-inferior solution and

real Pareto is smaller, that is the solution is closer to the real solution; Especially for APSO,
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the performance of CAPSO algorithm has made a lot of improvement, analysis its reason,

CAPSO algorithm has good performance to through the introduction of chaotic sequence, the

improved into local extremum problems. SP from table 3 shows that the distribution of

non-inferior solutions of CAPSO algorithm is better, that is, the non-inferior distribution of

the algorithm is more uniform than the other two algorithms. In the same way, good

distribution is also attributed to chaotic sequences. On CT, CAPSO and APSO algorithm of

computing time are much smaller than the NSGA-Ⅱ and MOPSO; Especially for MOPSO,

the algorithm that introduced the acceleration mechanism reduced the time by more than half.

From the calculation time analysis, APSO only introduces global factor, to search the global

optimal target, the purpose of the particle search is clear, reduce the computation time.

Compared with the calculation time of CAPSO and APSO, the calculation time of chaos

sequence is slightly higher, because the chaos sequence expands the search scope of the

particle, which is bound to increase the search time. However, in terms of performance, it is

obvious that CAPSO is better than APSO, and its convergence of non-inferior solution and

distribution are better than other algorithms, which can obtain a feasible solution with high

quantity, high accuracy and even more uniform distribution.

In general, through CAPSO algorithm for numerical experiments of four multi-objective

optimization problem, and compared with the classical multi-objective optimization NSGA-II

algorithm, the MOPSO algorithm and APSO algorithm, CAPSO algorithm has a better

comprehensive performance, algorithm through the chaos enhancement mechanism to

improve the convergence precision, improve the premature convergence of the algorithm.

4. CONCLUSION

In this paper, a Hybrid chaotic enhanced acceleration particle swarm optimization algorithm is

proposed(CAPSO). The algorithm uses chaos theory and acceleration mechanism to improve

the PSO algorithm and improve the precocious convergence of PSO algorithm, which greatly

improves the convergence speed. By the experiment of four standard test functions, the

proposed algorithm can be used to solve the multi-target problem, and the obtained

non-inferiority solution can get a good approximation of the optimal solution set of Pareto and

distribute evenly. By comparing with other algorithms, CAPSO algorithm can provide

practical reference value for many optimization problems in engineering.
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