SCIREA Journal of Education

http://www.scirea.org/journal/Education

August 8, 2018

Volume 3, Issue 2, April 2018

The Sustenance of Ekiti Rural Women's Economy: Identifying the flora species in livestock healthcare system

Gladys Modupe Kayode¹, Racheal Omowunmi Ajayi² and Oyin Oluwasesan Oladele²

¹Department of Adult Education and Community Development,

Ekiti State University, Ado-Ekiti, Nigeria E-mail: joshua.kayode@eksu.edu.ng

²Department of Plant Science and Biotechnology, Ekiti State University, Ado-Ekiti, Nigeria

Abstract

The potentials of livestock in the sustenance of the economy of rural women of Ekiti State, Nigeria was examined in this study. Semi structured questionnaire guides were used to interview 240 selected rural women from the three zones of the state. The interviews were focus, conversational and two-way in communication. The demography and values of livestock reared, diseases experienced by the livestock as well as the flora species used in the management of the diseases were identified. Similarly parts of the plants used including the methods of preparation of the flora-derived medicine were also identified. The perceptions of the women on the use of flora species were documented. The results obtained identified seven different livestock reared by the women respondents. These animals were observed to have culinary, socio-economic, cultural and spiritual values in the lives of the rural dwellers. Also while incentives to enhance their productions abound in the state, pests and diseases tend to affect their productivity. Veterinary services were poor in the state, however the women have considerable ethno-veterinary knowledge of flora species that they use to maintain the health of the animals. A total of 42 flora species belonging to 28 families were reportedly being

utilised for health maintenance of the livestock. These flora-derived medicines were found to

be safe for the livestock, effective, affordable and readily available. Strategies that would

enhance sustainable contributions of livestock to the economy of the rural women were

suggested.

Kevwords: Ethno-veterinary, medicinal, culinary, cultural, spiritual

Introduction

It is now widely acknowledged that rural women maintained cordial relationship with the

environment hence they are widely knowledgeable on the renewable natural resources in their

surroundings (Kayode 2006). Thus the varieties of flora and fauna species in the environment

are effectively utilized by rural women for rural economies, one of which include livestock

keeping. Livestock keeping is a branch of farming system which deals with the domestication

and rearing of animals for either consumption or for revenue generation.

Previous study by Salkowsti (2007) asserted that livestock farming is one of the cheapest and

easiest branches of farming that provides numerous benefits for its rearers. The wastes from

the animals are good sources of organic manure, detached feathers of birds and animal skin

are used for local fur, wool and leather production. Animals are good sources of protein such

as meat or egg. Livestock serve as a means of income generation; in addition, animals are also

used for performing sacrificial rites during traditional ceremonies amongst others. Thus

livestock contributed tremendously to the rural economy (Stringer and Pingali 2004).

Recent initiatives revealed that livestock rearing is largely a woman's job. Women take

responsibility for cutting fodder, cleaning sheds, milking dairy animals, processing animal

products and looking after the health of the herd (Arshad 2010). Thus, any effort aimed at

alleviating poverty without active participation of women is destined to fail. Unless women

are allowed to exploit their potential, the rural scene will remain unchanged. At present, the

art of livestock keeping in Ekiti State, Nigeria, is affected by a lot of challenges that result to

diseases outbreak that are infectious and deadly. Schelzer (2003) had earlier enumerated some

of these challenges, in rural areas, to include dirty environments, unhealthy food and waters,

inadequate ventilation, and non-isolation of affected animals.

30

Also, a gross dearth of veterinary doctors abounds in Ekiti State. The only veterinary hospital in the state is located in the state capital. Thus, veterinary treatment is difficult to obtain by resource poor farmers. Hence, animal health maintenance is skewed towards the use of plant based medicine. This is referred to as ethnoveterinary that is the sum total of all the knowledge and practice, whether explicable or not, used in the knowledge and practice, diagnosis, prevention and elimination of physical, mental or social imbalance and relying exclusively on practical experience and observation handed down from generation to generation, whether verbally or in writing (WHO 1997; Ameyan et. al. 2005).

The use of medicinal plants in the treatment of diseases have generated renewed interest in recent times, as herbal preparations are increasingly been used in livestock healthcare system (Akerele 1996; Chan et. al., 2006). Previous assertions by Maxwell et. al. (1995); Eluyoba (1997); Shimomura et. al. (1997) and Omoseyindemi (2003) asserted that at least 80% of people in the developing countries depend largely on indigenous practices for the control and treatment of various diseases affecting both humans and animals.

The Nigerian forests are rich in medicinal plants species that are rich in chemical compounds which are constantly used by rural women and other native veterinarians in treating diverse diseases in livestock (Shimomura et. al. 1997; Okigbo et. al., 2009). The ingredient and nature or raw materials of plant species are known to local villagers through personal experience and ancestral prescriptions as they have been used regularly from one generation to the other (Martin 1995). Medicinal plants have an added advantage unlike the orthodox medicine, such that they have fewer or no side effects, available at free or minimal cost since they grow in surrounding areas. They are holistic in nature, readily available, accessible, easy to prepare and administered at little or no cost at all (Shimomura et. al. 1997).

In addition to the above, orthodox medicine are not available in the rural areas but urban centres of the state hence extra costs are often incurred on transportation to purchase them. Also, the use of chemicals is costly (Anjawalla et. al. 2014). Indeed, Kamanula et. al. (2010) asserted that most farmers in developing countries are resource-poor and have neither the means nor the skill to handle chemicals appropriately. Quite often, the chemicals are adulterated by dilution (Kayode et. al. 2016) and can be dangerous to the animals. The erratic supply of the synthetic chemicals (Asawalam and Hassanah 2006) further constituted disincentives to their utilization. Thus the use of flora species is the only option available to the rural dwellers (Van Burden and Robinson 1997). The plants contain multiple constituents

(Liu et al. 1995) that have effect-enhancing, side effect neutralizing potentials (Eluyoba 1997). Thus herbal remedies are considered relatively safe for use (Shimomura et. al. 1997).

Some of these plants are no longer in abundance due to bush burning, deforestation and environmental disturbance. Also, the indigenous knowledge that develops within a given community through observation and real life experience over a period of time is communicated orally or otherwise, from one generation to the other (Felix et. al. 2009). Unfortunately, there is gross dearth of undocumented traditional knowledge of herbal remedies used to treat diseases in most culture (Edeoga 2001; Gurio-Fakim 2006). Thus the objectives of this study are to take inventory and identify livestock kept by respondents in the study area, take inventory of diseases affecting the livestock and identify the plants used to control/prevent each of the diseases.

Materials and Methods

Description of the Study area

This study was carried out in Ekiti State, Nigeria. The state has a total land area of about 5,887.890km². It has a population of 2,384,212 (NPC 2010). The state has two climatic seasons, a raining season, from April to October and a dry season, from November to March. It has a total annual rainfall of about 1400mm (Oluwatayo 2008) and a temperature range of between 21°C and 28°C. The state has tropical rainforest vegetation in the south and a derived savannah in the northern parts. The population is predominantly farmers (Adebayo 2013).

Ekiti state is divided into three political zones as Ekiti Central, Ekiti North and Ekiti South and 16 local government areas (LGAs). Ekiti Central zone consists of Ado, Efon, Ekiti West, Ijero and Irepodun/Ifelodun LGAs, Ekiti North zone consists of Ido/Osi, Ilejemeje, Ikole, Oye and Moba LGAs and Ekiti South zone consists of Ekiti East, Ekiti South West, Emure, Gbonyin, Ikere and Ise/Orun LGAs (Fig.1 A and B).

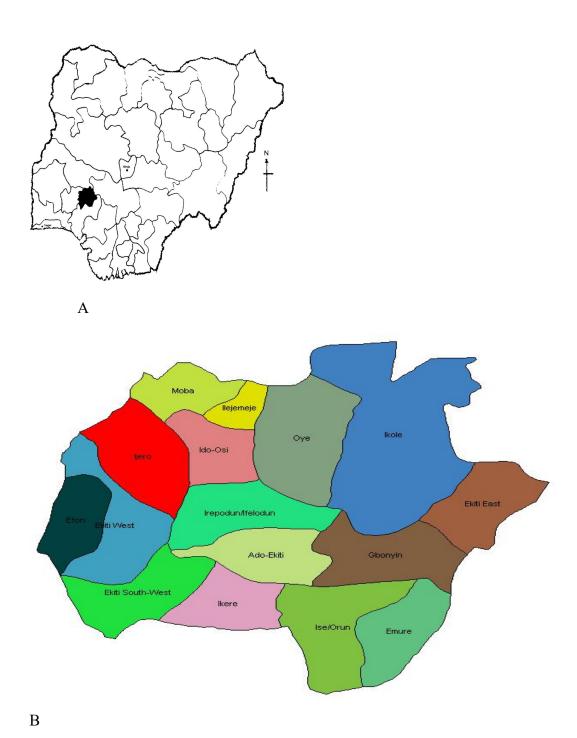


Fig. 1. A. Map of Nigeria showing Ekiti State

B. Ekiti State of Nigeria showing the Local Government Areas

Sampling Technique and Data Collection

Two LGAs were selected from each zone for the study. In each LGA, four farm settlements were selected (Table 1). These settlements were rural and purposely selected to be those that were relatively far from urban influence. The LGAs used were Ijero and Efon LGAs in Ekiti

Central zone, Oye and Moba LGAs in Ekiti North zone, Ise/Orun and Ekiti South West LGAs in Ekiti South zone.

Table 1: List of communities sampled in Ekiti State, Nigeria

Zone	Local Government	Communities Used	No. of Women
	Area		Interviewed
Ekiti Central	Ijero	Sakoro, Ologboodu,	40
		Kajola and Oke Oko	
	Efon	Araromi, Aladura,	40
		odofin and Aro	
Ekiti North	Moba	Epe, Iro, Alarasa and	40
		Osan	
	Oye	Dakowa, Igbo-Ero,	40
		igbo-Ogbe and Oke-	
		Otin	
Ekiti South	Ekiti South West	Aba Efon, Elejofi,	40
		Igunrin and Omipupa	
	Ise/Orun	Afolu, Kajola, Obada	40
		and Ogbese	

In each settlement, 10 women were selected randomly and interviewed with the aid of semistructured questionnaire matrix. The interviews were focused, conversational and two-way in communication. The demography and values of livestock reared, diseases experienced by the livestock as well as the flora species used in the management of the diseases were identified. Similarly parts of the plants used including the methods of preparation of the flora-derived medicine were also identified. The perceptions of the women on the use of flora species were documented. They were also made to compare the use of flora species with chemicals used in the management of livestock in the study area. Voucher specimens of the identified flora species were collected and later identified and deposited to the herbarium of the Department of Plant Science and Biotechnology, Ekiti State University, Ado- Ekiti, Nigeria. Also group interviews were conducted in each community. Each group was made up of at least 4 women respondents and five groups' interviews were conducted in each LGA. The group interviews are used to determine the group consensus on the responses of the individual respondents. Key informants, made up of officials of Agriculture Development Project, Ministries of Agriculture and Health, and Departments of Agriculture and Health in the LGAs were identified and interviewed. Secondary information was obtained from records, journals and internet.

Results

The results revealed that all the women respondents in this study were livestock rearers. They were mostly of working age of 20 to 60 years old (Table 2), adherents of the two major religions-Christianity and Islam, illiterates (69%) and were involved in agriculture (97%). Table 3 revealed the rank order of the livestock reared by the respondents. Seven different livestock were identified but fowl, goat and sheep were mostly favoured. All the animals were managed through the free range system where the animals were left to scavenge for food. The women preference (Table 3) was borne out primarily of the economic values of these livestock. The livestock were of culinary advantage as source of animal protein and were perceived to be cheap to feed and maintained in term of health, possessed short-time economic turn-over rates and required little capital to start off (Table 4). Livestock was also observed to have economy of time, were traditionally and spiritually valued. Field observation revealed that while the feed were essentially farm by-products and agricultural wastes, health maintenance were mostly flora dependent.

Also the livestock have diverse economic returns in the study area. Most of the women (68%, Table 5) sell more than 50% of their livestock every year and thus generated more than 20% of the household income (90%). Table 5 also revealed that over 60% of the women retained and utilized the income so generated from livestock themselves while some add the income to the family revenue. The use of livestock as insurance against sudden economic exigencies is also practised in the study area. Over 70% of the women had used livestock as bail out in more than 5 occasions.

Table 2: Socio-economic classification of rural women sampled in Ekiti State, Nigeria

Feature	Description	Proportion (%) of Respondents*				
		EC	EN	ES	Average	
Age (Yrs)	< 20	3	6	5	5	
	20-60	76	74	81	77	
	>60	21	20	11	17	
Religion	Christian	54	58	62	58	
	Moslem	38	42	36	39	
	Others	8	-	2	3	
Education	Literate	30	38	25	31	
Status	Illiterate	70	62	75	69	
Occupation	Agriculture	98	96	96	97	
	Non-agriculture	2	4	4	3	

^{*}Figures were percentages calculated to nearest whole numbers

Table 3: Rank order of livestock kept by sampled rural women of Ekiti State, Nigeria

S/n Livestock	Population				
	EC	EN	ES	Total	
1. Fowl	480	452	494	1426	
2. Goat	200	268	239	707	
3. Sheep	160	164	148	472	
4. Pig	104	68	72	244	
5. Duck	46	42	34	122	
6. Turkey	23	14	21	58	

7. Rabbit	10	8	14	32	

Table 4: Perception of rural women sampled on livestock rearing in Ekiti State, Nigeria

Rank	Description	Proportion (%) of Respondents
1.	Have culinary advantage as protein	100%
2.	Cheap to maintain	
	(a) in terms of feeding	96%
	(b) in terms of health management	96%
3.	Possess short-time economic turn-over	95%
4.	Little capital required for start off	94%
5.	Little time required	92%
6.	Have cultural role	90%
7.	Have spiritual value	88%

^{*}Figures were percentages calculated to nearest whole numbers

Table 5: Economic values of livestock reared by sampled rural women of Ekiti State, Nigeria

Description	Proportion (%) of Respondents
(a) Economic returns	
Sell less than 50% of livestock owned every ye	ar 32%
Sell more than 50% of livestock owned every y	vear 68%
(b) Proportion of household income	
Generate less than 20% from livestock	10%
Generate more than 20% from livestock	90%
(c) Domiciliation and utilization of income	
Retain income from livestock	63%
Add income to family revenue	37%

(d) Insurance for economic exigencies	
Served as bail out in less than 5 occasions	28%
Served as bail out in more than 5 occasions	72%

*Figures were percentages calculated to nearest whole numbers

The women acquired their starting-off livestock through diverse sources (Table 6). Livestock were received as gifts, usually from in-laws, friends and relations. 42% of women claimed to have primarily received such gifts mostly fowls and goats. 20% attributed their start-off livestock to articles of wedding engagement offered to their family during engagement ceremonies, mostly goats. 27%, 15% and 10% of the respondents respectively sourced their start-off livestock from the market as the primary, secondary and tertiary sources. Goat, sheep and dock dominated the livestock in this category. Foster ownership where livestock are given out to another person to rear. The offspring from such livestock are then divided between the actual owners and the foster-owners. 11%, 10% and 10% of the respondents obtained their livestock through this method as their primary, secondary and tertiary source

The use of flora based medicine for the livestock was perceived as affordable, effective, safe, easy to prepare and dependable (Table 7). A total of 42 flora species belonging to 28 families were reportedly being utilised their health maintenance (Table 8). The family Asteraceae had the highest frequency of occurrence among these species. Table 7 revealed that leaves, flowers, seeds, stems, stem barks, roots, root barks, fruits, rhizomes and bulbs were used. Similarly, latex and extracts from the plants were used. Various diseases such as dermatitis and other skin diseases, cough, ulcer, arthritis, rheumatism, fever, conjunctivitis, coccidiosis were being managed with the identified flora species. Similarly, pests such as worms, lice and other ectoparasites were also managed. Conditions such as cold, indigestion, loss of appetite, delay in ejection of placenta, bleeding and snake bites (Table 8) were also treated. These species were found available in the study area.

Table 6: Sources of initial (start-off) livestock by sampled rural women in Ekiti State, Nigeria

Sources	Proporti	ortion (%) of Respondents* Animals**				
	10	20	30	1 2 3		
Gifts	42	3	-	Fowl Goat -		
Article of Engageme	ent 20	-	-	Goat		
Purchase	27	15	10	Goat Sheep Duck		
Foster	11	10	10	Goat Sheep Pig		

^{*}Figures were percentages calculated to nearest whole numbers

Table 7: Flora species used for the management of livestock as identified by sampled rural women in Ekiti State, Nigeria

S/N	Specie	Species Name		
	Botanical	Vernacular		
1	Acacia nilotica	Baani	Mimosaceae	
2	Acanthospermum hispidum	Dagunro	Asteraceae	
3	Aframomum melegueta	Atare	Zingiberaceae	
4	Agerantum conyzoides	Imi-esu	Asteraceae	
5	Allium cepa	Alubasa	Liliaceae	
6	Alliun sativum	Ayu	Alliaceae	
7	Aloe vera	Alofera, Ahan erin	Asphodelaceae	
8	Argemone Mexicana	Egun Arugbo	Papavaraceae	
9	Asparagus racemosus	Epa Ikun	Liliaceae	
10	Azadirachta indica	Dongoyaro	Meliaceae	

11	Bambusa arundinaceae	Oparun	Poaceae
12	Butea monosperma	Eyinata	Papilionaceae
13	Calotropis procera	Bomubomu	Asclepiadaceae
14	Carica papaya	Ibepe	Caricaceae
15	Chromolaena odorata	Akintola	Asteraceae
16	Citrus aurantium	Osan ganyingayin	Rubiaceae
17	Cocos nucifera	Agbon	Aracaceae
18	Cucurbita pepo	Elegede	Cucurbitaceae
19	Cucurbita klaineana	Apako	Cucurbitaceae
20	Cynodon dactylon	Koko igba	Poaceae
21	Datura metel	Gegemu	Solanaceae
22	Delonix regia	Sekeseke	Caesalpiniaceae
23	Elaesis guineensis	Ope eyin	Arecaceae
24	Garcinia kola	Orogbo	Clusiaceae
25	Gossypium arboretum	Owu	Malvaceae
26	Hibiscus rosasinensis	Erinmado	Malvaceae
27	Holoptelia grandis	Ayo	Ulmaceae
28	Jatropha gossipiifolia	Lapalapa pupa	Euphorbiaceae
29	Mangnifera indica	Mangoro	Anarcadiaceae
30	Moringa oleifera	Mooringa	Moringaceae
31	Nicotiana tabacum	Taba	Solanaceae
32	Ocimum basilicum	Efinrin wewe	Lamiaceae
33	Ocimum gratissimum	Efinrin nla	Lamiaceae
34	Piper guineense	Iyere	Piperaceae

35	Pterocarpus osun	Osun	Papilionaceae
36	Senna fistulosa	Aidantoro	Caesalpiniaceae
37	Spondias mombin	Iyeye	Anacardiaceae
38	Talinum triangulare	Gbure	Portulacaceae
39	Terminalia catappa	Eso Oyinbo	Combretaceae
40	Vernonia amygdalina	Ewuro	Asteraceae
41	Zingiber officinale	Ata-ile	Zingiberaceae
42	Ziziphus mucronata	Eekanase-adiye	Rhamnaceae

Table 8: Modes of utilising the identified flora species by sampled rural women of Ekiti State, Nigeria

S/N	Species	Disease	Parts	Mode of Administration
		Cured / Pest	Used	
1	Acacia nilotica	Wound	Stem bark	Bark of Azadirachta indica and bark of Acacia nilotica are grounded then mixed with water to form paste and animals are given to drink
2	Acanthospermum hispidum	Skin diseases	Leaves	Grind and mix with water to paste and apply on the skin on the animal body.
3	Aframomum melegueta	Coccidiosis	Seeds	Grind the seeds to powder and give to fowl to drink with water
4	Agerantum conyzoides	Dermatitis and other skin diseases	Leaves	Boil the leaves and bathe the animal with the extract.
5	Allium cepa	Worm	Bulbs	Bulbs and leaves are grounded

6	Alliun sativum	Cough	and leaves Bulbs Seeds	together to form paste and the animals are given to drink Bulbs are made into paste and mixed with mustard seed paste for animals to drink The seeds are grounded into paste and given to the animals to drink
7	Aloe vera	Ulcer and wound Diarrhoea	Leaves	The leaves gel is extracted and given to the animals to drink Extract the gel and give to the animal
8	Argemone Mexicana	Rheumatism	Leaves and fruits	The juice extracted from leaves and fruit is given to animal to drink
9	Asparagus racemosus	Arthritis	Root	Root is grounded into power then mixed with milk and the animals is given to drink and rubbed at the affected area
10	Azadirachta indica	Wound	Stem bark	Bark of Azadirachta indica and bark of Acacia nilotica are grounded then mixed with water to form paste and animals are given to drink
11	Bambusa arundinaceae	Diarrhoea	Leaves and rhizome	Fresh leaves and rhizome is made into paste and it is given to animal to drink
12	Butea monosperma	Diarrhoea	Flowers	The flower is boiled and filtered. The filtrate is given to the animal to drink

13	Calotropis	Difficult	Flowers	The paste of flowers is mixed
	procera	delivery		with water to drink
		Snake bites	_	Milky latex of plants is applied
		Shake ones	Latex	externally on snake bite
				-
14	Carica papaya	Constipation	Latex	The latex is given to the
				animal to drink
		Worm	Leaves	Boil the leaves and give the
		VV OIIII	Leaves	extract to animal to drink
15	Chromolaena	Wounds,	Leaves	The leaves is grounded into
	odorata	rashes and	Leaves	paste and then apply externally
		insect		on the animals but toxic to
		repellent		cattle
				Cattre
16	Citrus aurantium	Skin rashes	Fruits	The affected area is scraped
				then the fruit juice is applied
				on it
17	Cocos nucifera	Worm	Fruits	Freshly grounded fruit juices
				is given to the animas to drink
18	Cucurbita	Cough	Leaves	The leaves juice is extracted
	klaineana			then given to the animal to
				swallow
19	Cucurbita pepo	Bleeding	Leaves	The leaves juice is extracted
				and given to the animals to
				drink
20	Cynodon	Low lactation	Aerial	The aerial plant is given as
	dactylon		parts	fodder to the animals to
		C		increase milk quantity and
		Conjunctivitis	Leaves	quality
			Leaves	Leaves juice of this plant is
				drop in the eyes of the animal
				every morning

21	Datura metel	Cold	Fruits Leaves and roots	Ripen fruits is made into paste then given to cattle to drink The roots and leaves are prepared into paste and applied externally on the affected parts of the animals
22	Delonix regia	Fever	Stem barks	Stem bark extracts is mixed with <i>Allium sativum</i> (garlic) and <i>Piper nigrum</i> (black pepper) and given to the to the animals to drink
23	Elaesis guineensis	Lice	Stem	Burn the palm trees to ashes and pour it on the house of the fowl
24	Garcinia kola	Cough	Seeds	Grind the seeds to powder and mixed with food for the animals or mix with water for the animal to drink.
25	Gossypium arboretum	Use as Tonic	Leaves	Boil the leaves for the animals to drink.
26	Hibiscus rosasinensis	Itching	Stem bark	Stem bark is grounded well and mix with water and given to the animal.
27	Holoptelia grandis	Ecto-parasites	Leaves	Leaves juice is applied on the animal skin for ecto-parasites
28	Jatropha gossipiifolia	Skin diseases and wounds	Leaves	Obtain the juice and apply on affected animal skin.
29	Magnifera indica	Indigestion	Fruits	The fruit is made into paste and given with wheat bread to the animals for consumption

30	Moringa oleifera	Diarrhoea	Leaves	Leaves paste is given to the animals to drink
		Ulcers	Roots	Juice from the roots of this plant is given to the animals to swallow
31	Nicotiana tabacum	Cough	Leaves	The leaves is put in the fire and the animals inhales the smoke
32	Ocimum basilicum	Coughs and cold	Leaves	The fresh leaves is boiled and the water is given to the animals to swallow
33	Ocimum gratissimum	Diarrhoea and worm	Leaves	The leaves is grounded into paste and given to the animals to swallow
34	Piper guineense	Coccidiosis	Seeds	Grind or boil the seeds and give to fowl to drink
35	Pterocarpus Osun	Dermatitis and other skin infection	Barks	Grind and mix with water, rub on affected animal body.
36	Senna fistula	Indigestion Constipation Loss of appetite	Pods Pods leaves	The pod is grounded into paste and given to the animals to swallow The paste of pod is given to the animals to digest Leaves are made into paste along with mustard seed to be taken by the animal
37	Spondias mombin	Child birth (For quick	Leaves	Give the leaves to the animal to eat or give the extract

		ejection of		squeezed from the leaves to
		placenta)		the animal to drink.
38	Talinum triangulare	Ulcer	Leaves	Give it to goat/sheep, cattle to eat raw.
39	Terminalia catappa	Lice	Leaves and Barks	Boil the leaves and barks and use the extract to bath animals.
40	Vernonia amygdalina	Worms and fever Dysentery	Leaves	The leaves extract is given to the animals to expel worms and to cure fever Squeeze the leaves and give the extract to the animal to drink
41	Zingiber officinale	Diarrhoea	Fruits	The fruits is grounded with water to form a paste and then given to the affected animals to drink
42	Ziziphus mucronata	Skin rashes	Leaves	Leaves paste is mixed with oil of <i>Linum usitassiimum</i> and applied all over the affected area

Table 9: Rank order of the perceptions of sampled Ekiti State rural women on the botanically-derived pesticides in Ekiti State, Nigeria

Rank	Description Description	Proportion (%) of			
Resp	Respondents				
1.	They are affordable / readily available	100			
2.	They are effective	99			

2. They are safe for livestock
4. They are easy to prepare and use
5. They are dependable
96

Discussion

This study confirms that rural women are well familiar with plant resources in their environment (Table 2). Baker (2010) asserted that women were on ground hence have considerable knowledge of their environment. Similarly Kayode et. al. (2016) stressed the dependency of rural dwellers on the natural resources of the environment. Though women in this study belonged to different socio-economic classes yet these features were found not to be pre-requisites to their environmental mindedness. This observation confirmed the previous assertion of Kayode and Dada (2015) on the environmental consciousness of the rural dwellers.

A total of seven different livestock were kept in this study however preferences were skewed towards fowls, goats and sheep (Table 3). These animals were easily fed with products from the farms most of which were supposedly wastes. They reproduced easily with minimal gestation periods and ready demand abounds for them within the study area thereby enhanced the economic returns obtainable from them.

Livestock rearing constitutes important assets to the rural women. This study revealed that livestock are kept for diverse purposes in the study area. These include productive purposes as food security and income generations as well as the non-productive purposes such as insurance against economic exigencies (Table 5), culture and spiritual utilizations (Table 4). Previous study by Ayoade et. al. (2009) has revealed that women are noted for keeping livestock in Nigeria. This is equally true of other developing countries. For example, Flintan (2008) documented participation of women in livestock management in different parts of the

world. Also, Niamer-Fuller (1994) asserted that more than three-quarters of livestock-related tasks in Asia are the responsibility of women. Herath (2008) asserted that in Nepal, 90% of women are engaged in livestock production.

The results obtained from this study revealed that the women respondents utilised diverse sources to commence their livestock rearing practise (Table 6). The act of given out livestock is common in the study area. Field observation carried out during this study revealed that old women, grandmothers and great grandmother are often involved in this practise. Also, during wedding engagement, female goats are often given to the bride as part of the wedding rites. The new wives were expected to rear such livestock. All the identified livestock are also available, in the local markets, for purchase. Some of the rural women took advantage of this to purchase livestock for rearing. Goat, sheep and duck were livestock mostly sourced through this medium. Foster ownership was dominated by goat, sheep and pig.

Results from this study revealed that apart from the social role of livestock as items of wedding rites, they have cultural and spiritual roles. Thus supporting the previous assertion of Moyo et. al. (2010). In the study area goats are slaughtered as an important aspect of funeral rites. Also sheep are slaughter by the adherent of Islam as an important requirement of their faith during *sallah*. Fowls are favourite meals during Christmas, birthday and other celebrations in the study area. All these increase demands for livestock and thus constitute favourable incentives for livestock rearing in the study area.

Livestock productivity is being hindered by pests and diseases in the study area. The state has only one veterinary hospital that is located very far from most parts of the state. Also a gross dearth of veterinary officers abounds in the state hence animal healthiness is skewed toward the use of flora species. Ethno veterinary knowledge is passed from one generation to another. This study revealed that the women were well familiar with flora species with ethno veterinary values. However, with the gradual decline in the population of old women and increase in environmental destruction, the need to document these flora species and also provide a data base that would ensure their sustainable utilization so that they will be available to present and future generations of women in the study area. The respondents believed in the efficacies of these flora species (Table 9), they are safe for the animals to use and are readily available in the study area.

Conclusion and Recommendations

This study revealed that livestock species play very important economic, social and cultural functions for rural households of the study area. They contribute to improve income and of women in the rural areas. They help on food supply, family nutrition, family income, asset savings and sustainable agricultural production, family and community employment, ritual purposes and social status. Pests and diseases, the major constraints to livestock production in the study area, were mostly maintained through the use of flora species by the women.

Consequent on the above, governments should evolve micro-credit schemes where interest-free or low interest loans would be offered to rural women to enhance their livestock rearing. They should train more manpower on livestock management. Rural women should be organised into co-operative societies for effective distribution of credits and subsidies. Regular educative programmes should be organised to train women on modern approach to livestock rearing. The destruction of the environment should be controlled. Botanical gardens, where flora species with medicinal values could be domesticated, should be established in each senatorial zone of the state. Also there is need for public awareness on the danger inherent in biodiversity loss. Sustainable and non-destructible harvesting of flora species methods should be utilized during harvesting of plant materials. The indigenous knowledge of rural women on the rearing of livestock should be properly documented.

References

- [1] Adebayo, W. O. (2013). Weather and Climate Agriculture. Pp. 11-14. In Ebisemiju, F.S. (ed.) *Ado-Ekiti Region: A study in Regional Development Planning*. Alpha Prints, Lagos.
- [2] Akerele, O. (1996). Who guidelines for the assessment of herbal medicine. *Fitoterapara* 62 (2): 99-110.
- [3] Anjawalla, P., Oforin, D. A., Jammndass, R., Mowo, J. G. and Stevenon, P. C. (2014). Processing of the training workshop on sustainable production, harvesting and conservation of botanical pesticide. World Agroforestry Centre, Nairobi, Kenya.

- [4] Arshad, S., Ashfaq, M., Saghir, A., Ashraf, M., Lodhi. M. A., Tabassum, H. and Ali, A. (2010). Gender and decision making process in livestock management. *Sarhad J. Agric*. 26(4): 693-696.
- [5] Asawalam, E. G. and Hassanah. A. (2006). Constituents of some essential oil of *Venonia* amygdalina as maize weevil protectants. *Tropical and Subtropical Agroecosystems* 6: 95-102
- [6] Ameyaw, A. D. O., Duker-Eshun, I. and Mills-Toberton, S. A. (2005). Assessment of some medicinal plant species envisaged having potential for the preservative of herbal products using some statistics methods. *J. Ethnopharmacol*. 24: 315-333
- [7] Ayoade, J. A., Ibrahim, H. I., and Ibrahim, H. Y. (2009). Analysis of women involvement in livestock production in Lafia area of Nasarawa State, Nigeria. *Livestock Research for Rural Development* 21:220.
- [8] Baker, K. (2010). Empowering Women and Saving the Environment, Newsweek, http://www.newsweek.com/empowering-women-and-saving-environment-70061
- [9] Chan, K. F., Eze, C. A., Emuelosi, C. E. and Esimone, C. O. (2006). Antibacterial and wound healing properties of methanolic extracts od some Nigerian medicine plants. *J. Ethnopharmacol.* IOU; 164-167
- [10] Edeoga, H. O. and Eriata, D. O. (2001). Alkaloids, tannins and saponin contents of some Nigerian medicinal plants. *J. Med. Aromatic Plants Sci.* 23: 344-349.
- [11] Eluyoba, A. A. (1997). The role of pharmacognosy in phytotherapy the challenges of our time. *Niger. J. Nat. Prod.* 2: 34-36
- [12] Felix, R. N., Kumar, N. and Stephan, L. T. R. (2009). Pharmacognostic study of Dioscorea oppositifolia L. Ethnobotanical Leaflets. 13; 77-82

- [13] Flintan, F. (2008). Women's Empowerment in Pastoral Societies. WISP, GEF, IUCN, UNDP.
- [14] Gurio-Fakim, A. (2006). Review-medicinal Plants: Tradition of yesterday and drugs of tomorrow. *Mol. Asp. Med.* 27: 1-93.
- [15] Herath, S. (2007). Women in livestock development in Asia. *Journal of Commonwealth Veterinary Association* 24(1):29–37.
- [16] Kamanula, J., Sileshi, G. W., Belmain, S. R., Sola, P., Mvumi, B. M., Nyirenda, G. K. C. (2010). Farmers insect pest management practices and pesticidal plant use in the protection stored maize and beans in southern Africa. *International Journal of Pest Management* 57(1): 41-49.
- [17] Kayode, J. (2004). Conservation Perception of Endangered Tree Species by Rural Dwellers of Ekiti State, Nigeria. *Journal of Sustainable Forestry* 19(4): 1-9.
- [18] Kayode, J. (2006). Conservation in Nigeria Perspective. Akolawole Press, Ado-Ekiti, Nigeria, 66pp.
- [19] Kayode, J. and Dada, C. A. (2015). The Impact of Fuelwood Supply on the Nutrition and Health Status of Rural Dwellers in Ekiti State, Nigeria. *Journal of Global Agriculture and Ecology* 3 (4): 203-210.
- [20] Kayode, J., Odesola, A. F., Ayeni, M. J. and Awoyemi, S. B. (2016).. Survey of Botanicals Used as Pesticides by the Rural Farmers of Ekiti State, Nigeria. *International Journal of Biological Papers* 1(2): 12–17.
- [21] Liu, S. Y., Wu, E. K., Wang, J. Y., Sons, L. M., Yen, M. H. and Lin, C. C. (1995). Identification of medical vines by 1752 using complementary discrimination methods. *Journal of Ethnopharmacology*141: 242-249

- [22] Maxwell, A., Seepersand, R., Pingal, R., Mooloo, D. R. and Reynoids, W. F. (1995). 3-beta-amino spirosolane steroidal alkaloids from *Solanum triste*. *Journal of Natural Products* 58: 625-628.
- [23] Martin, G. J. (1995). *Ethnobotany. A methods manual*, Chapman and Hall, London, 268pp.
- [24] Moyo, S. and Swanepoel, F. J. C. (2010). Multifunctionality of livestock in developing communities. In: Swanepoel, F., Stroebel, A. and Moyo, S. (Eds). *The Role of Livestock in Developing Communities: Enhancing Multifunctionality*, Co-published by The Technical Centre for Agricultural and Rural Cooperation (CTA) and University of the Free State.
- [25] Niamir-Fuller, M. (1994). Women livestock managers in the Third World: Focus on technical issues related to gender roles in livestock production. Staff Working Paper 18, IFAD, Rome.
- [26] NPC (2010). Population Distribution by Sex, State, LGA and Senatorial District. National Population Commission, Abuja, Nigeria.
- [27] Okigbo, R. N., Anuagasi, C. L. and Amadi, J. E. (2009). Advances in selected medicinal and aromatic plants indigenous to Africa. *J. Med. Plants Res.* 3(2); 86-95
- [28] Oluwatayo, I. (2008). The resources use efficiency of maize farmers in Nigeria. Evidence from Ekiti State. *World Journal of Agricultural Sciences* 4(1) 91-99.
- [29] Omoseyindemi, B. (2003). Plants as Natural medicine. Paper presented at the 12th Annual Conference of the Botanical Society of Nigeria (BOSON), University of Lagos, Lagos, Nigeria..
- [30] Salkowsti, L. R. (2007). Use of microcalcification descriptors in BI-RADS 4th edition to stratify risk of malignancy. *Radiology* 242 (2): 388-395.

- [31] Schelzer, G. H. and Omino, E. A. (2003). Plant resources of tropical Africa. Proceedings of the first PROTA International Workshop, PROTA, 23-25 September, 2002, Nairobi, Kenya.
- [32] Stringer, R. and Pingali, P. (2004). Agriculture's Contributions to Economic and Social Development. *Electronic Journal of Agricultural and Development Economics* 1 (1): 1-5.
- [33] Shimomura, K., Chalfie, D. C. and Tsien, C. (1997). Traditional medicinal plant genetic resources and biotechnology applications. Pp.209-225. In; Watanbe, K., Pehu. E. R. G. (Eds). *Plant biotechnology and plant genetic resources for sustainability and productivity*. R. Glandes Company and Academic Press Inc. Austin, TX.
- [34] Van Burden, T. P and Robinson, W. C. (1981). Formation of complexes between protein and tannin acid. *J. Agric. Food Chem.* 1: 77
- [35] WHO (1997). Resolution promotion and Development of Training and Research in Traditional Medicines. WHO Document No 30-49, Geneva, Switzerland.