

SCIREA Journal of Mathematics

http://www.scirea.org/journal/Mathematics

January 25, 2023

Volume 8, Issue 1, February 2023

https://doi.org/10.54647/mathematics110379

The *p*-adic valuation of $C_n(l) = \prod_{k=1}^n \prod_{j=0}^l (2k+2j-1)$

Xing Zhu, Chuanze Niu*

School of Mathematical Science, Liaocheng University, No. 1, Hunan Road, Dongchangfu District, Liaocheng, 252059, Shandong, P.R. China

*Corresponding author: niuchuanze@lcu.edu.cn

Abstract:

The formula of the *p*-adic valuation of the sequence $C_n(l) = \prod_{k=1}^n \prod_{j=0}^l (2k+2j-1)$ is studied. It is proved that $C_n(l)$ is not a square if l is even and $n \ge \max\{2l, \frac{3l+19}{5}\}$. It is proved also that there are many squares in the sequences $C_n(1)$ and $C_n(3)$, while there are no squares in the sequences $C_n(5)$, $C_n(7)$ and $C_n(9)$.

Keywords: p-adic valuation, Legendre's formula, Pell equation

1. Introduction

For $f(x) \in Z[x]$ and an positive integer n, we define $C_n(f)$ by $C_n(l) = \prod_{k=1}^n f(k)$. The study of the sequence $C_n(f)$ that containing infinitely many squares is an important problem in number theory. So far, many important results have been achieved in this research.

1

Amdeberhan, Media and Moll [1] conjectured that $C_n(x^2+1)$ is not a square for any integer n > 3. Cilleruelo [2] confirmed the conjecture and proved that $C_n(x^2+1)$ is a square if and only if n = 3. Hong-Liu [3] proved that there are infinitely many squares in the sequence $C_n(x^2-1)$. Fang [4] confirmed another similar conjecture posed by Amdeberhan, Media and Moll [1]. E. G\"urel and A.U.O. Kisisel [5] proved that $C_n(x^3+1)$ is not a square for any positive n. The number of squares in the sequence $C_n(f)$ was estimated by Cilleruelo-Luca-Quiros [6] when f(x) is irreducible with degree greater than 2.

Zhang-Wang [7] proved that $C_n(x^d + 1)$ is not a square when $d \ge 5$ is a prime. By Yang-Zhao [8], $C_n(x^d + 1)$ is not a square when d is an arbitrary odd integer. By Chen-Gong-Ren [9], $C_n(x^d + 1)$ is not a powerful number when d is an odd prime power. By Chen-Gong [10], $C_n(x^d + 1)$ is not a powerful number when d is odd and has at most two distinct prime factors. By E. G\"urel [11], there is an integer N(m) such that $\frac{C_n(x^d + 1)}{C_m(x^d + 1)}$ is not a square if $n \ge N(m)$ when d = 2 or 3. Niu-Liu [12] showed that if $n \ge \max\{q, 1198 - q\}$, then $C_n(x^3 + q^3)$ is not a powerful number for a fixed positive integer q.

For a prime p, the p-adic valuation of n is defined by $v_p(n) = e$ if $p^e \mid n$ and $p^{e+1}
otin n$. Let $f(x) = \prod_{j=0}^{l} (2x+2j-1)$ and write $C_n(f)$ as $C_n(l)$. In this paper, an explicit formula of $v_p(C_n(l))$ is given. By the properties of some Diophantine equations, the squares in the sequences $C_n(l)$, $1 \le l \le 9$ are studied also. Let $n = \sum_{k=0}^{l} n_k p^k$ be the p-adic expansion, we define $s_p(n) = \sum_{k=0}^{l} n_k$. The main results are as follows.

Theorem 1.1. Let *p* be an odd prime,

$$v_p(C_n(l)) = \frac{(l+1)(n+s_p(n)-s_p(2n))}{p-1} + \sum_{j=1}^{l} (l-j+1)(v_p(2n+2j-1)-v_p(2j-1)).$$

Corollary 1.2. For an odd prime p, $v_p(C_n(l)) \sim \frac{(l+1)n}{p-1}, n \to \infty$.

Theorem 1.3. If $n \ge \max\{2l, \frac{3l+19}{5}\}$, then there exists a prime p such that $v_p(C_n(l)) = l+1$.

By Theorem 1.3, it is trivial to deduce the following two corollaries.

Corollary 1.4. When *l* is even, if $n \ge \max\{2l, \frac{3l+19}{5}\}$, then $C_n(l)$ is not a square.

When it turns to whether $C_n(l)$ is a square or not for l = 1, 3, 5, 7, 9, we have the following results.

Theorem 1.5. (1) $C_n(1)$ is a square if and only if $n = 2m^2 + 2m$, where $m \ge 1$

- (2) $C_n(3)$ is a square if and only if $n = \frac{(\frac{1+\sqrt{5}}{2})^{2k} + (\frac{1-\sqrt{5}}{2})^{2k} 3}{2}$, where $k \ge 2$ and $3 \ge k$.
- (3) There are no squares in the sequences $C_n(5)$, $C_n(7)$ and $C_n(9)$.

2. Proof of Theorem 1.1 and Theorem 1.3

Lemma 2.1. (Legendre's formula [13]) Let n be a positive integer and p be a prime, then $v_p(n!) = \frac{n - s_p(n)}{p - 1}$.

Lemma 2.2. ([14]) Let n be a positive integer and p be a prime, then $\frac{n}{p-1} - \frac{\log(1+n)}{\log p} \le v_p(n!) \le \frac{n}{p-1}.$

Lemma 2.3. Let *n* be a positive integer and *p* be a prime, then $\lim_{n\to\infty}\frac{s_p(n)}{n}=0$.

Proof. By Lemmas 2.1 and 2.2, we have $0 \le \frac{s_p(n)}{n} \le (p-1) \frac{\log(n+1)}{n \log p}$, then the lemma follows.

Lemma 2.4. [15] For any positive integer n, there is always a prime $p \in [n, \frac{9(n+3)}{8}]$.

Proof of Theorem 1.1. Since

$$C_n(l) = \prod_{k=1}^n \prod_{j=0}^l (2k+2j-1) = \prod_{j=0}^l \frac{(2n+2j-1)!!}{(2j-1)!!},$$

we have

(1)
$$C_n(l) = ((2n-1)!!)^{l+1} \prod_{j=1}^{l} (\frac{2n+2j-1}{2j-1})^{l-j+1}.$$

Since $(2n-1)!! = \frac{(2n)!}{n!2^n}$, by taking the *p*-adic valuations on both sides of (1) we have

$$v_p(C_n(l)) = (l+1)(v_p((2n)!) - v_p(n!)) + \sum_{j=1}^{l} (l-j+1)(v_p(2n+2j-1) - v_p(2j-1)).$$

Therefore the proof is complete by Legendre's formula in Lemma 2.1.

Proof of Corollary 1.2. By Theorem 1.1,

(2)
$$\frac{(p-1)v_p(C_n(l))}{(l+1)n} = 1 + \frac{1}{n}(s_p(n) - s_p(2n)) + \frac{p-1}{(l+1)n} \sum_{j=1}^{l} (l-j+1)(v_p(2n+2j-1) - v_p(2j-1)).$$

Since for each $j = 1, \ldots, l$, we have $0 \le \frac{v_p(2n+2j-1)}{n} \le \frac{\log_p(2n+2j-1)}{n}$. Therefore the right hand of (2) goes to 1 as n tends to infinity by Lemma 2.3. The proof is done.

Proof of Theorem 1.3

Proof. Since $n \ge \frac{3l+19}{5}$, then $\frac{9}{8}(\frac{2n+2l+1}{3}+3) \le 2n-1$, hence there is a prime $p \in [\frac{2n+2l+1}{3}, 2n-1]$ by Lemma 2.4. Thus $\frac{p+1}{2} \le n \le \frac{3p-1}{2}-l$, and we have p > 2l since $n \ge 2l$. Thus the equation

$$(2x-1)(2x+1)(2x+3)\cdots(2x+2l-1) \equiv 0 \pmod{p}$$

has exactly l+1 solutions $x_i = \frac{p-2l+2i+1}{2}$, $i=1,2,\dots,l$, in the interval [1,n], therefore $v_p(C_n(l)) = \sum_{i=0}^{l} v_p((2x_i-1)(2x_i+1)\cdots(2x_i+2l-1)).$

For each i, if $p \mid 2x_i + 2j_1 - 1$, $p \mid 2x_i + 2j_2 - 1$ with $0 \le j_1 \ne j_2 \le l$, then $p \mid j_1 - j_2$, which contradicts p > 2l. Then we have

$$v_p((2x_i-1)\cdots(2x_i+2l-1))=v_p(2x_i+2j_i-1),$$

for a fixed j_i with $0 \le j_i \le l$. Since $p^2 \ge 3p \ge 2n + 2l + 1 > 2x_i + 2j_i - 1$, we have $v_p((2x_i - 1) \cdots (2x_i + 2l - 1)) = v_p(2x_i + 2j_i - 1) = 1$.

Therefore,
$$v_p(C_n(l)) = \sum_{i=0}^{l} v_p((2x_i - 1)(2x_i + 1) \cdots (2x_i + 2l - 1)) = l + 1.$$

The proof of Theorem 1.3 is complete.

3. Proof of Theorem 1.5

In this section, we discuss the *p*-adic valuations of $C_n(l)$ when l=1,3,5,7,9 and prove Theorem 1.5.

Lemma 3.1. [16] The positive integer solutions of the Pell equation

$$x^2 - 5y^2 = 4$$

are (x_m, y_m) , where $\frac{x_m + \sqrt{5}y_m}{2} = (\frac{1 + \sqrt{5}}{2})^{2m}, m = 1, 2, ...$

Lemma 3.2. [17] The positive integer solutions of Pell equation

$$x^2 - 5y^2 = -4$$

are (x_m, y_m) , where $\frac{x_m + \sqrt{5}y_m}{2} = (\frac{1 + \sqrt{5}}{2})^{2m-1}, m = 1, 2,$

Lemma 3.3. Let $x_1 = \frac{1+\sqrt{5}}{2}$ and $x_2 = \frac{1-\sqrt{5}}{2}$.

- (1) Write $S_k = x_1^{2k} + x_2^{2k}$, k = 1, 2, ..., then $S_k \equiv 1 \text{ or } 7 \pmod{10}$ if and only if 3 : k.
- (2) Write $T_k = x_1^{2k+1} + x_2^{2k+1}$, k = 1, 2, ..., then $T_k \equiv 1 \text{ or } 9 \pmod{10}$ if and only if $3 \notin (k-1)$.

Proof. By direct computations, we have $S_1 = 3$ and $S_2 = 7$. When k > 2, by the recursion formula

$$S_k = S_{k-1}S_1 - S_{k-2} = 3S_{k-1} - S_{k-2},$$

we have $S_3 \equiv 8$, $S_4 \equiv 7$, $S_5 \equiv 3$, $S_6 \equiv 2$, $S_7 \equiv 3$, $S_8 \equiv 7 \pmod{10}$ and hence the first statement follows.

For the second statement, we have $T_1 = 4$, $T_2 = 11$. When k > 2, by the recursion formula

$$T_k = T_{k-1}S_1 - T_{k-2} = 3T_{k-1} - T_{k-2}$$

we have $T_3 \equiv 9$, $T_4 \equiv 6$, $T_5 \equiv 9$, $T_6 \equiv 1$, $T_7 \equiv 4$, $T_8 \equiv 1 \pmod{10}$, and hence the second statement follows.

Lemma 3.4. (1) When $n \ge 1$, there is at most one square of the numbers 2n + 1, 2n + 5, 2n + 9, 2n + 13.

- (2) When $n \ge 5$, there is at most one square of the numbers 2n + 1, 2n + 5, 2n + 9, 2n + 13, 2n + 17.
- (3) When $k \ge 1$, there is at most one square of the numbers 2k+1, 6k+7, 6k+11, 2k+5, 6k+19.
- (4) When $k \ge 1$, there is at most one square of the numbers 6k+5, 2k+3, 6k+13, 6k+17, 2k+7.

Proof. Since the Diophantine equations $x^2 - y^2 = k_0$, have no solutions with x > 5 when $k_0 = 4,8,12,16$, then statements 3.4 (1) and (2) are proved. Since the Diophantine equations $x^2 - 3y^2 = \pm 4$, $x^2 - 3y^2 = \pm 8$ and $x^2 - 3y^2 = \pm 16$ have no odd solutions, then statements 3.4 (3) and (4) are proved.

Lemma 3.5. (1) $C_n(1)$ is a square if and only if $z_n(1) = 2n+1$ is a square.

- (2) $C_n(3)$ is a square if and only if $z_n(3) = \frac{(2n+1)(2n+5)}{5}$ is a square.
- (3) $C_n(5)$ is a square if and only if $z_n(5) = \frac{(2n+1)(2n+5)(2n+9)}{5}$ is a square.
- (4) $C_n(7)$ is a square if and only if $z_n(7) = \frac{(2n+1)(2n+5)(2n+9)(2n+13)}{5\cdot 13}$ is a square.
- (5) $C_n(9)$ is a square if and only if $z_n(9) = \frac{(2n+1)(2n+5)(2n+9)(2n+13)(2n+17)}{5 \cdot 13 \cdot 17}$ is a square.

Proof. As the proofs are similar, we show statement (2) only. By (1), $C_n(3) = z_n(3) \left(\frac{((2n-1)!!)^2 (2n+1)(2n+3)}{3} \right)^2,$

hence the if part is trivial. For the only if part, assume that $C_n(3)$ is a square. If $z_n(3) \notin Z$, then $v_5(C_n(3))$ is odd. which is impossible, hence $z_n(3) \in Z$, which implies that $z_n(3)$ is a square also. The lemma is proved.

Proof of Theorem 1.5.

(1) l = 1.

It is trivial to see that 2n+1 is a square if and only if $n=2m^2+2m$, m=1,2,..., then statement (1) follows.

(2) l = 3.

First, we show the necessity. Let $C_n(3)$ be a square. Then by Lemma 3.5 (2), $z_n(3)$ is a square also. Since (2n+1,2n+5)=1, then either $\frac{2n+1}{5}$ and 2n+5, or 2n+1 and $\frac{2n+5}{5}$ are squares.

Suppose 2n+5 and $\frac{2n+1}{5}$ are squares. Let $(a,b) = (\sqrt{2n+5}, \sqrt{\frac{2n+1}{5}})$, then (a,b) is a positive integer solution of $x^2 - 5y^2 = 4$. Hence by Lemma 3.1, $a = (\frac{1+\sqrt{5}}{2})^{2k} + (\frac{1-\sqrt{5}}{2})^{2k}$ for some positive integer k. Therefore

(3)
$$n = \frac{a^2 - 5}{2} = \frac{\left(\frac{1 + \sqrt{5}}{2}\right)^{4k} + \left(\frac{1 - \sqrt{5}}{2}\right)^{4k} - 3}{2}$$

for some positive integer k. Since $5 \mid 2n+1$, we have $a^2 \equiv 4 \pmod{5}$. Thus $a \equiv 3$ or $7 \pmod{10}$ since a is odd. Therefore $3 \not\in k$ by Lemma 3.3 and then $3 \not\in 2k$.

Suppose 2n+1 and $\frac{2n+5}{5}$ are squares. Let $(a,b)=(\sqrt{2n+1},\sqrt{\frac{2n+5}{5}})$, then (a,b) is a positive integer solution of $x^2-5y^2=-4$. Hence by Lemma 3.2, $a=(\frac{1+\sqrt{5}}{2})^{2k+1}+(\frac{1-\sqrt{5}}{2})^{2k+1}$ for some positive integer k. Therefore

(4)
$$n = \frac{a^2 - 1}{2} = \frac{(\frac{1 + \sqrt{5}}{2})^{4k+2} + (\frac{1 - \sqrt{5}}{2})^{4k+2} - 3}{2}$$

for some positive integer k. Since $5 \mid (2n+5)$, we have $a^2 \equiv 1 \pmod{5}$. Thus $a \equiv 1$ or $9 \pmod{10}$ since a is odd. Therefore, $3 \not\in (k-1)$ by Lemma 3.3, and then $3 \not\in (2k+1)$.

By combing equations (3) and (4), we have $n = \frac{(\frac{1+\sqrt{5}}{2})^{2k} + (\frac{1-\sqrt{5}}{2})^{2k} - 3}{2}$ for some positive integer $k \ge 2$ with $3 \ge k$. If k = 1, then n = 0, thus $k \ne 1$. The necessity follows.

Conversely, if $n = \frac{(\frac{1+\sqrt{5}}{2})^{2k} + (\frac{1-\sqrt{5}}{2})^{2k} - 3}{2}$ for some positive integer $k \ge 2$ with $3 \ge k$, then

$$z_n(3) = \frac{1}{5}(2n+1)(2n+5) = \left(\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{2k} - \left(\frac{1-\sqrt{5}}{2}\right)^{2k}\right)\right)^2,$$

which is a square, therefore the sufficiency follows. The proof is done.

(3)
$$l = 5, 7, 9$$
.

The proofs for l = 5,7,9 are similar. In order to make our proof clean and efficient, we give the proof of case l = 5 in detail, and for other cases, only those points that are different are mentioned.

By Lemma 3.4, there is at most one square of the numbers 2n+1,2n+5,2n+9. Since any two integers of 2n+1,2n+5,2n+9 are co-prime, then $z_n(5)=a^2\frac{D}{5}$, where D is a product of at least two different primes. Hence $z_n(5)$ is not a square. By Lemma 3.5, $C_n(5)$ is not a square.

For l = 7, the difference is that when (2n+1,2n+13) = 3, we need to rewrite $z_n(7)$ as $z_n(7) = \frac{(6k+3)(6k+7)(6k+11)(6k+15)}{5\cdot 13} = \frac{3^2(2k+1)(6k+7)(6k+11)(2k+5)}{5\cdot 13}.$

For l = 9, when n = 1, 2, 3, 4, we need to compute $z_n(9)$ directly. When $n \ge 5$, if (2n+1, 2n+13) = 3, then

$$z_n(9) = \frac{3^2(2k+1)(6k+7)(6k+11)(2k+5)(6k+19)}{5 \cdot 13 \cdot 17},$$

and if (2n+5, 2n+17) = 3, then

$$z_n(9) = \frac{3^2(6k+5)(2k+3)(6k+13)(6k+17)(2k+7)}{5\cdot 13\cdot 17}.$$

The proof of Theorem 1.5 is complete.

References

- [1] T. Amdeberhan, et al., Arithmetical propeties of a sequence arising from an arctangent sum, J. Number Theory 128(6), 2008, 1807-1846.
- [2] J.Cilleruelo, Squares in $(1^2+1)\cdots(n^2+1)$, J. Number Theory 128, 2008, 2488–2491.
- [3] S. Hong and X. Liu, Squares in $(2^2-1)\cdots(n^2-1)$ and p-adic valuation, Asian-Eur. J. Math. 3(2), 2010, 329-333.

- [4] J. Fang, Neither $\prod_{k=1}^{n} (4k^2 + 1)$ nor $\prod_{k=1}^{n} (2k(k-1) + 1)$ is a perfect square, Integers 9, 2009, 177–180.
- [5] E. G\"urel and A.U.O. Kisisel, A note on the products $(1^{\mu}+1)(2^{\mu}+1)\cdots(n^{\mu}+1)$, J. Number Theory 130, 2010, 187–191.
- [6] J. Cilleruelo, F. Luca, A. Quiros, Igor E. Shparlinski, On squares in polynomial products, Monatsh. Math 159, 2010,215–223.
- [7] W. Zhang and T. Wang, Powerful numbers in $(1^k + 1)(2^k + 1)\cdots(n^k + 1)$, J. Number Theory 132, 2012, 2630–2635.
- [8] Q. Yang and Q. Zhao, Powerful numbers in $(1^l + q^l)(2^l + q^l) \cdots (n^l + q^l)$, C. R. Acad. Ser. I 356, 2018, 13–16.
- [9] Y. Chen, M. Gong and X. Ren, On the products $(1^l+1)(2^l+1)\cdots(n^l+1)$, J. Number Theory 133, 2013, 2470–2474.
- [10] Y. Chen and M. Gong, On the products $(1^l+1)(2^l+1)\cdots(n^l+1)II$, J. Number Theory 144, 2014, 176–187.
- [11] E. G\"urel, A note on the products $((m+1)^2+1)\cdots(n^2+1)$ and $((m+1)^3+1)\cdots(n^3+1)$, Math. Commun 21, 2016, 109–144.
- [12] C. Niu and W. Liu, On the proudcts $(1^3 + q^3)(2^3 + q^3)\cdots(n^3 + q^3)$, J. Number Theory 180, 2017, 403–409.
- [13] Koblitz N, p-adic numbers, p-adic analysis, and Zeta-functions, J. Springer-Verlag, 1984.
- [14] Y. Bugeaud, M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres alge briques, J. Number Theory 61, 1996, 311-342.
- [15] G. Paz, On the Interval [n,2n]: Primes, Composites and Perfect Powers, Gen. Math. Notes 15, 2013, 1-15.
- [16] L. Hua, Introduction to Number Theory, M. Beijing: Science Press, 1975, 304-313.
- [17] J. Leveque, W., Topics in Number Theory, Volume 1 and 2, Dover Publications, 2002.