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Abstract

In this paper, we define the set of all n-ary C-formulas on the partial algebraic

system of type and define the operation on the set

. After this definition we have a unitary Menger algebra

of rank . Finally, we show that the set of all

C-hypersubstitutions for an algebraic system of the type with a binary operation on this

set and the identity element forms a monoid.
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1. Introduction

Let be the set of all -ary partial operations defined on the non-

empty set and let be the set of all partial operations on . A partial algebra

of type is a pair consisting of a set and an indexed set of

partial operations where is -ary. Let be the class of all partial algebras of type .

For we define the superposition operation

.

Here iff and for all ,

, we have , i.e.

and for all ,

,we have

Special -ary(total) operations are the projections to the -th component, where :

by .

Definition 1.1 ([7]) An algebra of type is called a unitary

Menger algebra of rank if it satisfies the axioms (C1),(C2),(C3):

(C1)
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(C2) for ,

(C3) for .

(Here is an -ary operation symbol, are nullary operation symbols and

are variables.) An algebra of type which satisfies (C1)

is called a Menger algebra of rank .

Theorem 1.2 The algebra is a Menger algebra of rank .

We have proven already that the algebra satisfies the axiom(C1) (see [4]).

Let be the set of all -ary terms of type and let be the set of all -ary term

operations induced by -ary terms on the partial algebra . For the definition of a term operation

induced by the term on the partial algebra (see [11],[1]). Different from the total case, the

set is, in general, a proper subset of (see some examples in [11]). In 1989, W.

Craig [6] introduced concept of terms for partial algebras by additional symbols and in 1996, F.

Börner [1] introduced another concept of terms for partial algebras.

Let be an alphabet and let be a set of operation symbols of type , where each

has arity and . We need additional symbols , for every

and . Let be an -element alphabet. The set of all

-ary -terms of type over is defined inductively as follows (see [1]):

(i) every is an -ary -term of type ;

(ii) if are -ary -terms of type , then is an -ary -term of

type for all and all ;
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(iii) if are -ary -terms of type and if is an -ary operation symbol, then

is an -ary -term of type .

Let be the set of all -ary -terms of type defined in this way. Then

denotes the set of all -terms of this type.

Now we consider a type consisting of -ary operation symbols only.

On the sets we introduce the following superposition operations. Let be -

ary -terms. Then we define an -ary -term inductively by the following steps:

(i) For , ,we define .

(ii) For we set ,

where are -ary -terms, for all and .

(iii) For we set ,

where are -ary -terms.

This defines an operation , which describes the superposition of

terms. Together with the nullary operations one obtains an algebra

.

Theorem 1.3 The algebra is a unitary Menger algebra of rank .

We have proven already that the algebra satisfies the axiom (C1), (C2), (C3) (see [5]).
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Every -ary -term induces an -ary -term operation of any partial algebra

of type . For , the value is defined in the following

inductive way:

(i) If then , where is as usual the -ary total projection on the

-th component.

(ii) If and we assume that are the term operations induced by

the terms and that the are defined for , then

is defined and .

(iii) Now assume that and that the are defined,with values

for . If is defined, then is defined

and .

Let be the set of all -ary -term operations induced by the -ary -terms from

on the partial algebra and .

Theorem 1.4 The algebra is a unitary Menger algebra of rank . (i.e.

satisfies the following identities:

,

for ,

)
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2. Partial Algebraic Systems

The concept of an algebraic system was first introduced by A.I.Malcev in 1973 [9].We now recall

the informal definition of algebraic systems. An algebraic system is a structure consisting of a non-

empty set together with a sequence of operations and a sequence of relations on this set. In 2002, P.

Burmeister [3] introduced the concept of a congruence relation on partial algebra. Using the

definition of algebraic systems and of relation on a set of partial algebra, we defined the new

concept of the partial algebraic system.

Definition 2.1 A partial algebraic system of type is a triple

consisting of a non-empty set , a sequence of partial operations defined on indexed by

the index set where is -ary for and of -ary relation on ,which is compatible

with all the partial operations , i.e.

if and if all

then .

Written in matrix notation

.
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Let be the class of all partial algebraic systems of type . Every -ary -

term induces an -ary -term operation of any partial algebraic system

of type . For , the value

when is partial algebra of type .

Not all of the terms in the second-order language will be used to express the properties of algebraic

systems. The one is called formulas, first introduced by A.I. Mal'cev in 1973. In 1986, P.

Burmeister [2] introduced the concept of formulas of the language by using the logical

connectives. In 2013, K. Denecke and D. Phusanga [10] introduced the concept of formulas by

using terms, the logical connective (for negation), (for disjunction), and the equation

symbol . So, we introduce the concept of a -formulas of type by using -ary -

terms of type .

Definition 2.2 Let . An -ary -formula of type is defined in the following

inductive way:

(i) If are -ary -terms of type , then the equation is an -ary -formula

of type .

(ii) If are -ary -terms of type , then is an -ary -formula of

type .

(iii) If is an -ary -formula of type , then is an -ary

-formula of type .

(iv) If and are an -ary -formulas of type , then

is an -ary -formula of type .
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Let be the set of all -ary -formula of type .

We want to extend a superposition to -ary -formulas. If we substitute variables occurring in an

-ary -formula by terms we obtain a new -formula.We want to describe this by the following

operations .

Definition 2.3 The operations

where , are defined by the following inductive steps: Let .

(i) If , then we define (which is the

superposition of terms).

(ii) If , then .

(iii) If , then

.

(iv) If , then .

(v) If , then

.

These operations define an algebra

which is called the -formula-term clone of type .

This algebra keeps the properties of the term clones.
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Theorem 2.4 The algebra is a unitary Menger algebra of rank . (i.e. the

algebra satisfies the following identities:

(CFC1)

whenever ,

(CFC2) whenever for ,

(CFC3) )

Proof If , then the assertion is clear by (C1). Now let .We give a

proof of (CFC1) by induction on the complexity of an -ary -formula as the following the steps:

(i) If have the form , then

.

(ii) If have the form , then
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.

(iii)We have to show that if (CFC1) is satisfied for the -formula , then it is also satisfied for

. In fact,

.

(iv) Here we have to show that if and satisfy (CFC1), then also satisfies

(CFC1). In fact,

.

This finishes the proof of (CFC1).

(CFC2) is clearly by (C2) and the fact that .

(CFC3) If , then the assertion is clear by (C3). It is left to consider the case that is

an -ary -formula .We will proceed in a similar way considering the completely of an -

ary -formula .

(i) If is an equation , then
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by (C3).

(ii) If have the form , then

.

(iii) Assume that (CFC3) is satisfied for .We show that it is also satisfied for .

By definition is the formula i.e. it is equal to .

(iv) Assume that (CFC3) is satisfied for and . Then is the

formula and this is to equal .

Now we will define the realization of an -ary -formula of type on the partial algebraic

system of the same type.

Definition 2.5 Let be a partial algebra of type and be an -ary -

formula of type . Then the realization of on the partial algebraic system

denoted by is defined as follows:

(i) If has the form , then

and both exist and

.

(ii) If has the form , then
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for and

.

(iii) If and suppose that is already defined, then

.

(iv) If and suppose that and are already defined, then

or .

Let be the set of all "realizations" of -ary -

formulas on the partial algebraic system and let

be the set of all "realizations" of -formulas on the

partial algebraic system .

Extending this idea to algebraic systems we can define an operation

as follows:

Definition 2.6 For any and -tuple of -ary

-term operations, we define

if
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and if , we define

and

.

Lemma 2.7 For and we have

.

Proof In the first case .We can be proved that

by induction on

the complexity of the -ary -term .

In the second case . We show it by induction on the complexity of -ary

-formula . Let .

(i) IF has the form , then

and

exist for and

(by Definition 2.5 (i))

exist for and
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exist for and

exist for and

by Definition 2.3(ii).

This shows .

(ii) IF has the form , then

and

exist for and

(by Definition 2.5(ii))

exist for and

exist for and

exist for and
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by Definition 2.3(iii).

Hence .

(iii) Let and assume that .

Then we have

and

and

by Definition 2.3(iv).

(iv) Let and assume that

; . Then we have

and
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and or

(by Definition 2.5(iv))

and

or and

or

or

by Definition 2.3(v).

The operation satisfies the following equation (see also ( ),( ),( )):

Theorem 2.8 The algebra is a unitary Menger

algebra of rank . (i.e. satisfies the following

identities:

( )

,

( ) for ,

( ) )
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Proof Using Lemma 2.7,we can prove following way:

for ( ), if is clear by . Let now .

We will give a proof by induction on the complexity of an -ary -formula .

(i) If has the form , then

the operation satisfies ( ), hence the previous line yields

.

(ii) If has the form , then

.

(iii) We have to show that if ( ) is satisfied for an -ary -formula , then it is also

satisfied for . In fact,
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.

(iv) Here we have to show that if satisfy ( ), then it is also satisfied for .

In fact

.

The proof of ( ) is clear by ( ) and the fact that

.

For ( ), we can calculate formula as follows. If , then

and
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.

3.Monoid of -Hypersubstitutions for Algebraic Systems of Type

In 1991, K. Denecke, D. Lau, R. Pöschel and D. Schweigert [8] introduced the concept of a

hypersubstitution algebras. A hypersubstitution for algebraic systems was first introduced by K.

Denecke and D. Phusanga [10]. It is a mapping that maps operation symbols to terms and relation

symbols to formulas preserving arities. They defined a binary operation on the set of all

hypersubstitutions for algebraic systems and then proved that this set the binary operation and an

identity element forms a monoid. So, in this section, we would like to form the new structure of the

so-called "Monoid of -Hypersubstitution for Algebraic Systems of Type ". The way to

approach this, we first define the based set.

Definition 3.1 Let . A -hypersubstitution for algebraic systems of type is a

mapping which maps each -ary operation

symbols of type to -ary -term of type and maps an -ary relation symbol to an -ary

-formula of type .

We denote the set of all -hypersubstitutions for algebraic systems of type by

.

For every -hypersubstitution for algebraic systems of type , we can define an extension

which maps an -ary -term to an -ary -term and maps an -ary -formula to an -ary -

formula as follows:

Definition 3.2 Let and . Then we define a mapping

inductively as follows:
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(i) for every ,

(ii) , where ,

(iii) , where ,

(iv) for every ,

(v) ,where ,

(vi) for ,

(vii) for .

Then is called the extension of .

Now,we define a binary operation on as follows:

Definition 3.3 Let and be the usual composition of mapping. Then we

define a binary operation on by .

Next, we prove that the binary operation as we already defined in Definition 3.3 satisfies

associative law. To get our result, we need some preparations as follows:

Lemma 3.4 For and we have

.

Proof The proof is straightforward and hence omitted.

As a result of Lemma 3.4, we have the following lemma.

Lemma 3.5 Let . Then we have .
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Proof Let and , we give a proof by induction on the complexity of an -ary

-term .

If with , then .

If and assume that for every , then

.

If for any and assume that

for every , then

(by Lemma 3.4)

.
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For . We will give a proof by induction on the complexity of an -ary -

formula .

(i) If has the form , then

.

(ii) If has the form , then

(by Lemma 3.4)

.

(iii) If has the form and if we assume that , then
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.

(iv) If has the form and if we assume that

for all , then

.

It follows from Lemma 3.5 that the binary operation satisfies the associative law.We prove this

fact in the next lemma.

Lemma 3.6 Let . Then we have .

Proof By using Lemma 3.5 and the fact that satisfies associative law, it can be shown that

satisfies associative law. In fact, we have
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.

Let be a -hypersubstitution for algebraic systems of type which maps the operation

symbol to the -ary -term for all , and maps the relation symbol to the

-ary -formulas , i.e. for all and .

Lemma 3.7 For any ,we have .

Proof The proof is straightforward and hence omitted.

A -hypersubstitution is claimed to be an identity, which we will prove this fact in the next

lemma.

Lemma 3.8 Let . Then is an identity element with respect to .

Proof First,we prove that is a left identity element by using Lemma 3.7. Let

and . Then we have

. Now, we show that is a right identity element. Let

. By Theorem 2.4 (CFC3), if , then

and

.

Therefore, .

Theorem 3.9 is a monoid.

Proof From Lemma 3.6 and 3.8, the conclusion holds.
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