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Abstract

CF X )
In this paper, we define the set { (t"'("))( )

s _ S(FAY A
system A - (A:(f, )”I,f )

WE P B CFy X )

of all n-ary C-formulas on the partial algebraic

(t,. ()

A
of type and define the operation R " on the set

. After this definition we have a unitary Menger algebra

((Wtc (Xn ))AS E (CF(t (n))(xn ))ésl R™, X-IASJ ---rX,é )
n n of rank N . Finally, we show that the set of all

(t,. ()

C-hypersubstitutions for an algebraic system of the type with a binary operation on this

set and the identity element forms a monoid.

Keywords: term, superposition, unitary Menger algebra of rank 1.

62



AMS Subject Classification : 08A40, 08AS5S5, 08A70.

1. Introduction

n - A . pN
Let P (A)= {f":A"- 0® A} be the set of all N -ary partial operations defined on the non-

¥
P(A)= UP"(A)

empty set A and let n=1 be the set of all partial operations on A . A partial algebra

= (fA % = A . . o g . ‘A 7
A= W) of type t= is a pair consisting of a set A and an indexed set (it of

A

partial operations where f 1S & -ary. Let PAlg(t)

be the class of all partial algebras of type 1 .

For NT ¥ = ¥\ {0} ST (PMA))™ T ® PT(A)

we define the superposition operation

S"A (4, g, ...a )@, ...a, )= fA(gf(a1,...,an),...,gﬁ(av...,an))'

n
R @,...a)i | domg?
@,...a )1 doms"*(f*, g}, ...q") - T !

Here and for all j=T..n ,

- 5 A
gf(av wa,) = b, ’ we have (b,...b )T domf ’ ‘e

n
domS™*(f4, g7, ....d0) = {@,...a)T A" [(a,,...a)T | domgf
j:

! and forall / = bl
g'(@,..a,) = B ve have (by,...b)T domf*}
Special N -ary(total) operations are the projections to the I -th component, where T£i€n,
A" ® A by e (a,,...a )= a,
Definition 1.1 ([7]) An algebra (M5 e, ....€,) of type t=(+10..0) is called a unitary

Menger algebra of rank N if it satisfies the axioms (C1),(C2),(C3):

S"(X SV X 1o X, )1 8"V, X s X)) > ST(S"(X YoV ) X o X ),

(€1
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(C2) S Xos Xp)» Xj o 1€ £ n,

(C3) Sn(XJ"iV'”",")» X for 1EJEN

(n+7)

(Here S" is an -ary operation symbol, Pl are nullary operation symbols and

XopXyou X Yo Y (M;S™)

n’ 1 gre variables.) An algebra of type t=m+1) which satisfies (C1)

is called a Menger algebra of rank 1.

. QnA
Theorem 1.2 The algebra (P (A);S™7) is a Menger algebra of rank N .

. QnA
We have proven already that the algebra (P"(A);S™) satisfies the axiom(C1) (see [4]).

X,) w,(x,)

Let Wi ( be the set of all N -ary terms of type T and let "t ~ be the set of all 7 -ary term

operations induced by 1 -ary terms on the partial algebra A For the definition of a term operation

t* induced by the term t on the partial algebra A (see [11],[1]). Different from the total case, the

A n
set W, (X,) is, in general, a proper subset of PT(A) (see some examples in [11]). In 1989, W.

Craig [6] introduced concept of terms for partial algebras by additional symbols € and in 1996, F.

Borner [1] introduced another concept of terms for partial algebras.

{f1i1 1}

Let X be an alphabet and let be a set of operation symbols of type t , where each f

g XGHR1iT 1y = A

: . . 1 X
has arity i a . We need additional symbols , for every

kT ¥7 = ¥\{O g TETE K 1 Xy = XX} be an N -element alphabet. The set of all

N -ary C -terms of type t over Xy is defined inductively as follows (see [1]):

~

(1) every X1 X, isan N -ary C -term of type t ;

Wy w,)

oy e W, W, : :
(i) if """ "k are N -ary C -terms of type t , then isan N -ary C -term of

type 1 forall 1€ J £ K gnqan k1 ¥+,
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(111) if Wirs W are n -ary C -terms of type t and if f isan i -ary operation symbol, then

o W)
%" isan N -ary C -term of type t .

Let ! (X,) be the set of all N -ary C -terms of type ! defined in this way. Then

¥
wex)= Uwlx,)
n=1 denotes the set of all C -terms of this type.

. t = (nn,...,n i .
Now we consider a type " (n.n,...n) consisting of M -ary operation symbols only.

w¢ t,W, .., W
Onthesets " " we introduce the following superposition operations. Let ' V""" be N -

S"(tw,...,w)

ary C -terms. Then we define an N -ary C -term n’ inductively by the following steps:

L t=x g S"(x. W, W) = W,
(i) For X1,1£/£n,wedeﬁne (xf Wysoos W) Vi

= & _
(ii) For t=e€(s,..s) we set S"(tw, ... w,) = ef(S”(s,w1,...,wn),...,8”(sk, w,, ’Wn)),
where "% are -ary C -terms, for all KT ¥* gng TEJE K
(iii) For t=f(s,...s,) we set S"(tw,..,w )= f(S"(s,w,...,w),...,S" (s, W, ..., wn)),

S,...,S
where ! n are N -ary C -terms.

. ST e wix,) . y
This defines an operation n n , which describes the superposition of
terms. Together with the nullary operations *v-%a one obtains an algebra

C ._ ayC .
n- clonern = (th(Xn),S”,xv...,xn)

n- clone’ ‘
Theorem 1.3 The algebra " 1is a unitary Menger algebra of rank 1.
n- clone’ .
We have proven already that the algebra n satisfies the axiom (C1), (C2), (C3) (see [5]).
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1 C
wiwe(x,)

Every N -ary C -term induces an N -ary C -term operation WA of any partial algebra

= (A-(fAY. i A
A=A ) of type th . For v 1A , the value wA(a1,...,an) is defined in the following
inductive way:
= A= xA =l nA - .
(1) If Y= X then W’ X =6 , where %" is as usual the N -ary total projection on the

i -th component.

K
W= W, W LW o
(i) If / ( o and we assume that Wﬁ ' M/k‘ are the term operations induced by

the terms Was s Wy and that the W"A_(aV ”"a") are defined for T£ £ k, then
wé(a1,...,an)is defined and wA(a,,...a,) = Wjﬂ(av.‘.,an)_
W fw..w,) and that the Wfd(ar""a”)

(i11) Now assume that are defined, with values

A = b. H A -
VVjA(ay“'lan) b/ for 1€ ] £n Iff} (b1""'bn) is deﬁned, then M(a1'...'an) 1s defined

ond wAa,...a,) = S“'A(f,.A,w}i(av...,an),...,wﬂ(ar..‘,an)).

n

We (X )2
Let ' "' be the set of all N -ary C -term operations induced by the N -ary C -terms from
¥
We (X ) WP (XY= U W, (X))
t n . n _ n
n on the partial algebra = and n=1 .

C(X YA 8MA A e"M)
Theorem 1.4 The algebra 0 ! 5

Cc A. A A JA
(th(Xn)—,S” e, ...e)

is a unitary Menger algebra of rank 1. (i.e.

satisfies the following identities:

CT) S™AA, SMA(MA, 62, s2), ., STA(A, &, . s2)) = STA(STA(SA, 1A, . 1), s

1ol R

€2 S™E" )=t 1 iEn

C3) S"M(tA e, el = 1A
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2. Partial Algebraic Systems

The concept of an algebraic system was first introduced by A.L. Malcev in 1973 [9]. We now recall
the informal definition of algebraic systems. An algebraic system is a structure consisting of a non-
empty set together with a sequence of operations and a sequence of relations on this set. In 2002, P.
Burmeister [3] introduced the concept of a congruence relation on partial algebra. Using the
definition of algebraic systems and of relation on a set of partial algebra, we defined the new
concept of the partial algebraic system.

(tnr(n)) 5 : As = (A;(f,'A),'i/'rA)

Definition 2.1 A partial algebraic system of type is a triple —

A
consisting of a non-empty set A, a sequence ()i of partial operations defined on A indexed by

A .
the index set | where f is M -ary for /1 I and r A ofn -ary relation on A ,which is compatible

A
with all the partial operations (i , ..

if(a1(1),a$2),...,a$”))i r (a“) ar(, ),...,ar(,”))i rf

and if all

@\, a} ,...,a(”),...,(ag”),a(z"),...,ag”))i dom f*
then (FA@",a,...,aM), .., fA@™,al, ...aM)i r

Written in matrix notation

(a“),agz),...,a("))i r

(aﬁ”,aff),...,a,(?"))i r

@",ad,..,aM T dom 4, ..., @™M,al",....a™) T dom f*
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Loy PAIGS(t . () (t,. ()

be the class of all partial algebraic systems of type .Every N -ary C -

wiwe(x,)

s
term induces an N -ary C -term operation WA of any partial algebraic system

s

(t,.(n)) a,..a 1A wA (a,...a )= w(@,..a,)

of type . For , the value

A = (A;(f,'A),'i /)

when is partial algebra of type th .

Not all of the terms in the second-order language will be used to express the properties of algebraic
systems. The one is called formulas, first introduced by A.l. Mal'cev in 1973. In 1986, P.
Burmeister [2] introduced the concept of formulas of the language by using the logical
connectives. In 2013, K. Denecke and D. Phusanga [10] introduced the concept of formulas by

using terms, the logical connective 9@ (for negation), U (for disjunction), and the equation

(

symbol » . So, we introduce the concept of a C -formulas of type £, (1)) by using N -ary C -

terms of type ty .

Definition 2.2 Let 7~ 1. An n -ary C -formula of type (5. (M) is defined in the following

inductive way:

(1) If bty are N -ary C -terms of type th , then the equation L1 isan N -ary C -formula

oftype(t”'(n)).

(.t )

(i) If ety aren -ary C -terms of type ty , then " isan N -ary C -formula of

O}

(iii) If CF isan N -ary C -formula of type (tp (n)), then @CF isan N -ary

C -formula of type (tp (n)).

(iv) IfCF1 and CFy are an N -ary C -formulas of type (5. (M) , then

CF,UCF, isan N -ary C -formula of type

(t,. ()
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(t,. ()

(X,)
Let @07 pe the setofall 1 -ary C -formula of type

We want to extend a superposition to 1 -ary C -formulas. If we substitute variables occurring in an

N -ary C -formula by terms we obtain a new C -formula. We want to describe this by the following

. npns
operatlonsR N2

Definition 2.3 The operations

R" :(wr‘i (Xn)I‘ECF(th(nD(Xn))' Wri X )® wf; (X )E CFe an*s)

n

Spens, T WE(X,)

¥ , are defined by the following inductive steps: Let v n

where 1

c

tTwe(x n — an
@) 1f tn( "),thenwedeﬁneR t.s,...s,)=S"(ts,...s,)

(which is the

superposition of terms).

i C
t, T WE(X,)

(ii) If fr n , then Rt » 1y8,...8,) = R"(t, s, ...5,) » R'(t,s, ""Sn)_

t,..t 1WCé(X
i " t "),then

R (r(t, ...t ).s,...8,) = r(R"(t,s,...s),...R"(t ,s,...s,))

CFTCF, n®*,) RU@CF,s,...5,) = OR"(CF,s,...5,)

(iv) If , the

CFLCF, T CF (X))

(V) If , then

R"(CF,UCF,s,..,s,) = R"(CF,s,..,s,)UR"(CF,s,...s,)

These operations define an algebra

C - Formclone(t ,(n)) := (CF(tnj(n))(Xn)l'EWf:1 (X LR" X, ..X)

(t,. ()

which is called the C -formula-term clone of type

This algebra keeps the properties of the term clones.
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C - Formclone(t ,(n))

Theorem 2.4 The algebra is a unitary Menger algebra of rank 7. (i.e. the
algebra C - Formclone(t ,, (n)) satisfies the following identities:

n n
(CFCI) R"(b,R"(t,s,,...S,),-..R"(t S, ....5,))

» RTR" (bt t),Sp08,) o Sy S bt TWE (X, )
2, [} W X

(CFC2) R™(6.8y-8) » 8, whenever S ( ) P 1ETE n

n
(CFC3) R (b, Xsoa X )» b)

Twex,) . bT CFy my(X,) ,
Proof If n , then the assertion is clear by (C1). Now let n’ . We give a

proof of (CFC1) by induction on the complexity of an N -ary C -formula as the following the steps:

(i) If CF have the form S » t, then

R"(s» t,R"(t,s,...s,),...R"(t,S,...S,))

= R"(sR"(t,s,-..S,), -, R"(t;, 5 ...,8,)) » R"(t,R"(t,s,,....S,), ., R"(t,, S, ... S,))
=R"(R"(st,...1,),8,...8,))» R"(R"(t,t,,....1,),5,,....S,))

R (R"(sty,....t.)» R"(t,t, ...t ),5,...S,)

RTR™s» tt;,...1,),8,-8,)

(ii) If CF have the form " P Pn) then

R"(r(py,..p,), R"(t,5}....8,), ... R" (¢, S, ..., S,))

r(R"(p,R"(t,8,...8,),..R"(t .8, ...8,)),... R"(p,, R"(t, 8}, ..., ), .. R" (.S, ..., S,)))

rR"(R"(p,t;,..t,),8,..8,), .. R"(R" (P, 1, . 1,), S, 08,))

R (r(R"(p,t, ...t ), ... R" (P, .. 1)), S, s S, )
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= R”(R”(r(p1,...,pn),t1,...,tn),sv‘..,sn).

(iii) We have to show that if (CFC1) is satisfied for the C -formula CF , then it is also satisfied for

@CF . In fact,
R"(@CF,R"(t,s,....5,),...R"(t.,S,,....S,))

n'>

= @(R"(CF,R"(t,s,,-...8,),..., R"(t ,S,,....5,)))

B(R"(R"(CF 1,1 ),S,,....5,))

L Il L LR ' |

R"(@(R"(CF,t,...,t )).5,....8,)

R"(R"(@CF,t,,...,t.).8,...5,)

19 n

CF,UCF

(iv) Here we have to show that if CF and CFy satisfy (CFC1), then also ~ ! 2 satisfies

(CFC1). In fact,

R"(CF,UCF,R"(t,s,...s,),..R"(t .S, ....S,))

-~ 9y P TREL AN

= R"(CF,R"(t,s, ...5,),-.. R"(t;,s,,...5,))UR"(CF,,R"(t,,s, ....S,), ... R" (.S, ..., ))

-9,

= R"(R"(CF,t, ...t ),5,...s,))UR"(R"(CF . t,,....1.).S,,...5.))

1990219

= R"(R"(CF,t,..t JOR"(CF,t,,...,t),S,...S,)

= R"(R"(CF,UCF,t,..,1),S,...5,)
This finishes the proof of (CFC1).

n — on
(CFC2) is clearly by (C2) and the fact that RSy 8) = §7(X,,8, 08, .

Twex
(CFC3) If fn X,) , then the assertion is clear by (C3). It is left to consider the case that b is

an N -ary C -formula CF . We will proceed in a similar way considering the completely of an 1 -

ary C -formula CF .

(i) If CF is an equation S» t, then
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R"(s» t,x;,...x,) = R"(sxp,...x,)» R"(t,x;,....x,)
= 8"(s,x;...x,)» S"(t,x;,... X))

= s» t by (C3).

(ii) IfCF have the form "7 %)  then

R™(r(ty, ...t )Xy X,) = r(R"(t, Xy X, )u o) R™(E X0 X)) = (8,00 T)

(iii) Assume that (CFC3) is satisfied for CF . We show that it is also satisfied for @CF .

R"(@CF,x,,...x,) is the formula @R"(CF,xy,...,x)

By definition i.e. itis equal to @CF .

R"(CF,UCF, X ...X )

(iv) Assume that (CFC3) is satisfied for CF, and CFy . Then is the

R"(CF Xy X, )OR"(CF Xy 0 X))

n’ and this is to equal CF U CFz.

formula

(t, ()

Now we will define the realization of an N -ary C -formula of type on the partial algebraic

s

system A" of the same type.

= (A (fAY .
Definition 2.5 Let 2 A1) be a partial algebra of type fr and CF be an N -ary C -
formula of type (,(m) . Then the realization of CF on the partial algebraic system

s _ L(FA A s
A= A7) denoted by CF* s defined as follows:

(i) If CF has the form 1> 2, then
A° o
t,» t) ={@,..a)l A" [t?(,..a,)

A
and &2 (a1, a”) both exist and

tha,,...a,) = t5(a, ...a,)} _

(ii) IFCF has the form " v+ 10)  then
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A° N A
(r(t,...t)) ={@,...a)i A" |(,,...,a )1 domt? for 1 = Vel ang
ti @, ...a,), .12, .a )T r'}
CF 1 CF (X ) A5
(iii) If and suppose that CF is already defined, then
AS - .. AS
@CF) ={(@,...a,)l A" |(a,...a,)I CF"~ }_
CF..CF,1 CF, (X A A’
) A (t”'(n))( ) and suppose that CFr and “F2 are already defined, then
] 4 . - 25 ~ A5
(CF,UCF,) ={(a,...a,)l A"l(@,...a, )l CF, or @....a)l CF, }.
CF. ()" =(cF* IcFT cF, . (X.)}
Let  (tnM3ad (ta M1 77 be the set of all "realizations” of N -ary C -
- A
formulas on the  partial algebraic  system A ) ") and let
A A
Py @) = U CF )X,
n* be the set of all "realizations" of C -formulas on the

- A
partial algebraic system An= (A )i ).

Extending this idea to algebraic systems we can define an operation

n As . ﬂs i AS ) As . As
R™M (WE (X)) ECF my® ") (WEX)) Y ® WEX,)" ECF, 0)X,)
as follows:
AS o A% A% s
b T WE(X,) E(F X)) A
Definition 2.6 For any (Wr”( ) ( (t”'("))( ) and N -tuple oty ) of N -ary

C -term operations, we define

S S o s
RPAMS 2t )= ST A, th) DT T W (X))
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>
w

A o A®
| (CF(tn'(n))(Xn))

and if , we define
A A° A AS = {(a,..,a )i A" |(a,,..,a)l | domt?
R™(b™ .t ,.ut )= RM(b" 14, 12) {@y - a,) @ 2,) L " ond
(t*@y..ma,), . ti@,...a N1 b2}
b1 WS (X )ECF X Sy, T WE(X
Lemma 2.7 For t"( 2 (t"’(”))( ) and t”( ) we have

Rn,A(bAS‘SfIiS‘ . SA )= (R"(b,s ST ,3))AS_

b=ti WS (X,)
Proof In the first case n . We can be proved that

mA A _AS ASY _ onApA A Ay A - AS
R™*(b sf snA )= SOt sfsf)— (s" (,31,..., )) (R"(b,s 1,..,sn)) by induction on

the complexity of the N -ary C -term t .

b=CF1 CF (X ) ‘ ‘ ‘ ‘
In the second case . We show it by induction on the complexity of 1 -ary

s,...s. 1 WE (X
C -formula CF . Let ' n t”( ").

* onA A A A
(i) IF CF has the form 5 5 then @y a) DR > 10708 s, )
« (a.,..,a)l dom s> - A
g | domst ey i)y )T 5 1)
A, A A
« t (s, @,...a,),..5, @,..a,)) exist for ' = V2 and

|]>

16} @@,y @8,)) = 6 (8 (@8, )s oS, (8108,) (by Definition 2.5 (i)

n,A A .
« S% (’ Sy e, )(a1,...,an) exist for | = 1'2and

A
S

SMA s s )@y a ) = ST “Y(a,,...a )

1,..
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« RS s, )@, -..a,) 12

exist for | = and

A A A A A
R™(t, .S, ,..uS, )@y ..na )= R"(t,,s, ,...s, )@,...a,)

R"(t,s,-s)) @,...a)

~
=

R"(t,S,..5.)) (@y..na,) = (R"(t,S,...5)) (3, ...a,)

S

- A
« (a,..a)l (R"(t,s,...s,)» R"(t,s,...8,))

. A
« (@,...a,)l (R"(t,» t,s,...8))) by Definition 2.3(ii).
. A5 AS AS ., AS
R 'A((t1 » t,) .8 ,..s )= (R"(t;» t,s,...8,)) .

This shows

S éS AS

T nA A
(ii) IF CF has the form r(tV'“'t"),then @p-a )l R™((rt, ...t ) .5 ,...8, )

o s (a8 ),.s, (@p..a )i (r(t1,...,tn))A’s

A, A A
« t (s (@,-.ma,),...8, @,..a,)) 1...n

exist for | =

A

A, A A, A A <
(t1 (s1 (aq,...,an),...,sn (a1,...,an)),...,tn (s1 (a1,...,an),,..,sn (31,...,an)))l rA

(by Definition 2.5(ii))
« Sn'A(tiA'Sf'""Sr:l)(a1""'a”) exist fori =1..n and
(S”A(tf,sf,...,sf)(ar...,an),...,S”'A(tf,Sf\,.--,S,?)(aqf---.an))i r
« R”'A(tiﬂ.f.----sﬁ_)(ar'“'an) existfor ! = VM and

(R™(t2,s8,...sM) @, ...a,), .. R™ (2,2, ... sM) (@, ...a )T r”

S

« (R (1,5, 5,) 2 (ap03,) -

exist for ! =
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(R"(t,s,....5,) (@@ )., R (S, .08, ) @y @ DT 12

s

« (ap...a)T (r(R"(t,s;..S,), ., R"(t , S} .5, )2

s

. A
« (a,...,a )l (R"(r(t,...1,)),s,...8,)) by Definition 2.3(iii).

ROA(((t, .t )Y, 85, s ) = R (r(t, .t ),S, s )Y

Hence

CF1 CF

(iif) Let (t ()X n)

and assume that

Then we have @ -a,)T RM(@CFY* s, .80 )

« (a,...a)l I|=1doms"‘ (@) a2 BCFY

« (a,...a)i |n doms* @ )a, a )i CFA
b g 1 @) 8@ 08,

« (a1,...,an)'l' R”'A(CFAS.3$.- :S:T‘s)

« (a1,...,an)'l' (R"(CF,s ---:Sn))AS

L I

s

« (a,...a )T (BR"(CF,s,,...s )"

o " 28
« @pna)l RUBCF. 88" o Definition 2.3(iv).

CF,CF,1 CF X
(iv)Let " 2 () and assume that

nA Jﬂs 75 75 - n AS a
RM™(CFA s} ,...s% )= (R"(CF,s,....5,)) AT {12 Then we have

@,...a )i RMA(CF,UCF)A &%, )

76

RMCFA 2,2 ) = (R"(CF,s,....s,))

n

As



« (ay,... [(S?(av---,an)-----sﬂ(av""an))i Cj.‘1AS

n or

(@) @@ DT CFA ] (0 pefiniiion 2.501)

s

« (a,...a )1 | doms?

g and (e, ...a ), ....s2(@,,...a, )1 CFA
@,...a)l | doms~ 4
or ! " i=1 ! and (Sfli(a-ll ;an): ls;.lq(a-l,- ,an))l CFZ_
« (@y.a,)T RMACFA, Y, s8) op @nnd,) T RMACF A L)

« (@,..a)l (R"CF,s,...s)* _(a,...a,)1 (R"(CF,s,...s )"

or

« (a,..a )T (R"(CF,s sn)l]:'?”(CFz,s1.....S,,))’ls

1 -|r ey

I . A®
« (@31 (RTCFUCF, 8,80 b Definition 2.3(v).

The operation R " Satisfies the following equation (see also (C 1),(C 2),(C 3)):

C AS C al A AS AS
((th(Xn)) E (CF(tn,(n))(Xn)) ;R™, X7 heea X, )

Theorem 2.8 The algebra is a unitary Menger

C AS Y A A AS AS
((Vvtn(xn)) E (CF(tn,(n))(Xn)) ;R™, X1 0 X )

algebra of rank 1. (i.e. satisfies the following

1dentities:

n

(CFCT) RMAA, RMAMY, &, ), RMAMY, &, Y))

S 4S8 s s s
= RMRMA B 14, 12,8, L)

1£i£n

,A AS S s - AS
(cre2y RO ST s) = 0 gy ,

A AS - RAS
(CFcay R X ) = b

)
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Proof Using Lemma 2.7, we can prove following way:

Twex,)

p— — bi CF X
for (CFCT1),if 'n """ s clear by C 1. Let now (t”’(n))( o) :

We will give a proof by induction on the complexity of an 1 -ary C -formula CF .

(i) If CF has the form S» t , then

RMARM™ ((s» tYA A, L tA), 2, L)

n

= Rn'A (Rn((s » t). t1' ""tn)As' Sflﬂs' ‘SA )

= R"(R"((s» t)ty.t ),5, .08, )

the operation R " satisfies (CFC 1), hence the previous line yields

= (R"((s» t),R"(t,8;,..,8,), .. R"(t , 8, ... )

RV

= R™M((s» tYA R, &2, &%), LR (Y&, )

n

(ii) IFCF has the form "+ then

s

RPAR™A((F (1 oo )V 12, A7), 65, 62)

= RUAR (\(1y o] )ty ot DA 2,82

[X>

= (R"(R"(r(lyy sl )ty oest.),8p0008,))
= (R"(r(ly. )R "t Sy oS, ), s R™(E, 8,008, )2
n 1

= RV Y R S8 ) L RYAEE SR

(iii) We have to show that if (CFC1) is satisfied for an N -ary C -formula CF , then it is also
satisfied for 9CF | In fact,

RMARM ((BCFYA 2, t4), 2, %)
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= RM((R"(BCF, 1.t )2 62, ., s8)
= (R"(R"(BCF,t, ...t ),S,...s, )

= (R"(@CF,R"(t,.S;,...5,), .. R"(t , S}, 5,)))*

= RM((BCF)Y RMA(E, 68, ., s%), . RMA(E &4, &4 )
(iv) Here we have to show that if CFyCFy satisfy (CFC1), then it is also satisfied for CFuck

2 "

In fact

RMARM (CF, UCF,)A 15, L t2), &, &)
= RM((R"(CF, OCF,t, .t ), &%, s
= (R"(R"(CF,UCFt, ..t ),5,...8 )~

= (R"(CF, OCF,,R"(t. s, ....s),.R"(t s, .5 )"
= R™A(CF, OCF )Y R s, ), o RMAE 8,5 ))
The proof of (CTCZ) is clear by (CFC 2 ) and the fact that

Acr A A% ASN A°
R" (x AT tr;)— (R”(xi,tv...,tn))f_

—— CFT CFy (myX,)

For (CFC 3), we can calculate formula as follows. If , then
ACEA x AS
R™(CF™, 1 ,...,xn )
n

= {(ay...a,)1 A" |(a,...a )1 | domx?

={(@,...a,)1 A" |(a,..a,)1 CF*}
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= CF*

3. Monoid of C -Hypersubstitutions for Algebraic Systems of Type (5, (M)

In 1991, K. Denecke, D. Lau, R. Pdschel and D. Schweigert [8] introduced the concept of a
hypersubstitution algebras. A hypersubstitution for algebraic systems was first introduced by K.
Denecke and D. Phusanga [10]. It is a mapping that maps operation symbols to terms and relation
symbols to formulas preserving arities. They defined a binary operation on the set of all
hypersubstitutions for algebraic systems and then proved that this set the binary operation and an

identity element forms a monoid. So, in this section, we would like to form the new structure of the

so-called "Monoid of C -Hypersubstitution for Algebraic Systems of Type (,(m) ". The way to
approach this, we first define the based set.
Definition 3.1 Let "1 ¥ A C -hypersubstitution for algebraic systems of type (&, () is a

S {f; |li I} E {r}® Wti(xn)ECF(fn.(”))(X”)

mapping which maps each N -ary operation

symbols of type th to N -ary C -term of type th and maps an N -ary relation symbol I to an N -ary

C -formula of type (& (n))

We denote the set of all C -hypersubstitutions for algebraic systems of type () by

Hyp® (t,,, (n))

(t,. ()

For every C -hypersubstitution for algebraic systems of type , we can define an extension
which maps an N -ary C -term to an N -ary C -term and maps an N -ary C -formula to an N -ary C -

formula as follows:

N 5 c
Definition 3.2 Let " | ¥” and I Hyp" (€, (n)). Then we define a mapping

§:WE(X YECF (X )® W° (X JECF (X )
o n (. (M)¥ fnhon (tn. (M) inductively as follows:
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~

Slx, 1= x

@) i for every 1 X n
(i) $[ef(s, -8 )1= € (8ls), .., 8ls,]) where N | Wtb; (X.)
(i) St t,)= RE(s(f), SI0L o, ST D e ty .t 1 Wfi (Xn),

1 C
(iv) $[s» t]:= $[s]» $[t] for every stl th (Xn),

$lr(s,,....s,)]= R"(s(r), §ls,], ... Ss, ) SpoSy 1 Wtcn X,)

, where

)

(Vl) §[QCF]= g(é[CF]) for CFi CF(tn:(n))(Xn)‘

wii) SCF, UCF,]:= SICF0SICF,] o CFuCR T CFy ) (X)

Then $ is called the extension of S .

Hyp® (t . (n))

: )
Now, we define a binary operation ' on as follows:

i c
Definition 3.3 Let °7 52 L Hyp" (2, () and O be the usual composition of mapping. Then we

c &
define a binary operation ” on Hyp" (t,. () by 510 5277 81052

Next, we prove that the binary operation as we already defined in Definition 3.3 satisfies

associative law. To get our result, we need some preparations as follows:

- T wce :
sT Hyp® (t, () BT Wi (X)ECF, )(X,)

Lemma 3.4 For we have

$R"(b.sy . 5,)1= R"(81b, 8l ], 8ls, 1)

Proof The proof is straightforward and hence omitted.
As aresult of Lemma 3.4, we have the following lemma.

s, s, 1 Hyp®(t,,(n)) (5,0, s )" = 8, 0$,

Lemma 3.5 Let . Then we have
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T w¢
iy WO o | .
Proof Let and , we give a proof by induction on the complexity of an 1 -ary

C -termt.

Ift = X,. with .,"|‘ {1"_",1} ,then (81 O,, SZ)A [Xi] = Xi = §1[Xi] = §1[§2[Xi]] = (§1 O§2)[X,-].

1707 9 M%) and assume thae 1% 92" 1= G108l g 1T 0L e
(5,0, )" [y, W)l = (s, 0, 8,)" W,],... (5, 0, 5,)" [w,])

= (8, 08)w,) .. (8, 08 )W, ])

= (3,18, m 1L, 5,[8,lw, 1)

= $ (S, m), ... 8w, D)

o GO

= (8, o§2)[ej.‘(w1,.‘.,wk)].
0% Tt forany 111 and assume that &1 % 52" Il = (51 09,1t

for every KT {11} then

(5,0, $) [ (t,..t )= R"((s, 0, 8,)(F), (5,0, 8,)*[t,],... (5, 0, s,)* It )
= R"((8, 05,)(£). (8, 08,)It,].....($, 08,)It, )
= R"($,s,(f)] $,[8,1t,1L,.... § [ 8,0t 1D
= §.[R"(s,(£), &,1t,], ... §,ft 1] (by Lemma 3.4)

= §[8,[F (...t )]

= (8,08))[f t-t,)]
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bT CF, myX,)

For . We will give a proof by induction on the complexity of an N -ary C -

formula CF .

(i) If P has the form S » t, then

(5,0, ;)" s tl= (5,0, 5,)*Is]» (5,0, 5,)" ]
= (8, 08,)[s]» (8, 08,)It]
= 5[8fsll» (8,11
= 88 fs» ]

= (8,08,)ls» 1]

(i) If © has the form @ 1) then

(5,0, §) [ty ..t )= R"((s; 0, 8,)(r). (s, 0, s,)*It,],.... (s, 0, 8,)* [t ])
= R"(($, 05,)(r), (8, 08,)It,], ... (5, 08,)It 1)
= R"(8,[5,(")], §,[8,0t, 1. ..., &, ,It, )
= §,[R"(s,(r), 8,1t ... 8,1t ] (by Lemma 3.4)

= §[8,[rt, ...t )]l

= (4, o§2)[r(t1.....Tn)]'

(iii) If b has the form @CF and if we assume that (5,0, )" [CF1= (5, 082)[CF], then
(s,0, 5,)"[@CF]= 0((s, 0, s,)*[CF])
- 0(($, 08,)CF))

= @($,[s,[CF D)
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$,[8(s,[CF])]

§,[,18CF ]

(8, 08,)[@CF]

) A[CF.]= (8, 08,)[CF,
(iv) If b has the form CFUCF, and if we assume that (810, )" [CF;1= (8, 08,)[CF;]

for all =1 2, then
(s;0, s,)"[CF,UCF,] = (s, 0, s,)*[CF,]U (s, 0, 5,)"[CF,]
= (8, 08,)[CF,1U ($, 08,)[CF,]

= §,[$,IcF,110 §,[$,[CF,]l

$.[8,IcF, UCF,]l

(8, 08,)[cF, U CF,l

It follows from Lemma 3.5 that the binary operation O satisfies the associative law. We prove this

fact in the next lemma.

(5,0, 5,)0, 8,=5,0 (5,0, s,)

5 C
Lemma 3.6 Let 18y 831 Hyp (r”' () . Then we have )

: : L . )
Proof By using Lemma 3.5 and the fact that O satisfies associative law, it can be shown that "

satisfies associative law. In fact, we have

(5,0, 8,)0 s;= (5,0 5,)" 05,

|
(%78

§,0(s,0, s;)
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= 5,0, (s,0, 33)'

(t,. (")

Let %id bea C -hypersubstitution for algebraic systems of type which maps the operation

symbol f to the N -ary C -term fibkp - X,) forall i1 1 , and maps the relation symbol I to the

r(x1,...,xn) )

,1.e. Sig(f) = filxp 0 x,) forall i T | and Siglr) = r(x1,...,xn)'

N -ary C -formulas

b1 WS (X, )E CFe )

th

§lbl= b

Lemma 3.7 For any , we have

Proof The proof is straightforward and hence omitted.

A C -hypersubstitution ~/¢ is claimed to be an identity, which we will prove this fact in the next

lemma.

S,g 1 Hyp® (t,,.(n)

S, . D . 0
Lemma 3.8 Let . Then ~id is an identity element with respectto .

0 c
Proof First, we prove that Sid is a left identity element by using Lemma 3.7. Let s 1 Hyp" (t,,(n)

and b1 {fi 171 1}EAr) . Then we have (84 0 5)(b)

= (Sig 05)(b) = $;4ls(b)] = s(b) . Now, we show that Sid s a right identity element. Let

R c .
s1 Hyp"(t,,(n)) . By Theorem 2.4 (CFC3), if i , then

(5.0, 5,,)(F) = ( 05,,)(F) = S5, (1)1 = S0y %)= ROS(F) Xy ex,) = SCF)

(so,8,)r)=(S0s,,)(r) = Sls;,(r)]= Slr(x,...x )= R"(s(r),x;....x,) = s(r)

S0 S,
Therefore, ~ 1 ~id

o YPU(t. ()= (Hyp® (t,. (). 0., 5,4)

Theorem 3 1s a monoid.

Proof From Lemma 3.6 and 3.8, the conclusion holds.
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