
97

AN OVERVIEW ON INTEGERS OF THE FORM �� + �

RAJIV KUMAR1, SATISH KUMAR2, MUKESH KUMAR3, DUSHIYANT KUMAR4

1Department of Mathematics, D. J. College, Baraut (Baghpat). Email: rajiv73kr@gmail.com

Orcid id: https://orcid.org/0000-0001-7601-3279
2Department of Mathematics, D. N. (PG) College, Meerut. Email: skg2069@gmail.com
3Department of Mathematics, Ch, Charan Singh University, Meerut. Email:

drmukeshsharma@gmail.com Orcid id: https://orcid.org/0000-0003-3071-5931
4Department of Applied Sciences, Galgotia College of Engg. & Tech., G. Noida, UP, India

Email: d.kumar@galgotiacollege.edu

Abstract

We pose various congruences on the integers of form 6� + 1 , � ∈ �+ , which may

encourage younger number theorist to do research in number theory and settled new

dimension in this field. We saw that there are only three prime numbers, namely 7, 37 , and

1297 of form 6� + 1 , whenever � ∈ �+ − {2��, � ≥ 6, � ≡ 1(��� 2)} , and no one

Fermat numbers represent in this form. Moreover, these integers end with seven, like Fermat

numbers ��, � ≥ 2 . Also, we discussed some congruences with number theoretic functions

�, � and Möbious function �, and generates various families of integers with �(�) = 0.
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1. Introduction

Theory of numbers grows with properties of integers and especially with the positive integers

1, 2, 3, … … … (also known as the natural numbers). Primes behaves like the nucleus in

number theory. Primes and forms of integers have been studied for over two thousand years at

the time of Euclid. The Euclid theorem posed various consequences, like that there are an

infinite number of primes of form 4� + 3 [3]. Multitude problems on primes and forms of

integers are still open until now. The famous Goldbach conjecture ([4], [10]) for even integers,

initially tells that every even integer � > 2 can be expressed as a sum of two primes. The

twin prime conjecture ([1], [11], [16]), asserts that there are infinitely many primes that differ

by 2. In the published paper [9] the author proved that all the integers of the form �6 + 6�, �

with prime � ≥ 2 are composite. After the studies of above cited work and various literature

referenced in ([2], [5], [6], [7], [8], [9], [10], [12], [13], [14], [15]) on various conjectures

concerned with primes, the form of integers, numbers of special forms like Fermat numbers

and number theoretic functions have great importance in the field of number theory. This

study aims to provide some congruences on the integers of the form 6� + 1, whenever � ∈

�+ − {2��, � ≥ 6, � ≡ 1(��� 2)} , with number theoretic functions �, � , Möbious

function � and established various forms of primes. Prominently we have that all numbers

6� + 1, � ∈ �+, end with 7 like the Fermat numbers �� = 22� + 1, � ≥ 2. For the study of

primality of numbers 6� + 1, � ∈ �+, we consider equivalence representation of number �.

Preliminary we consider � ∈ �+ as the member of the following two families � 1 , & �(2)

of integers respectively where these families defined as

� 1 = {�|� = 2��, � ∈ �+, � ≡ 1(��� 2)} ,

� 2 = {�|� = 2� + 1, � ∈ �0}

2. � ∈ � � = {�|� = ���, � ∈ �+, � ≡ �(��� �)} . Firstly, we consider

� ∈ � 1 = {�|� = 2��, � ∈ �+, � ≡ 1(��� 2)} , and deduce the following results.

Theorem 2.1. If the integer � = 2� , where � is an odd integer, then congruences 6� +

1 ≡ 0(37), and 6� + 1 ≢ 0(��� (37)2) always holds.

Proof. Since 62 ≡ − 1(��� 37), and 62 ≢ − 1(��� 37 2). Consider for � = 2�, where

� is odd, then clearly, the congruences 6� + 1 ≡ 0(37), & 6� + 1 ≢ 0(��� (37)2)holds.
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Theorem 2.2. If the integer � = 22� , where � is an odd integer, then congruences 6� +

1 ≡ 0(1297), and 6� + 1 ≢ 0(��� (1297)2) always holds.

Proof. Since 64 ≡ − 1(��� 1297), and 64 ≢ − 1(��� 1297 2). Consider for � = 22�,

where � is odd, then clearly, the congruences 6� + 1 ≡ 0(1297) , & 6� + 1

≢ 0(��� (1297)2) holds.

Theorem 2.3. If the integer � = 23� , where � is an odd integer, then congruences 6� +

1 ≡ 0(37), and 6� + 1 ≢ 0(��� (37)2) always holds.

Proof. Since 68 ≡ − 1(��� 17) , and 68 ≢ − 1(��� 17 2) . Consider for � = 23� ,

where � is odd, then clearly, the congruences 6� + 1 ≡ 0(17) , & 6� + 1

≢ 0(��� (17)2)holds.

Theorem 2.4. If the integer � = 23� , where � is an odd integer, then congruences 6� +

1 ≡ 0(98801), and 6� + 1 ≢ 0(��� (98801)2) always holds.

Proof. Since 68 ≡ − 1(��� 98801) , and 68 ≢ − 1(��� 98801 2) . Consider for � =

23� , where � is odd, then clearly, the congruences 6� + 1 ≡ 0(98801) , & 6� + 1

≢ 0(��� (17)2)holds.

Theorem 2.5. If the integer � = 24� , where � is an odd integer, then congruences 6� +

1 ≡ 0(353), and 6� + 1 ≢ 0(��� (353)2) always holds.

Proof. Since 616 ≡ − 1(��� 353), and 616 ≢ − 1(��� 353 2). Consider for � = 216�,

where � is odd, then clearly, the congruences 6� + 1 ≡ 0(98801) , & 6� + 1

≢ 0(��� (353)2) holds.

Theorem 2.6. If the integer � = 24� , where � is an odd integer, then congruences 6� +

1 ≡ 0(1697), and 6� + 1 ≢ 0(��� (1697)2) always holds.

Proof. Since 616 ≡ − 1(��� 1697) , and 616 ≢ − 1(��� 1697 2) . Consider for � =

216� , where � is odd, then clearly, the congruences 6� + 1 ≡ 0(1697) , & 6� + 1

≢ 0(��� (1697)2) holds.

Theorem 2.7. If the integer � = 24� , where � is an odd integer, then congruences 6� +

1 ≡ 0(4709377), and 6� + 1 ≢ 0(��� (4709377)2) always holds.

Proof. Since 616 ≡ − 1(��� 4709377) , and 616 ≢ − 1(��� 4709377 2) . Consider for

� = 216�, where � is odd, then clearly, the congruences 6� + 1 ≡ 0(4709377), & 6� +

1 ≢ 0(��� (4709377)2) holds.
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Theorem 2.8. If the integer � = 25� , where � is an odd integer, then congruences 6� +

1 ≡ 0(2753), and 6� + 1 ≢ 0(��� (2753)2) always holds.

Proof. Since 632 ≡ − 1(��� 2753) , and 632 ≢ − 1(��� 2753 2) . Consider for � =

232� , where � is odd, then clearly, the congruences 6� + 1 ≡ 0(98801) , & 6� + 1

≢ 0(��� (2753)2) holds.

Theorem 2.9. If the integer � = 25� , where � is an odd integer, then congruences 6� +

1 ≡ 0(145601), and 6� + 1 ≢ 0(��� (145601)2) always holds.

Proof. Since 632 ≡ − 1(��� 145601) , and 632 ≢ − 1(��� 145601 2) . Consider for

� = 232�, where � is odd, then clearly, the congruences 6� + 1 ≡ 0(145601), & 6� + 1

≢ 0(��� (145601)2) holds.

Theorem 2.10. If the integer � = 25� , where � is an odd integer, then congruences 6� +

1 ≡ 0(19854979505843329) , and 6� + 1 ≢ 0(��� (19854979505843329)2) always

holds.

Proof. Since 632 ≡ − 1(��� 19854979505843329) , and 632 ≢−

1(��� 19854979505843329 2) . Consider for � = 232� , where � is odd, then clearly,

the congruences 6� + 1 ≡ 0(19854979505843329) , & 6� + 1

≢ 0(��� (19854979505843329)2) holds.

3. � ∈ � � = {�|� = �� + �, � ∈ ��, } . Secondly, we consider � ∈ � 2 =

{�|� = 2� + 1, � ∈ �0, } , and deduce the following results.

Theorem 3.1. If the integer � = 2� + 1 , where � ∈ �0, then congruency 6� + 1 ≡

0(��� 7) holds but the congruency 6� + 1 ≢ 0(��� (7)2) not necessarily holds.

Proof. Since 61 ≡ − 1(��� 7) , and 61 ≢ − 1(��� 7 2) . Consider for � = 2� + 1 ,

where � is an integer, i.e., , � ∈ �0, also we have 67 ≡ − 1(��� 72) , then clearly, the

congruences 6� + 1 ≡ 0(��� 7) holds but the congruency 6� + 1 ≢ 0(��� (7)2) not

necessarily holds.

4. Remarks. Here we established the following remarks.

Remark 4.1. The string of integers of the form 64(2�+1) + 1, � ∈ �0 has exactly one prime.
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Remark 4.2. The string of integers of the form 68(2�+1) + 1, � ∈ �0 has no prime.

Remark 4.3. The strings of integers of the form 64(2�+1) + 1, � ∈ �0 and 68(2�+1) +

1, � ∈ �0 has no Fermat number, moreover these are composite numbers end with 7.

Remark 4.4. The chain of integers of the form 64�+1 + 1, � ∈ �0 has exactly one prime.

Remark 4.5. The chain of integers of the form 64�+1 + 1, � ∈ �0 has no Fermat number,

moreover these are composite numbers end with 7.

Remark 4.6. The chain of integers of the form 67(2�+1) + 1, � ∈ �0 satisfies the congruence

67(2�+1) + 1 ≡ 0(��� 7 2) .

Remark 4.7. The chain of integers of the form 67(2�+1) + 1, � ∈ �0satisfies the congruence

67(2�+1) + 1 ≡ 0(��� 29) .

Remark 4.8. The chain of integers of the form 67(2�+1) + 1, � ∈ �0satisfies the congruence

67(2�+1) + 1 ≡ 0(��� 197) .

Remark 4.9. The chain of integers of the form 64�+2 + 1, � ∈ �0 holds exactly one prime.

Remark 4.10. The chain of integers of the form 64�+2 + 1, � ∈ �0 holds no Fermat number,

moreover these are composite numbers end with 7.

Remark 4.11. The chain of integers of the form 64�+3 + 1, � ∈ �0 holds no prime.

Remark 4.12. The chain of integers of the form 64�+3 + 1, � ∈ �0 holds no Fermat number,

moreover these are composite numbers end with 7.

Remark 4.13. The chain of integers of the form 64�+3 + 1, � ∈ �0 holds no Fermat number,

moreover these are composite numbers end with 7.

Remark 4.14. The chain of integers of the form 66�+3 + 1, � ∈ �0 satisfies the congruence

6 6�+3 + 1 ≡ 0(��� 31).

Remark 4.15. If �, and � are distinct co prime odd integers then � = ���(6� + 1, 6� + 1)

must hold the congruency � ≡ 0(��� 7).

5. Conjectures. Here we established the various conjectures regarding number

theoretic functions.
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Conjecture 5.1. Each member of the string of integers of the form 62(2�+1) + 1, � ∈ �0
must hold the following congruences with respect to number theoretic functions �, � and

Möbious function �.

�(6 2(2�+1) + 1) ≡ 0(��� 2� ), � ∈ �+, � ≥ 2 (5.1.1)

�(62(2�+1) + 1) ≡ 0(��� 2� ), � ∈ �0, � ≥ 4 (5.1.2)

�[�(62(2�+1) + 1)] ≡ 0(��� 2�3�), � ∈ �0, �, � ≥ 2 (5.1.3)

� (�(62(2�+1) + 1)) = 0, � ∈ �+ (5.1.4)

� (�(62(2�+1) + 1)) = 0, � ∈ �0 (5.1.5)

�(�[�(62(2�+1) + 1)]) = 0, � ∈ �0 (5.1.6)

Proof. Consider theorem (2.1) and recall the definition of number theoretic functions , and

Möbious function . Then we find that the congruences (5.1) to (5.6) must hold.

Conjecture 5.2. Each member of the chain of integers of the form 64(2�+1) + 1, � ∈ �0
must hold the following congruences with respect to number theoretic functions �, � and

Möbious function �.

�(64(2�+1) + 1) ≡ 0(��� 2�), � ∈ �0, � ≥ 2 (5.2.1)

�(64(2�+1) + 1) ≡ 0(��� 2� ), � ∈ �0, � ≥ 4 (5.2.2)

�[�(64(2�+1) + 1)] ≡ 0(��� 2� ), � ∈ �0, � ≥ 2 (5.2.3)

� (�(64(2�+1) + 1) + 1)) = 0, � ∈ �0 (5.2.4)

� (�(64(2�+1) + 1) + 1)) = 0, � ∈ �0 (5.2.5)

�(�[�(64(2�+1) + 1) + 1)]) = 0, � ∈ �0 (5.2.6)

Proof. Consider theorem (2.2) and recall the definition of number theoretic functions , and

Möbious function . Then we find that the congruences (5.2.1) to (5.2.6) must hold.

Conjecture 5.3. Each member of the chain of integers of the form 62�+1 + 1, � ∈ �0 must

hold the following congruences with respect to number theoretic functions , and Möbious

function .

�(62�+1 + 1) ≡ 0(��� 2� ), � ∈ �0, � ≥ 2 (5.3.1)

�(62�+1 + 1) ≡ 0(��� 2�3�), � ∈ �0, �, � ≥ 1 (5.3.2)
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�[�(62�+1 + 1)] ≡ 0(��� 2�3�), � ∈ �0, � ≥ 1, � ≥ 0 (5.3.3)

� (�(62�+1 + 1)) = 0, � ∈ �0 (5.3.4)

� (�(62�+1 + 1)) = 0, � ∈ �+ (5.3.5)

�(�[�(62�+1 + 1)]) = 0, � ∈ �0 (5.3.6)

Proof: Consider theorem (2.3) and recall the definition of number theoretic functions , and

Möbious function . Then we find that the congruences (5.3.1) to (5.3.6) must hold.

Conjecture 5.4. Each member of the chain of integers of the form 67(2�+1) + 1, � ∈ �0
must hold the following congruences with respect to number theoretic functions , and

Möbious function .

�(67(2�+1) + 1) ≡ 0(��� 2� ), � ∈ �+, � ≥ 2 (5.4.1)

�(67(2�+1) + 1) ≡ 0(��� 2�3�), � ∈ �0, �, � ≥ 2 (5.4.2)

�[�(67(2�+1) + 1)] ≡ 0(��� 2� ), � ∈ �0, � ≥ 2 (5.4.3)

� �67(2�+1) + 1 = 0, � ∈ �+ (5.4.4)

�(�(67(2�+1) + 1)) = 0, � ∈ �0 (5.4.5)

�(�[�(67(2�+1) + 1)]) = 0, � ∈ �0 (5.4.6)

Proof. Consider theorem (3.1), remarks (4.6), (4.7), (4.8), and recall the definition of number

theoretic functions , and Möbious function . Then we find that the congruences (5.4.1) to

(5.4.6) must hold.

Conjecture 5.5. Each member of the chain of integers of the form 64�+3 + 1, � ∈ �0 must

hold the following congruences with respect to number theoretic functions , and Möbious

function .

�(6^(4� + 3) + 1) ≡ 0(��� 2�), � ∈ �0, � ≥ 2 (5.5.1)

�(64�+3 + 1) ≡ 0(��� 2�3�), � ∈ �0, �, � ≥ 2 (5.5.2)

�[�(64�+3 + 1)] ≡ 0(��� 2� ), � ∈ �0, � ≥ 2 (5.5.3)

�(�(64�+3 + 1)) = 0, � ∈ �+ (5.5.4)

�(�(64�+3 + 1)) = 0, � ∈ �0 (5.5.5)

�(�[�(64�+3 + 1)]) = 0, � ∈ �0 (5.5.6)
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Proof. Consider theorem (3.1), remark (4.11) and recall the definition of number theoretic

functions , and Möbious function . Then we find that the congruences (5.5.1) to (5.5.6)

must hold.

Conjecture 5.6. Each member of the chain of integers of the form 6 6�+3 + 1, � ∈ �0 must

holds the following congruences with respect to number theoretic functions , and Möbious

function .

�(6 6�+3 + 1) ≡ 0(��� 2� ), � ∈ �0, � ≥ 8 (5.6.1)

�(6 6�+3 + 1) ≡ 0(��� 2� 3� ), � ∈ �0, �, � ≥ 2 (5.6.2)

�[�(6 6�+3 + 1)] ≡ 0(��� 2� ), � ∈ �0, � ≥ 2 (5.6.3)

� � 6 6�+3 + 1 = 0, � ∈ �+ (5.6.4)

�(�(6 6�+3 + 1)) = 0, � ∈ �0 (5.6.5)

�(�[�(6 6�+3 + 1)]) = 0, � ∈ �0 (5.6.6)

Proof: Consider theorem (3.1) remark (4.14) and recall the definition of number theoretic

functions , and Möbious function . Then we find that the congruences (5.6.1) to (5.6.6)

must hold.

6. Remark (final)

Remark 6.1. After considering the conjectures from (1) to (6) we find that family of integers

of the form 6� + 1, � ∈ �+ are various families of integers with �(�) = 0.

7. Conclusion

We see that all numbers of form 6� + 1, � ∈ �+ , end with 7 like the Fermat numbers �� =

22� + 1, � ≥ 2 , but no Fermat numbers reach such form. Only three primes 7, 37, and

1297 exist in this form whenever � ∈ �+ − {2��, � ≥ 6, � ≡ 1(��� 2)}. Mostly members

of the string of the form 6� + 1, � ∈ �+ , of integers hold beautiful congruences with

number theoretic functions , and Möbious function and generates beautiful families of

integers with �(�) = 0.
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