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Abstract: This work mainly investigates the bifurcation problems and topological
classifications of a discrete phytoplankton-zooplankton model, whose continuous version was
proposed by Truscott and Brindley in 1994. The model is derived by using the semi-
discretization technique. Within this study, trivial and semi-trivial fixed points are identified,
as well as an interior fixed point that emerges based on specific parametric conditions.
Subsequently, an exploration of their topological classifications is undertaken, employing
linear stability theory in the vicinity of the trivial, semi-trivial, and interior fixed points.
Leveraging the center manifold theorem and bifurcation theory, it is feasible to derive
conditions under which the flip and Neimark-Sacker bifurcations are expected to transpire. To
validate these findings and draw conclusions, numerical simulations are conducted which
produce proof of a Neimark-Sacker bifurcation. Through these comprehensive analyses and
simulations, the main aim of this research is to effectively augment the understanding of the

dynamics of the model and affirm the validity of our results.

Keywords: Phytoplankton-zooplankton model, semi-discretization, flip bifurcation,

Neimark-Sacker bifurcation.
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1. Establishment of the model

1.1. Phytoplankton population

Over the past few decades, academics have developed an interest in
phytoplankton due to its relevance in the maritime ecosystem, as the basis of its
food chain and the effects of hazardous algal blooms, such as red tides, [1-12].
The mathematical formulas and parameters utilized to simulate the populations
vary among the models which involve systems of differential equations. Despite
several models having different biological, chemical, or physical structures,
there are generally two groups of models: those with just two or three
differential equations and those that contain several non-coupled differential
equations. Only numerical exploration will elicit a response from the first class
of models, [13-14]. However, instead of adapting the model output to specific
data, the second class primarily analyzes the flaws in observational data and
displays expected qualitative behaviors. The phytoplankton-zooplankton models,

[1] and [2], are examples of the second class.

Truscott and Brindley, [1], were the first to develop a model that considers the
predator-prey dynamics of phytoplankton and zooplankton as a nonlinear
"excitable system" to explain red tide dynamics. Excitability means that a
system, which is normally in equilibrium, is able to develop a huge response in
the form of a pulse when disturbed by a particular perturbation. The Hollings
type III has often been used in predator-prey models and phytoplankton-

zooplankton models. It is derived from the paradox of enrichment [15].

Truscott and Brindley, [1], described the evolution of phytoplankton biomass,
and zooplankton biomass, , where the growth of takes a logistic form with a
carrying capacity , the predation of on follows a Holling Type IlI, and the
external mortality of  i1s assumed to be linear. It is also mentioned that a

phytoplankton-zooplankton model, illustrated by using ordinary differential
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equations, depicts the red tide environment as a constant system with population

emerging through time.

The model by Truscott and Brindley is a two-component, Phytoplankton-
Zooplankton, model which only compares the relationship between
phytoplankton and zooplankton assuming ceteris paribus for the remaining

components.

The hypothesis that phytoplankton blooms are caused by abrupt temperature
changes was inspired by the excitability model developed by Truscott and
Brindley, [1]. A fast-growing phytoplankton population and a slow-reproducing
zooplankton population are both influenced by rising temperatures, and because
the latter is unable to keep up with the former, a bloom results. The model
exhibits various transient behaviors depending on the rate of temperature
increase, . In this instance, the temperature is a slow variable, similar to
zooplankton, because it is an environmental factor that fluctuates over time at a

specific rate, [16].
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Figure 1. 1. Truscott and Brindley Phytoplankton (P) and Zooplankton (Z)

model at different rates, v, of environmental change, [16].

In Figure 1.1 (a) the rate is lower than = . ~ and there are low
densities of the phytoplankton and zooplankton as shown by the green and grey

lines respectively. In (b) the rate is higher and we see a sharp spike in the
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population density of the phytoplankton represented by the red line and a shorter

spike for that of the zooplankton, shown by the grey line. This is an indication of

a phytoplankton bloom after a rapid environmental change, [16]. Technically as

the rate of environment change increases, it bypasses a threshold which can

cause a nonlinear change in the dynamics of the system which we call

bifurcation.

With reference to the Truscott and Brindley P-Z model, the breakdown of our

parameters is as follows:

Table 1.1 Meaning of parameters in our model .

Parameter

Meaning

Population of phytoplankton

Population of zooplankton

Gross rate of production of
phytoplankton

Maximum specific rate of predation

Environmental carrying capacity of the
phytoplankton

Used to determine how quickly the
maximum of the carrying capacity is
attained as prey densities increase

Ratio of biomass phytoplankton
consumed to biomass of new predators

Lt

The rate of  elimination  of
phytoplankton by death from other
causes not including predation

According to [1], the continuous P-Z model is as follows:
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2
where —— is derived from the Hollings type III grazing function. Ecological

observations justify the use of a predation function which saturates for high prey
densities, [8]. The excitability of the system arises because, y, the efficiency of
the zooplankton's conversion of food into biomass, is small. If y <<l, then

evolves on a fast time scale relative to . y covers a wide range of processes in
feeding and reproduction. A small percentage of zooplankton is capable of
reproduction, only a part of the ingested food is assimilated and only a small
proportion is used for reproduction. It is not necessary to calculate these ratios
directly, as they can be estimated implicitly from the values of the stable
populations [8]. Furthermore, « is <<  so that in any stable equilibrium of
the - subsystem that is not a bloom, has a value far below that of a bloom.

To derive our model we let,

= = = —. (12)

—= (- ) S

_ _ _ (1.4)

system (1.3) is modified into,
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—- (=) (=) -

Finally our continuous-time phytoplankton-zooplankton model, (1.5), takes the

following form after dropping the tildes,

—= (=)=
(=)

Because solving a complicate system, generally speaking, one needs to use

), (1.6)

-+

computer. So, one naturally considers its discrete model. We next study the
corresponding discrete model of system (1.6), which we will derive using the

semi-discretization method.
1.2. Piecewise constant arguments

First we will make an assumption that allows [ ] to be the greatest integer not

exceeding , also known as the greater-integer function.

Consider the avarage change rate of model (1.6) at the integer point. Our model

(1.6) then becomes,

___O_ Cqp) - (p_law
— (aM - am- ad—7s

_ _O_ _(anm
O ( [D< +( (D) > (1.7)

We can see that piecewise constant arguments occur in system (1.7) and that
any solution, ( (), ()), of the system for (0, + o), will have the following

three characteristics [17]:

()and () are continuous on (0, ).
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il. The derivatives '() and '( ) exist at each point te(0,.0) with the
possible exception of the points (0, o) where one-sided derivatives exist.

iii. The following (1.8) and (1.9) are satisfied and true in each interval

[ +1)  (000).

By integrating system (1.7) over the interval, [ , ] forany [ , + 1), where

=0, 1, 2, 3..., we get the following system,
{()= D)
O= -
(1.8)

Weuse as ( )and for ().

As —( +1)-insystem (1.8), the following system is formed

_ (- ) —
. =
( B ) (1.9)
— +
+ '
where all parameters , , , >0.

In this paper, our main contribution is the consideration of the dynamical
properties of system (1.9), primarily for its stability and bifurcation. This
includes topological classifications around the fixed points of the P-Z model
(1.9), bifurcation analysis around the fixed points of the system using

bifurcation theory and numerical simulation. We assume the space of

parameters Q={( , , , ) 4} with , tobe (0,o0).

The next section will be about the study of the fixed points and the topological
classifications around them. Section 3, is dedicated to the comprehensive
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bifurcation analysis around the fixed points and Section 4, focuses on the
verification of the theoretical results and finally the conclusion of the paper is

found in Section 5.

2. Existence and topological classifications around fixed

points.

In this section we will focus on the existence of fixed points and each point’s

stability. The fixed points of system (1.9) satisfy the following:

= (=)= + = +

) 2.1)

We then find the fixed points which, due to the biological nature of the system,

are only non-negative. Thus the system only has the fixed points
0(010)1 1(110) ( | )a

_ 2 __(1- - 1
where = ’1_, =T 0< < =7

The Jacobian matrix at any fixed point in system (1.9) takes on the following

form

(-9 a- - -2 a-)-
(1+ =)

2 2 (&) ()

The characteristic polynomial of ( ) is in the form,

A =MN- A+B,

where = ( ( )) =det ( ( )), namely,
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To analyze the fixed points we need to use the following definition and lemma

[18-20, 23].

Definition 2.1. (,) 2
M M.

O <1 <1 () ,
() IM=1 N =>=1 () ,

C) IMI<1 A
>1C =1 A<D, ()

) AMl=1 [xl=1 (,) -

Lemma 2.1

Let

()= — + (2.2)

2

where and B are two real constants.

Suppose A; and A, are two roots of (A) = 0, then the following statements

hold.

a) (1) =0,

(.DHIMI<1 Al <1 (-1) =0 <1;
(.3)IM<1 ] > 1 (—1) <0;
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(.4 M >1 Al > 1 (-1) =0 > 1:

(.9M A A1l = Azl

=1, —-2< <2 =1,
(. O)AM=A=—1 (-1 =0 = 2.
b) () =0, 1 \) =
0, A satisfies
Al =(<,>)1 | |=(<,>)1
¢) () <0, M =0 (1, 00). ,
(.1 A <(=-1 (-1) < (=)0;
(.2 —1<A<1 (-1) > 0.
For the stability of fixed points ¢(0,0), 1(1,0), ( , ) we can get the
following theorems 2.1, 2.2, 2.3., respectively.
Theorem 2.1
0(0,0) (1.9)
Proof:
(,9)
(0=(, 2)
For the fixed point ¢(0,0), we have,
M= =1, M= T <1
So according to Lemma 2.1, we see that g (Proven)
Theorem 2.2
1(1,0) (1.9
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241 ’
1. O0< <2, ; (stable node).
2 =2, —
3 >2,
- 1
2.4+ 1 ’
1 0< <2, 4
2 =2, 1 -
3. >2, (unstable node).
= 21+1 1 -

Proof: For the fixed point 1(1,0), we have

1— _ 1
(D= f+1 )
' ( 0 (2+1_ )

1 —_—
So the eigenvalues are Ay =1— and A\, = (72 )

By applying Lemma 2.1 we consider the following three cases.

(i) Case(a): >——.

+

0< <2, , 21( 1), 0

1) = (1— (z ))>o,
-1) = (2— )(1+ (o )>>o,

B=(1- )( (Z )>s|1— |( (= ))<|1— <1,
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>21 v 0

(D) = <1— (i )>>o,
-1 = (2- )<1+ (=1 )><o.
=2 _
@ = (1— (7 ))<o,
D= @- )1+ (7 )>=o.

(ii) Case(b): <

+ .

o< <2 0

> 2 0

(1) = <1— (%1_ )><o,

1

1) = (2— )(1+ (z )><o.
=9 0 —

(1) = <1— (%1_ )><o,

(1) = (2 )(1+ (z )>=o.
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(i11) Case(c): =——, o -

(1) = (1 - = )> =0. (Proven)

Theorem 2.3
1
0< < 2= (.) (19),
— /_2 —_Wi- -V .
where = |-— and BT . The following consequences
We have

(2 —-1-2 \/1—Z>+1 -
()=
2 a-Ha-J 1

’

and

(M) = M — A+B,

:)\2—<2+ (2 -1-2 \/l_z))m (2 -1-2 J;)*“z a-)H)a- 1_—2)

The roots of the equation are,

’ 2
Ao=(2+ <—1+2 -2 r)i\/z,

where,

A=(2+ (2 -1-2 J;))Z—4< (2 -1-2 \/1_Z>+1+2 - )(1—\/1_2)).
=( <2 -1-2 \/l_z>)2—<8 - )(1—\/?))

Lemma 2.2

s=Gr (-1v2 p)( (o2 =2 [F)erst 2(5;5))

0, C ) : = o
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(i) . )

(- e

- : (2.12)

(i) . (2.3)

( (1—2 +2 E)—z) (1+r). (2.13)

(iii) C , )is - (2.3)

< <1—2 +2 E)—z) (1+T) (2.14)

-y
Lemma 2.3
A=(2+ (—1+2 -2 \/1_2)2—4< (—1+2 -2 \/1-Z>+1+2 Z(ZE;;/;Z)><
0, . = ;.
. )
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<<_ . J;>>(+T)I (2.15)

- \/Z; (2.16)

( , )isan (2.3)

<<1_2 2 J;)) (1+1T). (2.17)

(., Dis - 2.7

(6= B))es 19

3. Bifurcation analysis

In this section we will use the center manifold theorem and bifurcation theorem to navigate

problems of the fixed points of the biological system (1.9), 1(1,0) ., ).

We refer to previous biological work that used bifurcation analysis [17-22] to analyze the fixed points.
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3.1. Fixedpoint ( , )

Theorem 2.2 shows that a bifurcation of system (1.9) may occur at the fixed point

space of the parameters

o ={Bwvv o >+

21

or

% ={Boyv) o <=

1

We now consider the following cases.

3.1.1. Casel: =, >

+
Our result is as follows.
Theorem 3.1.
B wyv) Q =2
0 (19
, 1(1,0).
Proof:

We first transform the fixed point, 1 to the origin, (0,0).

Let = — 9 = — . We also give a small perturbation

+1 = = ,system (1.9) becomes;

VNS
Lo ey MmO

=() (%_ )

By Taylor expansion, the system (3.3)at( , , ) =(0,0,0) becomes,
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0

1(1,0) in the

and letting



= + + + + + + + +
+ ( ) + + + () + + + ( ) +
+ + ( ) + ( )
= + + + + + + + +
+ ()
+ = ,
where 1, =4 2+ 2+4( )2
_ 1 1 _ 2
100="1 100573 20053 30=73
001 = 002= 003= 200 = 011= 102= o012 = o021 =0,
_ -1 _ 1 0 1 _
010 — 2+1 ’ 020 — 2( 2+1)Zl 030 — 6( +1)3' 110 — ( 2+1)2’ 111 — 6( 2+1)|
_ (2%-3) —__ 1 L 1 _ 4
120 — 6( 2+l)31 210 — 3( 2+1) 3( 2+1)2 3( 2+1)3I
100 = 200 = 300 = 020= 030 = 120 =0,
1 2 1 2 (02 4 4_o 2_ (L_
= ( 2+1 ) = 2— ( 2+1 ) = 2 (2 + 2 3) 2+1
010 ’ 110 ( 2+1)2 ’ 210 ( 2+1)4
Let
-1
-1 0
100 ow O 241
(D)={ 100 ow0 0])= : (=) 0
0 0 1
0 0 1
_ 2_1 (L_ )
The eigenvalues of ( 1) are Ay = 5 o 1, A= 241 Jand A3 = 1.
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. 1 . . .
Given 21 # , a flip bifurcation may occur at the fixed point, ( 1), when varies in the

neighborhood of the critical point, .

3.1.2. Case 2: =, <

+

We expect the same result as in Case 1 hence the proof has been omitted.

3.2. Fixedpoint ( , ).

Lemmas (2.2) and (2.3) show that when = y and = 1, the fixed point ( , ) is non-
hyperbolic. Moreover the dimensional numbers for the stable and unstable manifold of ( , )
vary when the parameter, , goes through these values. This shows that a bifurcation may occur in

each case.

3.2.1. Flip bifurcation

When (2.5) holds, (— 1) =0, which is one of the conditions for a flip bifurcation to occur. The

following analysis is proof of the occurrence of a flip bifurcation.

Theorem 3.2.1.
B w,y,v) Qs y
Yo (1.9)
O ) ,
_ 2 _ (1= . 1

Proof: We first transform the fixed point, ( , )tothe origin, (0,0).

Let = - O = - O

O@=C + 0)=C + 7ty

=0 + o) 0

<2( +0)22_)
=0 + o) +C *+ o) — 0

(3.21)
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We also give a small perturbation, , of the parameter

around ¢ ,i.e.,

o, Wwith 0<

| | L By letting +1 = = ,system (3.5) is perturbed into
()
1— —( +
a=0C + o) (1=C + )= 0)2+(+0)2_ 0
(+0? )
a=( + o " () o
+1 —
(3.22)
Using the Taylor Series Expansion, system (3.3)at( , , ) =(0,0,0) becomes,
+1= 1200 T oo t o;r T 110 + o1 + 101 + o1 + 20 27* o0 ?
+ 002( )?+ 120 24 500 2 0+ 490 ()P H 01 2+ g 2+ g ()P
30 °* om0 °F 003( )+ (gl)v
+1= 100 F o0 * 110 + 200 2+ o0 2+ 210 2+ 10 2+ 30 3+ g3 3
+ (3)
1)
y +1 = V Il
(3.23)
where 5=+ 2+ 2+(y)2
2
_\J_Tl‘/1T 3 2 2 2
vooo(=2 i/-Tl+ v +2 /__lx/lf— /—Tl\/lf)
100 = 7 ,
( r(./g_— )—, — r—ﬁ))
_ v .+ TN (),

(V=) | (V)W)
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( r(\/:— )E( r—JT))

S G O e e VO O i T i S G O e i S B

—( (VW) () () (=X -+

2 3
_ _ (=2 22 +1) )
010 =~ 020 = 7 ) 030 =7

3 2 2 2
(2 2 222 V1- + yVI- -2 2\/—Tl+4 J _1—2J —1)
110 — 2 )

( r(\/:z_l—l)—Jz( V—VI))
v

3
_ VD@ 223 [ @ (VT )T )
120 — 3 ’

210 —

(P re)

= 3 3 2
@ 2( 2( -1)@ -3)-2 2( -1+ V ( —1+ o —7 @2 (v V1= )+V1- )2 ( —1)— +1))
5
472

5 5 3
o D@2 22 3@ —(NT ) AT )2 AV ) 0 |~ @ (VI )R )

4

N Ul

2 o f—(VVED((~D- +D)
100 — \/—( -1) /]

2 o(V"VI= )R o ((—1)*+4 255 +1)
200 = N ,

4 o= DV VIT)@ 02 ( ~1*+3 o ~D(@ 2-5 +1)+12 2-18 +6)
300 =~ N ,

2
_ 20— ( D= +1)
110 — 2 )

2 =23 ()
101 N ’

2
2|——=( —1)?
M= 3
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20( -1 (=20 ( —1)2-4 245 -1)
2

210 ]
__2 (V1) o (144 25 +1)
201 —— \/— )
000=1, 020= 030= 120= 102= 011= o012= 001= 002= 003 = o021 = 0.
2 2 3
2\/170 2 902= o v+ _ 0
100 o1 O N
Let )=<1oo 010 0>= 20 (Vv VI ) (-D—- +D 1 o [
0 0 1 Vi— ( -D
0 0 1
then using (2.5), we get,
M==1N=— and \s =1,
with eigenvectors,
=( OI O) O) =( )1)0) 1( )110) )(Ololl) l :11213

+ -2
1 2 °
L= - +2
> 0
0 0 1
2
=2+ -1+2 -2




Taking the transformation ( , , ) =( , , ) , system (3.6) is changed into the following
form:
+1 — + ( y y )+ ( %2):
a=C+) + (. )+ ()
+1 = 1
(3.24)
where 22=J 2+ 24 )7
C v v )= 100 "'2 010 "'2001 + 110 + o + 103 + 111
+ 20 “* o020 “F 002 )+ 120 + 210 + 102 ( )?

2 2 3 3
+ 201 + 021 +o012 ( )2+ 30 “+ oz °F 003 )3

(v v )= 10 * o010 + , oor *t 110 + 0112 + 181 + 111
2 2
+ 200 “F o020 “F o002( )+ 120 + 210 + 02 ()

2 2 3 3
+ o0 + o + o2 ( )+ 300 “F o030 °t+ o003 )3

5 + =2 + =2 + =2
200 = “( 200"‘2— 200) + ( 020"‘2— 020) + ( 110"‘2— 110)s

, + =2 + =2 + =2
20= “C 20— 2000 *( oo+*—F—— 00)* ( 10+——F— 110)
2 2 2
-2

+ =2 + =2 +
10=2 ( 200+ 200 +2( o020+ o20) *+ C + )0 1o +—— 110),
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= ( +2 = 101)) + (+2—_2) 011 )

210):

101
+ =2 + =2
011 = (2— 101))"‘2— 011
+ -2 + -2 + -2 + =2
300 = “( 300 = 300) ¥ ( o030t > 30) * ( 120t > w0+ 2( 20+ > 210)s
+ -2 + -2 + -2 + =2
030 = 3 300 = 300) ¥ ( o030+ 030) ¥ ( 120 t—— 1w20*t 2( o0+
+ =2 + =2
120=3 2( a0+ > 3000 +3 00+t ( +2 ) 10t( Z+2 ) ot 210)
+ -2 + -2
20=3 3 30t 3000 +3 o0+ (2 + ) (P +2 )( 20t 210);
, * =2 + =2
201 = 5 201 F (2— 111)1
+ =2 + =2
021 ( 5 021> ( 5 111),
+ =2 + =2
111 =2 ( > 201) +( + ) - 111)s
002 = 003 = o012 = 102 =0 ,
) - +2 - +2
200 = “( 2007t > 2000+ ( 0200+ ( 1107+ s 110);
, - 42 - 42
020 = “( 200t s 200) ¥ 00+ ( 110+ s 110)s
- +2 - +2
1m0=2 ( 20*+ S 200) +2( o200+ + )( 10+ s 110);
- %2 - %2
101 = ( > 101)) = 011
- +2 - +2
o1 = (2— 101)) + (2—) 011
- +2 - +2
300= "( 300%F 300) +( 030)+ ( 120)+ 2( 200+ 5 210))
3 - +2 ) - +2
os0 = °( 300"‘2— 300) ¥ ( 030)+ ( 1200+ ( 210"‘2— 210)s
=3 2( g0+ —— 300 +3( 0s0)*( +2 ) 120+( 2+2 )( 210+ —— 20)
120 300 > 300 030 120 210 > 210)
- %2 - %2
20=3 2 ( 300+ > 300) +3( o0z0) + 2 + ) 2p)*(2+2 ) a0+ 210)
— 42 — 42
201 5 201 ( 5 111),
- +2 - +2
021 ( 5 201) ( 5 111):
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) ( - +2 ) ( ) ( - +2 )
= S— +( + S—

111 5 201 > 111 | »
102= 012= o002= o03=0.

Next we suppose on the center manifold

_ _ 2

= (., )= 2 “*+ 1 + 0 2+ ( 3),
where o3 = / 2+ ()2
Having,

(v 4= 20(— + C,Co ) D+ u(= +C.C. ) )

+ 02 2+ (%3)

= 20 - 1 + 02 2+ (gs)

+
= Ca =(5) €+ Co )+ (B
=(5)CC .+ Co ) ) e 2+ ()

= {(%) 20+ 200t 2+ {(%) 11+ 10} "'{(%) 02t 002} 2+
(%),

and comparing the corresponding coefficients of terms with the same orders in the above center

manifold equation, one gets,

— _ 2200
D70+

—_ 210
U0 ey

Therefore, system (3.8), restricted to the center manifold, takes on the form,

== +FC () )+ (3)

3
- + 200 "+ 101 +{ 300t 20 10y “*{110 11*t o 20+

2 2
201} +{ 102+ 110 o027+ ou 11}
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3 2 2
- *+ 20 "+ 1 + 3 "+ 21 + 1 :

Where,
20 = 200, 1= 101 30= 3007+t 20 110
20= 120 11t o 20% 201 12= 102t 110 o027t oun 1
and
_ _ 3 2
2, )2— (C ., ) )= —-2qu —2( %0+ 30) “+(?%,-2 x) -
4
11 22 + ( 23)

Hence we have,

0,0 2(0,0) 2.2000)
00 =0, 2=—1 =0,—52=

0,

22000 _ 32000 _
= — =

-2 1, —12( 2,5+ 30).

For a Flip bifurcation to occur the following conditions should be satisfied.

22 32
0,0 (03,0) £0,
which is equivalent to,

24 14( 2,0+ 30) %0,

Therefore we can conclude that a flip bifurcation may occur at the fixed point  ( , ).

3.2.2. Neimark-Sacker bifurcation

In the following, we prove the possibility of an occurrence of a Neimark-Sacker, (N-S), bifurcation

2 J1= —
around the fixed pointaround ( , )= < /(1_ 1 ((11_ )\/_‘/—).
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If (2.9) holds, then the Jacobian matrix has conjugate complex eigenvalues with |A;,| = 1, which

2 J1= —
further shows that around < /(1_ X ((11_ )\/_‘/—> there may exist the N-S bifurcation by choosing

as a bifurcation parameter if (B, w,y,Vv) Q4 [11]

2 1= —
The following theorem guarantees that, around ( /(1— X ((11_ )\/_‘/—> , the phytoplankton-

zooplankton model must undergo a Neimark-Sacker Bifurcation.

Theorem 3.2.2.
Boyy @ L —
1 i 1 4) i (1 — )) (1 _ )v_ i
— (1.9) —
Proof: (Bw,y,v) Q4 . It is clear that is the bifurcation parameter
therefore, if is in the neighborhood of ,ie = + 1 where 1 then the phytoplankton-

zooplankton model takes the following form.

2 J1= —
Transform the fixed point ( /(1_ X ((11_ )\/_‘/—) to the origin (0,0), and the system (3.5), given

a perturbation = + 4 becomes,

_ _
+<+(_)>
+ = =+ _—_ -
< (—)> (- ) (3.25)

The characteristic equation for the linearized equation of the system (3.9) at the fixed point (0,0) is
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(= =-0)+ )=, (3.26)

with two roots,

Ay, = - 2VBO- 20

: ,
where

()= <—1+2 -2 \/1—Z>+2’

B()=2( + ) 2f-—-2( +)?2-2( +) [-—+2( + ) -

2
2 /——+2 - +1
-1

It is easy to derive

(A2C D1 =0 =vBC I =
:_ \/:+ J:-(—*_j(f«/f‘ +) (T“')( J;— +> \/:_(er)( \/;— +>

which implies,

(l)‘l‘Z( )l)l -0 =2 < ;_ZT]__ — ’_ZT:I_+1>>O¢O'

2
Furthermore for the existence of an N-S bifurcation around < -

WI= = v~
- w )

itis also required thatA,, #1, =1234, =0.

S0if (Pu2( IPI =0 =vB( )l = =1and (0) = (—1+2 ~2 \/1_2>+2'

we have,

Mo =

2
<—1+2 -2 /1—2>+21‘/_4< (—1+2 -2 12)> +2 ( +q 2 él—z (+1) 22 ( +9 —%+2 ( +1) -2 /—%+2 - +1

2

Hence it is easy to derive thatA;, # 1.
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The following conditions for a Neimark-Sacker bifurcation have been satisfied:

(—lA“( )|)| %0

M, #1, =1234

Now, in order to derive the normal form of system (3.9) we will expand the system to a second order power

series around the origin.
+ = + + + + + + + + + () (3.27)
+ = + + + + + + + + + ()
Where 37 = 24+ 2
10 = 100r 01 — 010 11 — 110» 21 — 210» 12 — 1200 20 — 200s 02 = 020, 30 — 300: 03 =
030:
2
2 11/ —( vV V1= )( ( D= +1)
10~ V(-1 ’
2 (VT VI= )R (—1)°+4 255 +1)
20 - _\/— 7
2
4 1= DV V1= )R 12 (~1)*48 o( ~1)(4 2-5 +1)+12 2-18 +6)
30 = T :
2
_ 21— ( -D= +D
11 — 2 )

21( 1) (=21 ( —1)%2-4 245 —1)
2 )2

01=1 2= 03= 12=0.

Now, we use the following transformation in order to transform the linear part of system (3.11)

above into a canonical form.
(3.28)
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2L cen ey [Tz en 2 S - n)
2
—( (—1+2 —2 /l_—2)+2>

- 2

Due to (3.12), system (3.11) then takes the following form,

w= - + (. (3.29)
+1 = + + ( ) ),

where,

C v )= n + o1 2 4 0 P+ oz P+ g3 T+ 2+ 0 %

C v )= n T T

02 = 012( 2o—ﬂ)+( - 10)( 11—£)+( - 10)2( 02—2),
n=—2(0- 10)( 02—2)— ( 11—3),
21 =32 - 10)( os—ﬁ)+ 210( 12—2),

=0 — 10)3( os_ﬁ)"' 10( — 10)2( 12—3)"' 012( - 10)( 21—A)+

3 _ 30
01 300 7 ),

12=_2 01( - 10)( 12_2)_3( - 10)2( 03_£)_ 012( - 10)( 21_£);
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20= 2( 02),

2= 01°C 200+ = 10)( 1)+ = 10)%( 02),

1=72( = 100 02— ( 1),

20=3 % = 100( 03) + % 10( 12),

03 =( = 10°C 03) + 100 — 10)2C 12) + 02 — 10)( 21) + 02°C 30),

12 ==2 01( - 10)( 12)_3 ( - 10)2( 03)_ 012( - 10)( 21)r

30 =— 3( 03),

:2(012( 20_£)+( _10)( 11—&)_,_( _10)2( 02_2))

==2( _10)( oz—ﬁ)— ( 11—£),

=6(( - 10)3( os—ﬁ)+ 10( — 10)2( 12—£)+ 01°( — 10)( 21—A)+

01’ ( 30~ ﬁ))

2 = =25 - () o~ -2

=2<3 2( = 10)( os—ﬁ)+ 210( 12—£)),

=22( o),

=2(02C 20+ ( = 1 1) +( = 102( 02)),
==2( = 100 02— ( 11),

=2(3 2( = 100 03) + 2 10( 12)),
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=( = 10°%C 02) + 100 = 1002C 12+ 02°C — 100C 20) + 013C 20),

=—2 01 — 100 120 -3 ( = 100%C 03)— 01’ — 100 20),

== 3( o3).

In order to determine that (3.13) undergoes a Neimark-Sacker bifurcation, the following

requirement should be met. Where , is the Lyapunov Exponent.

=— (== J=-1 1=1 1+ C )
2o=%[ - +2 +(C - =2 )

u=zl - +(C + )

e=s - +2 +( - +2 )

21_1—6[ + + + + ( + — —

By substitution we get,

2o=%[22( oz—ﬂ)—2<012( 2o—ﬂ)+( —10)( 11—£)+( -

E))—4( — 100 02— (1)+ (2 2 02) —2( 02°(C 20) +
10)2( 02))"'4( - 10)( oz—ﬁ)— ( 11—£))],

11=%[22( oz—ﬂ)—2<012( 2o—ﬂ)+( —10)( 11—£)+( -

(3.30)

10)2( 02 —

( =1+ -

100°C 02—

E))"‘ (2 2( 02)"'2(012( 20) + (= 100( 1) +( = 10%( 02)))],

02:%[22( oz—ﬁ)—2<012( 2o—ﬂ)+( —10)( 11—£)+( -

) =4 (=100~ C1+ (220 0 =2( 02 20+
10)%( 02))—4( - 10)( oz—ﬁ)— ( 11—£))],
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21=1—16[—63( o3‘ﬁ)+2(—2 0 — 10)( 12—2)—3( - 10)2( 03—£)—
012( - 10)( 21—£))+2(3 2C = 100( 03) + 2 10( 12))"‘( — 1003( 03) +
100 = 100%C 12) + 02°C = 100C 20) + 013( 30) + (— 3C ) =2 ol —

100 12) =3 ( = 10%C 03— 01°( — 10)( 21)—2(3 2( — 10)( 03—E)+
210( 12—£)>—6<( - 10)3( os_ﬁ)"' 10( — 10)2( 12—£)+ 012( -

o a2+ o’ =)

Finally by substituting into (3.14) one can confirm that a Neimark-Sacker bifurcation of the
phytoplankton-zooplankton system may occur around the fixed point since  # 0 and that the
stability of the invariant closed curve bifurcated from the fixed point  is determined by the value of

. Furthermore, a supercritical Neimark-Sacker bifurcation will occur if <0 and a subcritical

Neimark-Sacker bifurcation if > 0.[11]. The occurrence of an N-S bifurcation has been proven.

4. Numerical simulation

In this section numerical simulations are executed around the fixed point  ( , ). Through the use
of bifurcation diagrams and the Maximum Lyapunov Exponents of the system (1.9) the results above

are verified by fixing suitable values of the parameters involved.

1: Vary  within the range, (04) andlet =055 =06, =0.23 with the initial value
( 0, 0) =(054,0.85). Then from equation (2.9) one gets = 2.90209283439081 which is a
bifurcation parameter value shown in figure 4.1. This is to show that the phytoplankton zooplankton

model undergoes a Neimark-Sacker bifurcation. The lyapunov exponents are shown in figure 4.1(c).

Bifurcation Diagram Bifurcation Diagram Lyapunov Exponent

60 05 10 15 20 25 30 35 40 10 15 20 25 30 35 40 45 50

(a) (b) (c)

Figure 4.1. Neimark-Sacker bifurcation . 4.1(a) and (b) show the bifurcation diagram of the model around
the point E(P,Z). 4.1(c) shows the maximum lyapunov exponents of the system around ( , ).




Bifurcation Diagram Bifurcation Diagram Lyapunov Exponent

5] a 3
s 8 8

Exponent
3
3

80

Max Lyapunov

(a) (b) (c)

|__Figure 4.2. 4.2( a) and (b) show the bifurcation diagram of the model around the point E(P,Z). 4.2 (c) shows
the maximum lyapunov exponents of the system around ( , ).

2:Vary within the range, (0.5,45) andfix =37, =0.6, =0.523 with the initial value
( 0 o) =(0.850.75). Then from equation (2.5) one gets = 0.761558400502631 which is a
bifurcation parameter value shown in figure 4.2. The phytoplankton-zooplankton model undergoes a

bifurcation around this point which will discuss in the next section.

From figure 4.1 (a) and (b) we can see that a Neimark-Sacker bifurcation occurs at, =
2.90209283439081, which is the bifurcation parameter. The maximum Lyapunov Exponents figure
4.1(c) shows all exponents are positive meaning that the system is in a chaotic state. Although our
maximum Lyapunov exponents are all positive we can see a change in the maximum lyapunov
exponents at the value of where the bifurcation occurs. Figure 4.2, however, shows a bifurcation
which does not seem like a Flip bifurcation as a flip bifurcation would represent a stable equilibrium
point losing stability and then branching into a stable limit cycle. The bifurcation occurs at =
0.761558400502631 and its nature can be verified in further research. 4.2(c) we also have positive
maximum lyapunov exponents but there are changes that are visible when the bifurcations occur at

the values displayed in 4.2(a) and (b).

5. Discussion and conclusion

This paper was focusing on the 2-D phytoplankton-zooplankton model by Truscott and Brindley. The

system was transformed into (1.9) through the method of semi-discretization. The existence and
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stability of positive fixed points (0,0), ;(1,0) ( , ) was determined by existing theory.

With the use of the center manifold theorem we explored the existence of a flip bifurcation around

the semi-trivial point, 1(1,0). The fixed point, ( , ), theoretically indicated the existence of a
( (1—2 +2 /1_—2>—2) (1+)
Flip bifurcation if parameters go through ¢ = and a Neimark-Sacker

a-{
= )

bifurcation if the parameters go through ; = . . However upon numerical
2 A=

simulation only the presence of a Neimark-Sacker bifurcation was confirmed. This difference in the
numerical results and theoretical results for the flip bifurcation could be due to the numerical
simulation capturing some additional features that may not have been realized in the theory like
higher order bifurcations or coexistence of multiple attractors. From a biology standpoint, the
presence of a Neimark-Sacker bifurcation suggests that populations of phytoplankton and

zooplankton are subject to periodic or quasi-periodic oscillations, [11].

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (61413340), the
Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province, and the National

Natural Science Foundation of Zhejiang University of Science and Technology (F701108G14).

Competing interests

The authors declare that they have no competing interests.

Author’s contribution
All authors contributed significantly to this paper.

All authors read and approved the final manuscript.

REFERENCES

(11 Truscott, J.E., Brindley, J. Ocean plankton populations as excitable media. Bltn Mathcal
Biology 56, 981-998 (1994). https://doi.org/10.1007/BF02458277

172



[11]

[13]

Steele, J. H., & Henderson, E. W. (1981). A Simple Plankton Model. The American
Naturalist, 117(5), 676—691. http://www.jstor.org/stable/2460753

Wyatt, T., Horwood, J. Model which Generates Red Tides. Nature 244, 238-240 (1973).
https://doi.org/10.1038/244238a0

Roy, S., Bhattacharya, S., Das, P. and Chattopadhyay, J., 2007. Interaction among non-
toxic phytoplankton, toxic phytoplankton and zooplankton: inferences from field

observations. Journal of Biological physics, 33(1), pp.1-17.

Chakraborty, S., Bhattacharya, S., Feudel, U. and Chattopadhyay, J., 2012. The role of
avoidance by zooplankton for survival and dominance of toxic phytoplankton. Ecological

complexity, 11, pp.144-153.

Ebenhoh, Wolfgang. (1980). A Model of the Dynamics of Plankton Patchiness. Modeling,
Identification and Control. 1. 10.4173/mic.1980.2.2.

Hutchinson, G.E., 1961. The paradox of the plankton. The American Naturalist, 95(882),
pp.137-145.

Uye, S. 1986. Impact of copepod grazing on the red tide flagellate chattonella antique.
Mar. Bio.92, 35.

Chakraborty, Kunal & Das, Kunal. (2014). Modelling and analysis of two-zooplankton
one-phytoplankton system in presence of toxicity. Applied Mathematical Modelling. 39.
10.1016/j.apm.2014.08.004.

Geoffrey T. Evans & John S. Parslow (1985) A Model of Annual Plankton
Cycles, Biological Oceanography, 3:3, 327-347, DOI: 10.1080/01965581.1985.10749478

Khan, A.Q., Javaid, M.B. Discrete-time phytoplankton—zooplankton model with
bifurcations and chaos. Adv  Differ Equ 2021, 415 (2021).
https://doi.org/10.1186/s13662-021-03523-5

Grattan, L.M. , Holobaugh, S. and Glenn Morris, J.G. Jr . , 2016. Harmful algal blooms
and public health. Harmful Algae , 57( B), 2 —8. DOI:10.1016/j.hal.2016.05.003

Fasham, M.J., Ducklow, H.W., & Mckelvie, S.M. (1990). A nitrogen-based model of

plankton dynamics in the oceanic mixed layer. Journal of Marine Research, 48, 591-639.

Rose, K.A., Swartzman, G.L., Kindig, A.C. and Taub, F.B., 1988. Stepwise iterative

calibration of a multi-species phytoplankton-zooplankton simulation model using

173



[15]

[16]

[17]

(20]

(23]

laboratory data. Ecological Modelling, 42(1), pp.1-32.

Rosenzweig, M L. “Paradox of enrichment: destabilization of exploitation ecosystems in
ecological time.” Science (New York, N.Y.) vol. 171,3969 (1971): 385-7.
doi:10.1126/science.171.3969.385

Vanselow, A., Halekotte, L., Pal, P., Wieczorek, S. and Feudel, U., 2022. Rate-induced
tipping can trigger plankton blooms. arXiv preprint arXiv:2212.01244.

W. Li and X. Y. Li, Neimark-Sacker bifurcation of a semi-discrete hematopoiesis model,

J. Appl. Anal. Comput., 8 (2018) 1679-1693.

C. Wang and X. Y. Li, Stability and Neimark-Sacker bifurcation of a semi-discrete
population model, J. Appl. Anal. Comput., 4 (2014) 419-435.

Xianyi Li, Xingming Shao. Flip bifurcation and Neimark-Sacker bifurcation in a discrete
predator-prey model with Michaelis-Menten functional response[J]. Electronic Research

Archive, 2023, 31(1): 37-57. doi: 10.3934/era.2023003

Khan, A., Ma, J., Xiao, D.: Global dynamics and bifurcation analysis of a host—parasitoid
model with strong Allee effect[J]. 2017, 11(1): 121146.
doi:10.1080/17513758.2016.1254287

Liu, W., Cai, D.: Bifurcation, chaos analysis and control in a discrete-time predator—prey

system. Adv. Differ. Equ. 2019(1), 11 (2019)

Zhuo Ba, Xianyi Li. Period-doubling bifurcation and Neimark-Sacker bifurcation of a
discrete predator-prey model with Allee effect and cannibalism[J]. Electronic Research

Archive, 2023, 31(3): 1405-1438. doi: 10.3934/era.2023072

Shah, S.M., & Wiener, J. (1983). ADVANCED DIFFERENTIAL EQUATIONS WITH
PIECEWISE CONSTANT ARGUMENT DEVIATIONS. International Journal of
Mathematics and Mathematical Sciences, 6, 671-703.

174



