
- 46 -

Quasi-linear fractional differential equations with non-local

condition 1

Ala Eddine TAIERa,∗ , RanchaoWua

aSchool of Mathematical Sciences, Anhui University, Hefei 230039, China

∗Corresponding author

Email address: rcwu@ahu.edu.cn (Ranchao Wu)

Abstract

In this paper, we study the existence of solutions for quasi-linear fractional differential equations with

non-local condition using the Schauder fixed point theorem in Banach space. Later, we discuss a

particular example which satisfies all the existence conditions.

Keywords: Quasi-linear fractional differential equations; Schauder fixed point; non-local condition.

1. Introduction and preliminaries

In recent years, the theory of linear and nonlinear fractional differential equations have attracted the

attention of many authors, because fractional differential equations describe many phenomenons in

several fields of engineering and scientific disciplines such as physics, biophysics, chemistry, biology,

economics, control theory, signal and image processing, aerodynamics, viscose-elasticity,

electromagnetic and archeology (see [1,4,13-23]), and a considerable number of results have been

obtained.
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This paper is devoted to study the existence of the solution of a fractional differential problem with

non-local condition

cDα (x(t) + σ (t,x(t))) = A(t,y)x(t) + f (t,x(t)), (1)

x(0) + g (x) = x0, (2)

where cDα is the Caputo fractional derivative of order α ∊ (0 < α < 1), (f,σ) : J × X→ X are given functions,

J = [0,∞), A(t,y) : J × X → B (X) is linear bounded operator. B (X) is a Banach space of linear bounded

operator in the Banach space X.

An outline of this paper is as follows: in Section 2, we prove the main result using Schauder fixed

point theorem, in Section 3, an example is illustrated for better understanding.

Consider the space, , equipped with the norm

) is a Banach space.

Definition 1. The Riemann-Liouville fractional integral of order α > 0 of a function f : (0,∞) 7→ R is given

by

(3)

provided that the right-hand side is defined point wise, where Γ(.) is the Gamma function.

Definition 2. For a function f : (0,∞) → R, the Caputo derivative of fractional order α > 0 is defined as

(4)

where n − 1 < α < n, n = [α] + 1, [α] denotes the integer part of the real number α.

Theorem 1 (Schauder fixed point theorem). Let (X,d) be a complete metric space and E be a part

convex and closed of X, and A: E → E application such as the unit {Au, u ∈ E} is relatively compact in X.

Then A has at least a fixed point.

Lemma 1. Let M be a subset of Cα . So M is relatively compact if and only if the following conditions are met:

1. is uniformly bounded.

2. is equicontinued for t ∈ [0,∞).
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3. such that ∀x ∈M and t > T

2. Result of existence

In order to establish the existence of the solution of the problem (1)-(2) we propose the following

hypotheses:

(H1) : For all (t,y) ∈ J × X, A(t,y) is a bounded linear operator, the mapping (t,y) → A(t,y) is continuous

and there are two continuous, bounded and non negative functions ϕ(t) and ψ (t) defined in J such that

.

(H2) : The function f : J × X → X is continuous and there are two continuous, bounded and non negative

functions a(t) and b(t) defined in J such that

(5)

(H3) : The function σ : J × X→ X is continuous and there exists a constant c > 0 such that

ǁ σ (t,u) − σ (t,v) ǁ ≤ c ǁ u − v ǁ , u,v ∈ X, (6)

and

δ = sup ǁ σ (t,0)ǁ ≤∞, σ0= σ (0,x(0)).

(H4) : The function g : X 7→ X is continuous and there exists a constant G > 0 such that

ǁ g (u) − g (v)ǁ ≤ G ǁ u − v ǁ , u,v ∈ X.

(H5) : There exists r > 0 such that

c0 (r) + c1 (r) < r, (7)

where c0 (r) = ǁx0ǁ+ǁ g (0)ǁ+ǁ σ (0)ǁ+δ+(G + c)r, and .

Theorem 2. Under the assumptions (H1)-(H5) the problem (1)-(2) has at least one solution x(t) in the

space Cα.
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To proof this theorem, we will use the fixed point method. Initially, by transforming the problem (1)-(2)

into an integral equation of Volterra (Lemma 2), then we will prove the existence of the solution of the

integral equation. Thus, we obtained the results by using Schauder’s fixed point theorem.

Lemma 2. A function x(t) ∈ Cα is solution of the problem (1)-(2) if and only if it satisfies the integral

equation of Volterra

(8)

Proof. Suppose that x(t) satisfies the problem (1)-(2), then we have

cDα (x(t) + σ (t,x(t))) = A(t,y)x(t) + f (t,x(t)).

Applying the fractional integration operator Iα to both sides of the above equation, we get

(9)

(10)

Now, using the non-local condition x(0) + g (x) = x0, we find

k1= −x(0) − σ0,

substituting in (12) we obtained equation (10).

Conversely, if there is a solution of the Volterra equation (10), then we can write this equation in the

following form

x(t) + σ (t,x(t)) = x0+ σ0− g (x) + Iα (A(s,y)x(s) + f (s,x(s))).

We apply the differential operator cDαon the both sides of this equality, then we assume that x(t) is also

a solution of the differential equation (11).

On the other hand, it is obvious that x(t) satisfies the non-local condition

x(0) + g (x) = x0.

Therefore, x(t) is the solution of the problem (1) - (2).

Using the above result we can prove Theorem 2.
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Proof. In order to demonstrate the existence of the solution of the integral equation (10) we introduce

the subset Br = {x ∈ Cα : ǁ x ǁCα ≤ r}, where r is the constant as introduced in (H5). It is clear that Br is a

closed and convex part from space Cα equipped with the norm ǁ . ǁ Cα. We define the operator F on Bras

where φ(s,x(s)) = A(s,y)x(s) + f (s,x(s)). Then the integral equation (10) is reduced to

x = Fx,

and in order to establish our existence result, we must show that F has a fixed point.

Step 1. F maps bounded sets into bounded sets in X. For all x ∈ Br, we have

By using hypotheses (H1),(H2) and (H3), we obtain the following estimate

.

Therefore,

,

and

ǁ Fx ǁ Cα≤ c0 (r) + c1 (r) ≤ r, (11)

which proves that Fx ∈ Br if x ∈ Br. The operator F is bounded.

Step 2. F is continuous.

Let {xn} be a sequence such that xn→ x in Br . For all , there exists N > 0 such that for all

.

We have



- 51 -

Using the hypotheses (H3) and (H4), we obtain the estimate

As limn→∞ ǁ xn− x ǁCα= 0, then there exists a constant µ > 0 such that

ǁ xn ǁCα≤ µ, and ǁ x ǁCα≤ µ.

In view of the hypothesis (H1), we have

.

So for all , there exists T1> 0 and δ1> 0 such that

,

and

.

Therefore, since A is continuous then

sup ǁ A(s,y)xn (s) − A(s,y)x(s) ǁ → 0, n→∞.

t∈[δ1,T1]

It follows that there exists N > 0 such that for all n > N,

On the other hand, using the hypothesis (H2) we get for all n > 1
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.

So for all , there exists T2> 0 and δ2> 0 such that

.

and

.

In addition, the continuity of f

Sup ǁ f (s,xn (s)) − f (s,x(s)) ǁ→ 0, n→∞.

s∈[δ2,T2]

So, there exists N > 0 such that for all n > N we have

The above estimates show that the operator F is continuous.

Step 3. It remains only to show that F (Br) = { Fx, x ∈ Br } is a relatively compact to be able to apply

Schauder’s fixed point theorem. For all x ∈ Brand t1,t2∈ J with t1< t2, we have

By calculating the integrals, we obtain

.
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Note that the right-hand term of this expression is independent of x(t), more t1→ t2, the side on the right

tends to 0, which implies that the set F (Br) is equicontinuous, and therefore the condition 2 of Lemma 1 is

satisfied.

Finally, for every x(t) ∈ Br, we have

.

This last estimate shows that the last condition of Lemma 1 is also satisfied. Then, F (Br) is relatively

compact according to Lemma 1. The theorem of fixed point of Schauder ensures the existence of a fixed

point of F. Therefore, the problem (1)-(2) has at least one solution x ∈ Cα.

3. Example

Consider the following problem:

We take (X, .

.

.

So, we have
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So, A(t,y) satisfies (H1), with , and .

On the other hand,

.

So, (H2) is satisfied with

.

As for the hypothesis (H3) we have

So (H3) is satisfied with

.

It follows form the condition (H4) that

So,

Finally, the inequality given in the hypothesis (H5) requires that the constant r satisfies

which is true for every r ∈ [1.34,3.25].
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So all the hypotheses of Theorem 2 are satisfied, therefore the problem has at least one solution in

space.
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