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ABSTRACT:

The generalized modified Bessel distribution is one of the most suitable mixed distributions. It is

the result of mixing the normal distribution with the generalized inverse Gaussian distribution.

In this paper, The optimal sample size Analysis has been taken from the generalized modified

Bessel population to estimate the mean parameter when the variance and shape parameters are

known, using the informative prior information to estimate the mean parameter under the quadratic

loss function. Then sampling and non-sampling approaches are used for the estimate of the

parameter. Also, it has been noted that the posterior probability distribution for a mean parameter is

following a generalized modified Bessel distribution. Through the simulation, we note Bayesian

sample size is inversely proportional to the sampling cost (c) per unit.
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1. INTRODUCTION

The generalized modified Bessel distribution is considered one of the most suitable mixed

distributions, as this distribution is more general than the two distributions (normal and T) as

special cases, and it is considered that the generalized modified Bessel distribution as a special case

of the symmetrical hyperbolic distributions, and this distribution has practical applications in a

variety of areas which includes stock market data presentation, quality control data and filtering

random-sign analysis.

To conduct any study on data that follows this distribution, its parameters must be estimated to be

able to predict and obtain accurate results to solve a particular problem. The characteristics of the

community are determined by studying a sample drawn from it, provided that the sample bears the

maximum degree of accuracy to represent the community, and this leads to reducing the costs of

the field study due to the small size of the sample about the size of the community. There are

several sampling methods to determine the sample size to be used in statistical inference, and one

of these methods is using the Bayesian sampling method, which in its study depends on taking into

account the loss functions with the cost function.

(Thabane and Haq, 2003) was the first to use the Bayesian method to estimate the linear

regression model, assuming that the random error distribution is a generalized multivariate

modified Bessel distribution when the prior distribution of parameters is a proper distribution,

which is the result of mixing two continuous probability distributions. They are the normal

distribution and the generalized inverse Gaussian distribution.[14]

(Saiful Islam, 2011)Determine the Bayesian sample size to estimate the mean and the difference

between the mean of the normal distribution when the variance is known and estimate the variance

when the mean is known, as well as determine the Bayesian sample size to estimate the parameter

of the Poisson and Exponential distribution using different loss functions. [11]

The research provided a general introduction to the subject and a description of the generalized

modified Bessel distribution, as well as the Bayesian sample size determination to estimate the

mean parameter when the prior distribution is proper and using a quadratic loss function.
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2. Search Objectives

This paper aims to analyze the optimal Bayesian sample size taken from a population followed

by is generalized modified Bessel distribution to estimate the mean parameter using the quadratic

loss function.

3. Generalized Modified Bessel distribution

The generalized modified Bessel distribution is expressed in form of a mixed distribution from

the normal distribution and the generalized inverse Gaussian distribution as follows: [6][13] [14]

Whereas, represents a modified Bessel function of the third type with order (v) [1][9]. This

distribution is descriptively expressed as:

4. Quadratic Loss Function

The quadratic loss function is the most commonly used in symmetric loss functions, when the

parameter ( ) is univariate, the general formula of the function is as follows:[4][11]

Since positive real constant is often equal to an integer one.

Therefore, the Bayesian estimator in the case that information is available for this function

represents the average of the posterior probability distribution and the Bayesian estimator in the

absence of information represents the average of the prior distribution. [10]
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5. Posterior Risk Function of The Quadratic Loss Function

If is a loss function and is the posterior distribution of ( ), then the

expectation of the loss function is called the posterior risk function as follows: [4]

is the posterior risk. The posterior risk function will be calculated for the quadratic loss

function as follows:

This constant ( ) does not affect calculating the Bayesian estimator, but it affects determining

the Bayesian sample size.

6. The Cost Function

The cost function is one of the important issues in any study that aim to make it as minimal as

possible, and there are different formulas for the cost function, and the linear cost function has been

used in this research and it’s as follows:

Where and

And is the cost of preparing the sampling or any cost related to sampling and (c) is the

sampling cost per unit and it is one of the important components for obtaining the Bayesian sample

size. By using the Bayes method to estimate the sample size, the total cost must be

calculated, which can be done by the following formula when the posterior risk function does not

depend on the observations Y.[8]
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But if the posterior risk function depends on (Y) observations, in this case, we take the

expectation of the posterior risk function and add to it the linear cost function to get the average

total cost as follows:

When two samples are drawn from both groups, the linear cost function will be in the following

form:

As is the sampling cost per unit of , which represents the sample size for the first

population and is the sampling cost per unit of , which represents the sample size for the

second population. The costs & can be equal to the two populations, or the sample sizes

can be equal to the two populations. To get the sample size that gives the lowest cost,

one must derive the total cost function relative to (n) and by equating the derivative to zero, to get

the Bayesian sample size, which is a positive integer. [4]

7. Determining the Bayesian sample size to estimate the mean parameter of

the generalized modified Bessel distribution for one population using initial

information belonging to the conjugate family

Assuming to have a random sample ) conditioned by the random variable ( ) taken

from normal population . And that the probability distribution of ( ) follows the

generalized inverse Gaussian distribution, the probability function is defined as follows: [3][7] [9]

Whereas:

The scale parameters.

The shape parameter.

The Bayesian sample size is found to estimate the mean parameter conditioned by the random

variable (τ) by calculating the total cost function as follows:



- 62 -

By substituting the linear cost function defined in equation (7) and the posterior risk

function (PR) (expected the loss function), the total cost function becomes as follows:

Substituting for the quadratic loss function defined in equation (3), to get:

And by substituting for the subsequent risk function (PR) shown in equation (6), the total cost

function becomes as follows:

To find the posterior probability distribution of the mean parameter conditional of

the random variable (τ) must be calculated as follows:

The prior distribution of the mean parameter (θ) conditioned by (τ) and ) is described as

follows: [2]

Since the prior probability density function for is as follows:

After combining the sample information with the initial information about the parameter (θ), the

posterior distribution of (θ) conditional on the variable (τ) and is found using the following

equation:

After substituting the probability function for the random vector conditional by (τ), defined

according to the following equation:



- 63 -

With the prior distribution of the parameter (θ) conditional by the variables (τ) and in the

equation (14) above to get the kernel of the posterior distribution of ( ) conditional by (τ) and

which is defined below:

The quadratic form in equation (16) above is similar to the following quadratic form: [2]

Whereas

Therefore, the posterior probability distribution for the mean parameter conditioned by (τ) and

is normal and is as follows:

Since:

The distribution is descriptively described by:

Using the concept of mixed distributions, the posterior probability distribution for the mean

parameter unconditional of ( ) is as follows:

After substituting the components of equation (21) and performing the integration concerning (τ),

yielding the following equation:
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The probability density function of defined in equation (22) represents the generalized

modified Bessel distribution and is descriptively expressed as:

Since

The unconditional Bayes estimator for the parameter (θ) is:

Since ( ) defined in equation (23) represents a Bayes estimator under the quadratic loss

function .

Using the properties of mathematical expectation, it is possible to find the variance for the

posterior distribution of as follows: [5]
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By substituting equation (27) above into equation (12), the total cost function is as follows:

Now by finding the derivative of equation (28) relative to (n) and equal the derivative to zero,

we get the Bayesian sample size under the quadratic loss function:

Where

Since represents the Bayesian sample size under the quadratic loss function.

8. The sampling and non-sampling status of estimating the mean parameter

In the case that is not sample taken ( ), the total cost under the quadratic loss function

shown in equation (28) is: [2]
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When taking a sample ( ), the total cost will be:

Substituting for previously defined in equation (29), we get:

Performing some algebraic operations for the above equation, we get:

Therefore, the optimal Bayes sample size is generally:

Therefore, it is decided to take a sample in the case of sampling when the

is positive, and the total cost in the case of sampling is less than

the total cost in the case of non-sampling.

That is:
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And it is decided not to take a sample in the case of sampling when the

is negative, and the total cost in the case of sampling is greater

than the total cost in the case of non-sampling.

That is:

By solving the inequality and substituting for each of (ϑ) in the sampling case, we get

the following formula:
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Completing the square for the left side of the inequality, to get:

Taking the square root of both sides of the inequality, to get:

The roots of the above inequality are as follows:

Or:

But work interest is in the lowest cost, so taking the second root to show when the sampling

takes place or not, as follows:

So it is sampling when:

And non-sampling when:
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If the sampling cost per unit exceeds the , the

sampling is not of value due to the high cost of sampling per unit, and in this case, only the prior

information is relied on to estimate the mean parameter for the generalized modified Bessel

distribution.

9. Simulation

In this section, random data was generated that follow the generalized modified Bessel

distribution through the concept of mixed distribution in the programming language (Matlab

R2015a) [12], After generating the observations, it was tested whether the data followed the

generalized modified Bessel distribution by Kolmogorov-Smirnov test if it was found that the (p-

value) is greater than the level of significance ( ) at different values of the shape

parameters, and therefore the hypothesis that the data follows the generalized modified Bessel

distribution is accepted. And by executing the program, the estimator of the mean parameter is

calculated under the quadratic loss function and defined in equation (25) at different initial values

and the comparison through (MSE):

Where is the number of iterations

This comparison will be done in two cases. In the first case, the optimal Bayesian sample size was

used to calculate the mean parameter defined in the equation (29) and in the second case, different

sample sizes were used ( ). Table (1) shows the assumed values of generation and

calculates estimators:

Table 1. Assumed values for generation and for calculating estimators

Shape parameters

20.011.5333.5

50.00574
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Table (2) and (3) shows the (MSE) values for an estimate of the mean parameter at different

shape parameters and different sample sizes when .

Table 2. MSE values for different shape parameters ( and different sample sizes at

n MSE(

(2,1.5,3) 25 3 3.3001 0.0502

7 3.0054 0.0681

75 3 3.3615 0.0453

7 3.1242 0.0601

125 3 3.5123 0.0398

7 3.4458 0.0495

(8,3,10) 25 3 3.3102 0.0428

7 3.1254 0.0599

75 3 3.3984 0.0414

7 3.2451 0.0576

125 3 3.5012 0.0202

7 3.4746 0.0399

Table 3. MSE values for different shape parameters ( and different sample sizes at

N MSE(

(2,1.5,3) 25 3 3.9101 0.0880

7 4.0604 0.0989

75 3 3.1923 0.0778

7 3.9781 0.0928

125 3 3.7825 0.0682

7 3.1632 0.0789

(8,3,10) 25 3 3.2524 0.0732

7 3.8942 0.0900
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75 3 3.2998 0.0712

7 3.9321 0.0892

125 3 3.6123 0.0532

7 3.3549 0.0692

We notice from tables (2) & (3), that the (MSE) value decreases with the increase in the shape

parameters and sample size at and when the value of is close to .

Table (4) represents the Bayesian sample size values for different shape parameters ( )

when .

Table 4. Bayesian sample size values for different shape parameters ( )

c MSE(

(2,1.5,3) 2 0.01 18 2.9171 0.2345

0.005 23 3.0014 0.1982

5 0.01 36 3.2045 0.1156

0.005 41 3.2204 0.0968

(8,3,10) 2 0.01 27 3.1121 0.1756

0.005 31 3.1984 0.1536

5 0.01 55 3.7956 0.0864

0.005 72 3.6548 0.0645

We notice from table (4) that the Bayesian sample size increases with the increase in the shape

parameters and the (MSE) value decreases with the increase in the shape parameters, as well as the

Bayesian sample size is inversely proportional to the sampling cost (c) per unit.
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10. Conclusions

* The posterior probability distribution for the mean parameter follows the generalized modified

Bessel distribution.

* The Bayesian sample size was determined to estimate the mean parameter of the generalized

modified Bessel distribution when the parameters ( ) are known, and the sampling

decision is made under quadratic loss function when the sampling cost per unit (c) is less than the

* Through simulation, we notice that when the values of the shape parameters are increased, the

values of the estimators of the mean parameter using the Bayesian sample size are close to the

values of the estimators of the mean parameter using a relatively large sample size.

11. Recommendations

* Using a non-linear cost function to determine the Bayesian sample size to estimate the mean

parameter of the generalized modified Bessel distribution under the quadratic loss function.

* Traditional sample size analysis for estimating parameters of the generalized modified Bessel

distribution.

* Using other distributions with heavy tails to determine the Bayesian sample size, including the

double exponential distribution (Laplace distribution).

* Using other symmetric and asymmetric loss functions to determine the Bayesian sample size to

estimate the mean parameter of the generalized modified Bessel distribution.
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