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Abstract

Using a primitive formulation of the circle method together with a random number

generator � � , which is based on the naive notion of randomness, we prove there exists an

infinite number of twin primes. Then we show that a deduction, crucial to the proof, which is

immediately implied by � � , is false.

Keywords: Goldbach Conjecture; Twin Primes Conjecture; circle method; generalized

Riemann Hypothesis

Introduction

The Merriam-Webster Collegiate Dictionary defines random: being or related to a set or to

an element of a set each of whose elements has equal probability of occurrence. Jacob

Bernoulli: Two contingent events are considered equally probable if after taking into

consideration all relevant evidence, one of them cannot be expected in preference to the

other.

We define a random number generator � � = �
� + 1 randomly where “randomly” is

defined naively as above. By embedding � � into Statement 2 below we derive a proof of
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the existence of an infinite number of twin primes. We then show that Statement 3 below,

crucial to the proof, which is immediately implied by that embedding of � � into Statement

2, is false.

The notation in this paper is based on that found in [1].

Let

� �, � =
� ≤�

� ��� , where � � = �2��� � ≥ 0 ;

� �, � =
2 ≤�≤�

� ��
log �� � ≥ 2 , � �, � = 0 � < 2 ;

�� � =
2≤�≤�

1
log �� = � 0, � ~

�
log �

, �� 0 = �� 1 = 0;

�0 =
log2+� �

�
�(�, �) = number of (��, ��), �� ≤ �, �� ≤ �, �� − �� = �.

In what follows n and m are assumed to be natural numbers.

We consider two statements:

1. � (�, 2) < �
log2+� �

for � > �1

2. For all n for all m such that

�
log2+ �

≤ � ≤ � we have

( − 1)� � �(�, �) ≤
�

log2+� �
or

( − 1)� � +1�(�, �) ≤
�

log2+� �

Statement 2 is introduced as a vehicle, in which to embed � � . Clearly, for all n, Statement 2

is true.

The crux of the proof is that the definition of � � , based on the naive definition of random,

combined with Bernoulli's observation immediately implies (Statement 3) there exists an

infinite sequence of n, say � � , for all m such that

�
log2+� �

≤ � ≤ � we have �(�, �) ≤
�

log2+� �
.
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Then we are able to prove for n in that infinite sequence, �4 � = � �
log2+� �

(cf. page 7),

which, from our primitive formulation of the circle method construction, immediately implies

that for n in that sequence � (�, 2) ≥ �
log2 �

for � > �2.

But that fact contradicts Statement 1; so that, by elementary logic, either its negation is true

(which implies there exists an infinite number of twin primes) or the negation of Statement 2

is true or the negation of Statement 3 is true.

But the negation of Statement 2 must be false; since Statement 2 is true, and the negation of

Statement 3 must be false; since by the naive definition of randomness and the definition of

�(�) it is most reasonable to assume Statement 3 is true.

Proof

We assume � > �0. For each n, let �� = �0, 1 − �0 .

Clearly,

� �, 2 =
�0

1+�0

��,�
2� −2� ��.�

We decompose this integral � � = � � + � 1,1 , where

� � =
��

� �, � 2� � −2� ��, � 1,1 =
1−�0

1+�0

� �, � 2� � −2� ��.

Theorem 1

[1] Let � ≥ 3, � ≤ log� � and �, � = 1

� �, �, � −
1��
 �

≤ � � exp
− log1 2 �

200

This is proved by standard analytic number theory techniques.

Corollary 1

� � ; �, � −
ls �
 �

< � log−100 � for 0 ≤ � ≤ � , �, � = 1, � > �0.

This follows immediately from Theorem 1 by considering case 1 0 ≤ � ≤ �1 2 and case 2

�1 2 < � ≤ �.
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Lemma 1

0<�≤�
�,� =1
ℎ,� =1

�
�ℎ
�

= � � .�

By Theorem 272 in [2] we have

0<�≤�
�,� =1

�
�ℎ
�

=
� �  �
 �

where � = ��, � = ℎ, � .�

But ℎ, � = 1

Lemma 2

[1]

� �1 + �1, � = � ��2 � �1, � − 2���2
0

�
� ��2 � �1, � ��� .

� ��2 − � ��2 =
�

�
2���2 � ��2 ���

� �1 + �2, � =
�≤�

� ��1� � ��2

=
�≥�

� ��2 − 2���2
�

�
� ��2 ����

=
�≤�

� ��2 − 2���2
�

�
� ��2� ���

= � ��2
�≤�

� ��1 − 2���2
0

�
� ��2

�≤�

� ��1 �����

= � ��2 � �1, � − 2���2
0

�
� ��2� � �1, � .

Lemma 3

[1]

� �1 + �2, � = � ��2 � �1, � − 2���2
0

�
� ��2 � �1, �� ��.

As stated on page 63 in [1] this can be proved in the same way as the proof of Lemma 2.
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Lemma 4

[1]

�
ℎ
�

+ �, � = � �� �
ℎ
�

, � − 2���
0

�
� ��� �

ℎ
�

, � ��.

This follows from Lemma 2 with �1 = ℎ
�

, �2 = �, � = �.

Lemma 5

[1]

� �, � = � �� � 0, � − 2���
0

�
� ��� � 0, � ��.

This follows from Lemma 3 with �1 = 0, �2 = �, � = 0.

Theorem 2

Let [1]

� ≤ log15 � ,
� ≤ �0,

�, � = 1.

Then

�
ℎ
�

+ �, � −
� �
 �

� �, � ≤ log−80+� � .

Proof

�
ℎ
�

, � −
�≤�
� ∤ �

�
�ℎ
�� ≤

� ∤ �

1 < �� .

Clearly,

�≤�
�∤�

�
�ℎ
�

=
0<�<�
�,� =1

�
�ℎ
�

�≤�
�≡� mod �

1 =
0<�<�
�,� =1

�
�ℎ
�

� � ; �, � .����

Hence by Lemma 1 and Corollary 1 we have



- 79 -

�
ℎ
�

, � −
� �
 �

� 0, � < � +
�≤�
�∤�

�
�ℎ
�

−
� �
 �

� ls �

= � +
0<�≤�
�,� =1

�
�ℎ
�

� � ; �, � −
ls �
 �

�

= � + �� log−100 � < 2� log−85 � 0 ≤ � ≤ � .

By Lemma 4 and Lemma 5 we have

�
ℎ
�

+ �, � −
� �
 �

� �, � = � �� �
ℎ
�

, � −
� �
 �

� 0, �

1 = −2���
0

�
� ��� �

ℎ
�

, � −
� �
 �

� 0, � ��

≤ �
ℎ
�

, � −
� �
 �

� 0, �

+ 2��0
0

�
�

ℎ
�

, � −
� �
 �

� 0, � ���

≤ 2� log−85 � 1 + 2� �0 < � log−80+� � ,

By Theorem 2 we have for � ≤ �0

� 1 + �, � − � �, � ≤ � log−80+� �

By the trivial inequalities � �, � ≤ � and � �, � ≤ � and the fact that if � ≤ �

and � ≤ �, then �2 − �2 ≤ 2� � − � with � − � 1 + �, � and � = � �, � we have for

� ≤ �0

�2 1 + �, � − �2 �, � < �2�2 log−80+� � .

Immediately we have

� 1 + �, � 2 − � �, � 2 ≤ �2 1 + �, � − �2 �, � ≤ �2�2 log−80+� � .

By the change of variable � = � − 1 we have

� 1,1 =
−�0

�0

� 1 + �, � 2� −2� ��;�

so that
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−�0

�0

� 1 + �, � 2� 2� �� −
−�0

�0

� �, � 2� −2� ����

≤
−�0

�0

�2 1 + �, � − �2 �, � �� < �6� log−78 � .�

Let

�1 � −
−��

�0

� �, � 2� −2� ��.�

Then

� 1,1 − �1 � ≤ �6� log−78 �.

Let

� � =
�1�2

�1≥2,�2≥2 and �2−�1=2
�1≤�,�2≤�

log−1 �1 log−1 �2.�

Clearly,

� � =
−1

2

1
2

� �, � 2� −2� ��.�

Also, the number of terms on the right hand side is � − 3 and each term is greater than

log−1 � and less than 1 so that

� − 3 log−2 � < � � < �

�=2

�1

� ��� ≤
1

sin �� ≤
1

2�
�1 ≥ 2,0 < � ≤

1
2

Hence by definition of � �, � and Abel's lemma we have

� �, � < � −1 0 < � <
1
2

;

so that

� � − �1 � ≤ 2
�0

1
2

�−2�� ≤ �4� log−2+� � .�

Hence
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(1)

� 1,1 − � � ≤ �6� log−96+2� � + �4� log− 2+� � .

Clearly,

� �, 2 =
�0

1+�0

� �, � 2� cos 4�� �� =
�0

1−�0

� �, � 2 cos 4�� ��� + � �

+ �
�

log2 �
.

and

� �, � 2 = � � + 2
2≤�≤�

��≤�,��≤�
�=��−��

� �, � cos 2��� .�

Hence,

�0

1−�0

� �, � 2 cos 4�� �� =
�0

1−�0

� � cos 4�� �� +
�0

1−�0

� �, 2 cos2 4�� �����

=+ 2 � �, �
�0

1−�0

cos 2��� cos 4�� ����

=+ 2 2 < � <
�

log2+� �

=+ 2 � �, �
�0

1−�0

cos 2��� cos 4�� ����

=+ 2
�

log2+� �
≤ � ≤ �

= �1 � + �2 � + �3 � + �4 � .

Lemma 6

sin �
�

<
2 + cos �

3
0 < � ≤ 2� [3], p. 107.

Lemma 7

If � > 2

2
�0

1−�0

cos 2���� cos 4�� �� =
− sin 2� � − 2 �0

� � − 2 −
sin 2� � + 2 �0

� � + 2

Proof.
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If � > 2

2
�0

1−�0

cos 2��� cos 4�� �� =
sin 2� � − 2 �

2� � − 2� +
sin 2� � + 2 �

2� � + 2
�0

1−�0

=
sin 2� � − 2 1 − �0

2� � + 2
�0

1−�0

=−
sin 2� � − 2 �0

2� � − 2
+

sin 2� � + 2 �0

2� � + 2

=
sin 2� � − 2 − �0

2� � − 2
+

sin 2� � + 2 − �0

2� � + 2

=−
sin 2� � − 2 �0

2� � − 2
+

sin 2� � + 2 �0

2� � + 2

=−
sin 2� � − 2 �0

2� � − 2 −
sin 2� � + 2 �0

2� � + 2

=−
sin 2� � − 2 �0

2� � − 2
−

sin 2� � + 2 �0

2� � + 2 �0

=−
sin 2� � − 2 �0

� � − 2
−

sin 2� � + 2 �0

� � + 2

To show �1 � = � �
log2 �

.

�0

1−�0

� �� cos 4�� �� =
� �
4�

sin 4��
�0

1−�0

=−
� �
2�

sin 4��0 .

Now apply Lemma 6.

To show �2 � = � �
log2 �

.

This is immediate by Statement 1.

To show �3 � = � �
log2 �

.

This follows immediately from Lemma 6, Lemma 7 and the facts that 2� � − 2 �0 ≤ 2� ↔

� ≤ �0
−1 + 2 and 2� � + 2 �0 ≤ 2� ↔ � ≤ �0

−1 − 2,

2 < � ≤
�

log2+� �
, � �, � ≤ 1 − �

�
log �

and �0 =
log2+� �

�
.
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To show �4 � = � �
log2 �

for n in � � .

This follows immediately from the argument in the Introduction and the facts that

�
log2+� �

≤ � ≤ �, 2
�0

1−�0

cos 2���� cos 4�� ��

≤
1
�

1
� − 2

+
1

� + 2
by Lemma 7,

�
log2+� �

�
1
�� ≤ log � − log

�
log2+� �

= 2 + � log � and
2 + � log �

log� �
→ 0.

Counterexample to Statement 3

Assume � ≥ �0 . By the PNT the number of primes in �
2

, � is asymptotic to �
2 log �

and the

number of primes in �
8

, �
4

is asymptotic to �
8 log �∗.

Let � = � = �� − ��
�
2

≤ �� ≤ �, �
8

≤ �� ≤ �
4

� is (asymptotically) equal to �2

16 log2 �
and �

4
≤ � ≤ 7�

8
.

But by the assumption we have � ≤ 7�2

8 log2+� �
.
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