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Abstract

Using a primitive formulation of the circle method together with a random number
generator (), which is based on the naive notion of randomness, we prove there exists an
infinite number of twin primes. Then we show that a deduction, crucial to the proof, which is

immediately implied by (), is false.

Keywords: Goldbach Conjecture; Twin Primes Conjecture; circle method; generalized

Riemann Hypothesis

Introduction

The Merriam-Webster Collegiate Dictionary defines random: being or related to a set or to
an element of a set each of whose elements has equal probability of occurrence. Jacob
Bernoulli: Two contingent events are considered equally probable if after taking into
consideration all relevant evidence, one of them cannot be expected in preference to the

other.

We define a random number generator ( )2{ 1 randomly} where “randomly” is

defined naively as above. By embedding ( ) into Statement 2 below we derive a proof of
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the existence of an infinite number of twin primes. We then show that Statement 3 below,

crucial to the proof, which is immediately implied by that embedding of ( ) into Statement

2, is false.

The notation in this paper is based on that found in [1].

Let

(,)= ( ).where ()= 2 ( =0);
(,)= ( )( =2), (,)=0( <2);
| 2 < Iog B | | |
1
= g =© ~(g): 0= m=o
B <?Oéé+' )
0=
(, ) =numberof( , ) =, =, - =

In what follows n and m are assumed to be natural numbers.

We consider two statements:

1. ( ,2) < Iongor > 1
2. For all n for all m such that
—_— < wehave
|092+
-1 O ’ <
(DO ) Sjm
or

(—1) O (, )SWT

Statement 2 is introduced as a vehicle, in which to embed ( ). Clearly, for all n, Statement 2

is true.

The crux of the proof is that the definition of ( ), based on the naive definition of random,
combined with Bernoulli's observation immediately implies (Statement 3) there exists an

infinite sequence of n, say ( ), for all m such that

< =< wehave (, ) <

|092+ |OgZ+
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Then we are able to prove for n in that infinite sequence, 4 )= (IogT) (cf. page 7),

which, from our primitive formulation of the circle method construction, immediately implies

that for n in that sequence ( ,2) = for > .

log?

But that fact contradicts Statement 1; so that, by elementary logic, either its negation is true
(which implies there exists an infinite number of twin primes) or the negation of Statement 2

is true or the negation of Statement 3 is true.

But the negation of Statement 2 must be false; since Statement 2 is true, and the negation of
Statement 3 must be false; since by the naive definition of randomness and the definition of

( ) itis most reasonable to assume Statement 3 is true.

Proof
We assume > .Foreachn,let =] ¢, 1— o).
Clearly,
1+ ¢
(2= | [ 2)

We decompose thisintegral ( ) = ( )+ (1,1), where
1+ 0
()= 1P E2) , A= | C,)I12 (=2)
1-o
Theorem 1

[1]Let =3, <log and(,)=1

1 — log'/2
ool o)

This is proved by standard analytic number theory techniques.

Corollary 1

‘([ I; ,)—M‘< log™® for(0< =< ), (,)=1 > ,

172

This follows immediately from Theorem 1 by considering case 10 < and case 2

12 « <
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Lemma 1

0
(. )=1
(,)=1
By Theorem 272 in [2] we have
(_)_ ( )g() where = ()
o< < ¢C )
(,)=1
But(, )=1
Lemma 2

[1]

(1+ )= 2 (1.)—2 C 2 (1)

0

(29— C 2= 2 5, ( 2

(1+ 2, )= C 0 C 2

=

= {(2)—2 2 C 2) }

= {(2)_2 2 C 2) }

=

v

= ( 2 ( D=2 5 C 2) ( 1)

< 0 <

= (2 (1)—2 C 2 (1)

0

Lemma 3

[1]
(1+ 22)=(02 (1,)—2 C 2 (1)

0

As stated on page 63 in [1] this can be proved in the same way as the proof of Lemma 2.
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Lemma 4

[1]

+ )= F)2 o)

This follows from Lemma 2 with ; =-, , = , =

Lemma 5

[1]

(.)=06) G )-2 ) )

0
This follows from Lemma 3 with ; =0, , = , =0.
Theorem 2
Let [1]
<log®® |,
| 1< o
(,)=
Then
‘ (—+ , ) O (, )‘slog‘80+
#(C )
Proof
C)- ()= i
<
Clearly,

IA

o< < < o< <
()= = (mod ) (,)=1

Hence by Lemma 1 and Corollary 1 we have
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[ )55 eof= o] Oz

=

=+ (far o=

o<<
(,)=1
= + log71% <2 log® (0= < ).

By Lemma 4 and Lemma 5 we have
B OHOle )5 e)
2 ){ -, )—% © )} ‘
()
S‘ - )_¢(> © )‘

<_'> ¢<) © )‘

<2 log™® (1+2 ()< log™8%*

+2

0

By Theorem 2 we havefor| | =< |
| A+ )= (,)I=( log™8* )

By the trivial inequalities | (, )|]< and | (, )|< and the fact that if | | <
and| | < , then | 2 — 2|S2 | — |with — (1+ , )Yand = (, ) we have for

I 1= o
|2(1+ )= 2, )|< , 2log80*
Immediately we have
@+  OP=1 C.HPf=s]2Qa+ , )= 2, )|= 2 %log™®™

By the change of variable = ( — 1) we have

A= | @+, )R (=2)

-0

so that
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| A+ D)IFPR@) - | (.12 (=2)
- -
< | 20+ , )= 2(, )| < ¢ log™™®
-0
Let
0
1) — | (.12 (=2)
Then
| @D - ()= ¢ log™™® .
Let
()= log™* ;log™t ».
1 2
122, 222and 2— 122
1=, 2=
Clearly,

1

()= "1 (P 2)

1
2

Also, the number of terms on the right hand side is ( — 3) and each term is greater than

-1

log and less than 1 so that

( =3log™? < ()<

1

=2

Hence by definition of ( , ) and Abel's lemma we have

CoN<t I (o<1 1<3);

so that

N~

| ()- 1OI=2 72 = 4 log™?*

Hence
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(1)

| (111)_ ()lS 6 |Og_96+2 + 4 |og_(2+) .

Clearly,
1+ ¢ 1- 9
(.,2)= | (,)IPcos(4 ) = | (,)lPcos(4 ) + ()
N (logz >
and
| C,)IP= ()+2 (, Jcos(2 ).
2< <
Hence,
1- 9 1- 9 1- o
| (., )IPcos(4 ) = (Jcos(4 ) + (.2)cos*(4 )
0 0 1_0 0
+ 2 (, ) cos (2 )cos(4 )
2T Shog
1=9
+ 2 (, ) cos (2 )cos(4 )
o - =
= 1)+ 20 )+ 30 )+ 4()
Lemma 6
sin 2 + cos
3 O0< =2 )I3] p.107.
Lemma 7
If >2
1= o _=sin(2 ( —2) o) sin(2 ( +2) o)
2 O cos (2 Jcos(4 ) = C —2) - ( +2)
Proof.
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1- o _sin@2 ( —2)) sin@ ( +2) )| °
2 O cos(2 )cos(4 ) = 2( =2 + 2 ( +2)
Csin(2 ( —2@- o) °
B 2 ( +2) .
_(sin@ ( =2) o) _sin@ ( +2) o)
( 2 ( -2 2 ( +2) )
_sin(2 ( —2)(- O))+sin(2 ( +2(— o)
- 2 ( -2 2 ( +2)
(sin(z ( =2 0)) sin(2 ( +2) o)
— +
2 (( —-2) 2 ( +2
_sin@2 (=2 o) sin2 ( +2) o)
B 2 ( =2 2 ( +2)
_sin2 ((—2) ¢) _sin2 ( +2) o)
2 ( -2 2 ( +2) o
_sin@2 ( =2) o) sin2 ( +2) o)
B ( =2 ( +2)
Toshow 1( ) = (Iog2 )
1- 9 =0
- Oees@ ) =%sin(4 ) =—¥sin(4 0).
Now apply Lemma 6.
Toshow ,»( ) = (log2 )
This is immediate by Statement 1.
Toshow 3( ) = (|092 )
This follows immediately from Lemma 6, Lemma 7 and the factsthat2 ( —2) (<2 o

< ol+2and2 ( +2) g2 o = -2

log®*
2< o9

SIOQT, (, )=s@Qa- )W and 0o-
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Toshow 4( ) = (W) fornin ().

This follows immediately from the argument in the Introduction and the facts that

1-9
< <, ‘2 cos(2 )cos(4 )

|og2+ ) .
S —

(1+1>bL 7
5 o Y Lemma 7/,

1<I | 2+ )l d(2+ )log 0
—=<log —JlogQq—s— = 0 and ——— - 0.
g g log®* g log
|Og2+
Counterexample to Statement 3
Assume = (. By the PNT the number of primes in (E’ ) is asymptotic to Tiog and the
number of primes in {E’Z} is asymptotic to 810g
et ={ = - [= = 55 =

2

. . 7
| |is (asymptotically) equal to T61og? and 2= =4

2

But by the assumption we have | | < 8logZ*
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