SCIREA Journal of Mathematics
ISSN: 2995-5823
http://www.scirea.org/journal/Mathematics
June 16, 2024
Volume 9, Issue 3, June 2024
https://doi.org/10.54647/mathematics110488

On Randomness

C.J. Mozzochi
P.O. Box 1424, Princeton, NJ 08542 U.S.A.

Abstract

Using a primitive formulation of the circle method together with a random number generator $\theta(n)$, which is based on the naive notion of randomness, we prove there exists an infinite number of twin primes. Then we show that a deduction, crucial to the proof, which is immediately implied by $\theta(n)$, is false.

Keywords: Goldbach Conjecture; Twin Primes Conjecture; circle method; generalized Riemann Hypothesis

Introduction

The Merriam-Webster Collegiate Dictionary defines random: being or related to a set or to an element of a set each of whose elements has equal probability of occurrence. Jacob Bernoulli: Two contingent events are considered equally probable if after taking into consideration all relevant evidence, one of them cannot be expected in preference to the other.

We define a random number generator $\theta(n)=\left\{\begin{array}{c}n \\ n+1\end{array}\right.$ randomly $\}$ where "randomly" is defined naively as above. By embedding $\theta(n)$ into Statement 2 below we derive a proof of
the existence of an infinite number of twin primes. We then show that Statement 3 below, crucial to the proof, which is immediately implied by that embedding of $\theta(n)$ into Statement 2 , is false.

The notation in this paper is based on that found in [1].
Let

$$
\begin{aligned}
f(x, v) & =\sum_{p \leq v} \epsilon(p x), \text { where } \epsilon(z)=e^{2 \pi i z}(v \geq 0) ; \\
g(x, v) & =\sum_{2 \leq m \leq v} \frac{\epsilon(m x)}{\log m}(v \geq 2), g(x, v)=0(v<2) ; \\
L s[v] & =\sum_{2 \leq m \leq v} \frac{1}{\log m}=g(0, v) \sim\left(\frac{v}{\log v}\right), L s[0]=L s[1]=0 ; \\
x_{0} & =\left(\frac{\log ^{2+\epsilon} n}{n}\right) \\
r(n, m) & =\text { number of }\left(p_{i}, p_{j}\right), p_{i} \leq n, p_{j} \leq n, p_{i}-p_{j}=m .
\end{aligned}
$$

In what follows n and m are assumed to be natural numbers.
We consider two statements:

1. $\quad r(n, 2)<\frac{n}{\log ^{2+\epsilon} n}$ for $n>N_{1}$
2. For all n for all m such that

$$
\begin{aligned}
\frac{n}{\log ^{2+} n} & \leq m \leq n \text { we have } \\
(-1)^{\theta(n)} r(n, m) & \leq \frac{n}{\log ^{2+\epsilon} n} \\
& \text { or } \\
(-1)^{\theta(n)+1} r(n, m) & \leq \frac{n}{\log ^{2+\epsilon} n}
\end{aligned}
$$

Statement 2 is introduced as a vehicle, in which to embed $\theta(n)$. Clearly, for all n, Statement 2 is true.

The crux of the proof is that the definition of $\theta(n)$, based on the naive definition of random, combined with Bernoulli's observation immediately implies (Statement 3) there exists an infinite sequence of n, say $a(n)$, for all m such that

$$
\frac{n}{\log ^{2+\epsilon} n} \leq m \leq n \text { we have } r(n, m) \leq \frac{n}{\log ^{2+\epsilon} n}
$$

Then we are able to prove for n in that infinite sequence, $I_{4(n)}=o\left(\frac{n}{\log ^{2+\epsilon} n}\right)$ (cf. page 7), which, from our primitive formulation of the circle method construction, immediately implies that for n in that sequence $r(n, 2) \geq \frac{n}{\log ^{2} n}$ for $n>N_{2}$.

But that fact contradicts Statement 1; so that, by elementary logic, either its negation is true (which implies there exists an infinite number of twin primes) or the negation of Statement 2 is true or the negation of Statement 3 is true.

But the negation of Statement 2 must be false; since Statement 2 is true, and the negation of Statement 3 must be false; since by the naive definition of randomness and the definition of $\theta(n)$ it is most reasonable to assume Statement 3 is true.

Proof

We assume $n>C_{0}$. For each n, let $E_{n}=\left[x_{0}, 1-x_{0}\right]$.

Clearly,

$$
r(n, 2)=\int_{x_{0}}^{1+x_{0}}\left|f_{x, n}\right|^{2} \epsilon(-2 x) d x
$$

We decompose this integral $r(n)=m(n)+T(1,1)$, where

$$
m(n)=\int_{E_{n}}|f(x, n)|^{2} \epsilon(-2 x) d x, \quad T(1,1)=\int_{1-x_{0}}^{1+x_{0}}|f(x, n)|^{2} \epsilon(-2 x) d x
$$

Theorem 1

[1] Let $m \geq 3, k \leq \log ^{u} n$ and $(k, l)=1$

$$
\left|\pi(m, k, l)-\frac{1_{k} m}{\phi(k)}\right| \leq C m \exp \left(\frac{-\log ^{1 / 2} n}{200}\right)
$$

This is proved by standard analytic number theory techniques.

Corollary 1

$$
\left|\pi([v] ; q, l)-\frac{\operatorname{ls}[v]}{\phi(q)}\right|<n \log ^{-100} n \text { for }(0 \leq v \leq n),(q, n)=1, n>C_{0}
$$

This follows immediately from Theorem 1 by considering case $10 \leq v \leq n^{1 / 2}$ and case 2 $n^{1 / 2}<v \leq n$.

Lemma 1

$$
\sum_{\substack{0<l \leq q \\(l, q)=1 \\(h, q)=1}} e\left(\frac{l h}{q}\right)=\mu(q)
$$

By Theorem 272 in [2] we have

$$
\sum_{\substack{0<l \leq q \\(l, q)=1}} e\left(\frac{l h}{q}\right)=\frac{u(N) \phi(q)}{\phi(N)} \text { where } q=a N, a=(h, q)
$$

But $(h, q)=1$

Lemma 2

[1]

$$
\begin{aligned}
f\left(x_{1}+x_{1}, v\right) & =e\left(v x_{2}\right) f\left(x_{1}, v\right)-2 \pi i x_{2} \int_{0}^{v} e\left(u x_{2}\right) f\left(x_{1}, u\right) d u . \\
e\left(v x_{2}\right)-e\left(p x_{2}\right) & =\int_{p}^{v} 2 \pi i x_{2} e\left(u x_{2}\right) d u \\
f\left(x_{1}+x_{2}, v\right) & =\sum_{p \leq v} e\left(p x_{1}\right) e\left(p x_{2}\right) \\
& =\sum_{p \geq v}\left\{e\left(v x_{2}\right)-2 \pi i x_{2} \int_{p}^{v} e\left(u x_{2}\right) d u\right\} \\
& =\sum_{p \leq v}\left\{e\left(v x_{2}\right)-2 \pi i x_{2} \int_{p}^{v} e\left(u x_{2}\right) d u\right\} \\
& =e\left(v x_{2}\right) \sum_{p \leq v} e\left(p x_{1}\right)-2 \pi i x_{2} \int_{0}^{v} e\left(u x_{2}\right) \sum_{p \leq v} e\left(p x_{1}\right) d u \\
& =e\left(v x_{2}\right) f\left(x_{1}, v\right)-2 \pi i x_{2} \int_{0}^{u} e\left(u x_{2}\right) f\left(x_{1}, u\right) .
\end{aligned}
$$

Lemma 3

[1]

$$
g\left(x_{1}+x_{2}, v\right)=e\left(v x_{2}\right) g\left(x_{1}, v\right)-2 \pi i x_{2} \int_{0}^{v} e\left(u x_{2}\right) g\left(x_{1}, u\right) d u
$$

As stated on page 63 in [1] this can be proved in the same way as the proof of Lemma 2.

Lemma 4

[1]

$$
f\left(\frac{h}{q}+y, n\right)=e(n y) f\left(\frac{h}{q}, n\right)-2 \pi i y \int_{0}^{n} e(u y) f\left(\frac{h}{q}, u\right) d u .
$$

This follows from Lemma 2 with $x_{1}=\frac{h}{q}, x_{2}=y, v=n$.

Lemma 5

[1]

$$
g(y, n)=e(n y) g(0, n)-2 \pi i y \int_{0}^{n} e(u y) g(0, u) d u .
$$

This follows from Lemma 3 with $x_{1}=0, x_{2}=y, v=0$.

Theorem 2

Let [1]

$$
\begin{aligned}
q & \leq \log ^{15} n, \\
|y| & \leq x_{0}, \\
(q, n) & =1 .
\end{aligned}
$$

Then

$$
\left|f\left(\frac{h}{q}+y, n\right)-\frac{\mu(q)}{\phi(q)} g(y, n)\right| \leq \log ^{-80+\epsilon} n .
$$

Proof

$$
\left|f\left(\frac{h}{q}, v\right)-\sum_{\substack{p \leq v \\ p \nmid q}} e\left(\frac{p h}{q}\right)\right| \leq \sum_{q \nmid q} 1<q .
$$

Clearly,

$$
\sum_{\substack{p \leq v \\ p \nmid q}} e\left(\frac{p h}{q}\right)=\sum_{\substack{0<l<q \\(l, q)=1}} e\left(\frac{l h}{q}\right) \sum_{\substack{p \leq q \\ p \equiv l(\bmod q)}} 1=\sum_{\substack{0<l<q \\(l, q)=1}} e\left(\frac{l h}{q}\right) \pi([v] ; q, l) .
$$

Hence by Lemma 1 and Corollary 1 we have

$$
\begin{aligned}
\left|f\left(\frac{h}{q}, v\right)-\frac{\mu(q)}{\phi(q)} g(0, v)\right| & <q+\left|\sum_{\substack{p \leq q \\
p \nmid q}} e\left(\frac{p h}{q}\right)-\frac{\mu(q)}{\phi(q)} \mathrm{s}[v]\right| \\
& =q+\left|\sum_{\substack{0<l \leq q \\
(l, q)=1}} e\left(\frac{l h}{q}\right)\left\{\pi([v] ; q, l)-\frac{\mathrm{ls}[v])}{\phi(q)}\right\}\right| \\
& =q+q n \log ^{-100} n<2 n \log ^{-85} n \quad(0 \leq v \leq n)
\end{aligned}
$$

By Lemma 4 and Lemma 5 we have

$$
\begin{aligned}
&\left|f\left(\frac{h}{q}+y, n\right)-\frac{\mu(q)}{\phi(q)} g(y, n)\right|= \left\lvert\, e(n y)\left\{f\left(\frac{h}{q}, n\right)-\frac{\mu(q)}{\phi(q)} g(0, n)\right\}\right. \\
& \left.-2 \pi i y \int_{0}^{n} e(v y)\left\{f\left(\frac{h}{q}, v\right)-\frac{\mu(q)}{\phi(q)} g(0, v)\right\} d v \right\rvert\, \\
& \leq\left|f\left(\frac{h}{q}, n\right)-\frac{\mu(q)}{\phi(q)} g(0, n)\right| \\
&+2 \pi x_{0} \int_{0}^{n}\left|f\left(\frac{h}{q}, v\right)-\frac{\mu(q)}{\phi(q)} g(0, v)\right| d v \\
& \leq 2 n \log ^{-85} n\left(1+2 \pi x_{0}\right)<n \log ^{-80+\epsilon} n
\end{aligned}
$$

By Theorem 2 we have for $|y| \leq x_{0}$

$$
|f(1+y, n)-g(y, n)| \leq\left(n \log ^{-80+\epsilon} n\right)
$$

By the trivial inequalities $|f(x, n)| \leq n$ and $|g(y, n)| \leq n$ and the fact that if $|a| \leq n$ and $|b| \leq n$, then $\left|a^{2}-b^{2}\right| \leq 2 n|a-b|$ with $a-f(1+y, n)$ and $b=g(y, n)$ we have for $|y| \leq x_{0}$

$$
\left|f^{2}(1+y, n)-g^{2}(y, n)\right|<C_{2} n^{2} \log ^{-80+\epsilon} n
$$

Immediately we have

$$
\left||f(1+y, n)|^{2}-|g(y, n)|^{2}\right| \leq\left|f^{2}(1+y, n)-g^{2}(y, n)\right| \leq C_{2} n^{2} \log ^{-80+\epsilon} n .
$$

By the change of variable $y=(x-1)$ we have

$$
T(1,1)=\int_{-x_{0}}^{x_{0}}|f(1+y, n)|^{2} \epsilon(-2 y) d y
$$

so that

$$
\begin{aligned}
\left.\left|\int_{-x_{0}}^{x_{0}}\right| f(1+y, n)\right|^{2} \epsilon(2 y) d y & -\int_{-x_{0}}^{x_{0}}|g(y, n)|^{2} \epsilon(-2 y) d y \mid \\
& \leq \int_{-x_{0}}^{x_{0}}\left|f^{2}(1+y, n)-g^{2}(y, n)\right| d y<C_{6} n \log ^{-78} n
\end{aligned}
$$

Let

$$
T_{1}(n)-\int_{-x_{o}}^{x_{0}}|g(y, n)|^{2} \epsilon(-2 y) d y
$$

Then

$$
\left|T(1,1)-T_{1}(n)\right| \leq C_{6} n \log ^{-78} n
$$

Let

$$
T(n)=\sum_{\substack{m_{1} m_{2} \\ m_{1} \geq 2, m_{2} \geq 2 \text { and } m_{2}-m_{1}=2 \\ m_{1} \leq n, m_{2} \leq n}} \log ^{-1} m_{1} \log ^{-1} m_{2}
$$

Clearly,

$$
T(n)=\int_{-\frac{1}{2}}^{\frac{1}{2}}|g(y, n)|^{2} \epsilon(-2 y) d y
$$

Also, the number of terms on the right hand side is $(n-3)$ and each term is greater than $\log ^{-1} n$ and less than 1 so that

$$
\begin{aligned}
& (n-3) \log ^{-2} n<T(n)<n \\
& \left|\sum_{m=2}^{m_{1}} e(m y)\right| \leq \frac{1}{|\sin \pi y|} \leq \frac{1}{2 y} \quad\left(m_{1} \geq 2,0<|y| \leq \frac{1}{2}\right)
\end{aligned}
$$

Hence by definition of $g(y, n)$ and Abel's lemma we have

$$
|g(y, n)|<|y|^{-1} \quad\left(0<|y|<\frac{1}{2}\right)
$$

so that

$$
\left|T(n)-T_{1}(n)\right| \leq 2 \int_{x_{0}}^{\frac{1}{2}} y^{-2} d y \leq C_{4} n \log ^{-2+\epsilon} n
$$

Hence
(1)

$$
|T(1,1)-T(n)| \leq C_{6} n \log ^{-96+2 \epsilon} n+C_{4} n \log ^{-(2+\epsilon)} n
$$

Clearly,

$$
\begin{aligned}
& r(n, 2)=\int_{x_{0}}^{1+x_{0}}|f(x, n)|^{2} \cos (4 \pi x) d x=\int_{x_{0}}^{1-x_{0}}|f(x, n)|^{2} \cos (4 \pi x) d x+T(n) \\
&+o\left(\frac{n}{\log ^{2} n}\right)
\end{aligned}
$$

and

$$
|f(x, n)|^{2}=\pi(n)+2 \sum_{\substack{2 \leq m \leq n \\ p_{i} \leq n, p_{j} \leq n \\ m=p_{i}-p_{j}}} r(n, m) \cos (2 \pi m x) .
$$

Hence,

$$
\begin{aligned}
\int_{x_{0}}^{1-x_{0}}|f(x, n)|^{2} \cos (4 \pi x) d x= & \int_{x_{0}}^{1-x_{0}} \pi(n) \cos (4 \pi x) d x+\int_{x_{0}}^{1-x_{0}} r(n, 2) \cos ^{2}(4 \pi x) d x \\
& +2 \sum r(n, m) \int_{x_{0}}^{1-x_{0}} \cos (2 \pi m x) \cos (4 \pi x) d x \\
& 2<m<\frac{n}{\log ^{2+\epsilon} n} \\
& +2 \sum r(n, m) \int_{x_{0}}^{1-x_{0}} \cos (2 \pi m x) \cos (4 \pi x) d x \\
& \frac{n}{\log ^{2+\epsilon} n} \leq m \leq n \\
= & l_{1}(n)+l_{2}(n)+l_{3}(n)+l_{4}(n) .
\end{aligned}
$$

Lemma 6

$$
\frac{\sin \theta}{\theta}<\frac{2+\cos \theta}{3}(0<\theta \leq 2 \pi)[3], \text { p. } 107
$$

Lemma 7

If $m>2$

$$
2 \int_{x_{0}}^{1-x_{0}} \cos (2 \pi m x) \cos (4 \pi x) d x=\frac{-\sin \left(2 \pi(m-2) x_{0}\right)}{\pi(m-2)}-\frac{\sin \left(2 \pi(m+2) x_{0}\right)}{\pi(m+2)}
$$

Proof.

If $m>2$

$$
\begin{aligned}
2 \int_{x_{0}}^{1-x_{0}} \cos (2 \pi m x) \cos (4 \pi x) d x= & \frac{\sin (2 \pi(m-2) x)}{2 \pi(m-2)}+\left.\frac{\sin (2 \pi(m+2) x)}{2 \pi(m+2)}\right|_{x_{0}} ^{1-x_{0}} \\
= & \left.\frac{\sin \left(2 \pi(m-2)\left(1-x_{0}\right)\right)}{2 \pi(m+2)}\right|_{x_{0}} ^{1-x_{0}} \\
& -\left(\frac{\sin \left(2 \pi(m-2) x_{0}\right)}{2 \pi(m-2)}+\frac{\sin \left(2 \pi(m+2) x_{0}\right)}{2 \pi(m+2)}\right) \\
= & \frac{\sin \left(2 \pi(m-2)\left(-x_{0}\right)\right)}{2 \pi(m-2)}+\frac{\sin \left(2 \pi(m+2)\left(-x_{0}\right)\right)}{2 \pi(m+2)} \\
& -\left(\frac{\sin \left(2 \pi(m-2) x_{0}\right)}{2 \pi((m-2))}\right)+\frac{\sin \left(2 \pi(m+2) x_{0}\right)}{2 \pi(m+2)} \\
= & -\frac{\sin \left(2 \pi(m-2) x_{0}\right)}{2 \pi(m-2)}-\frac{\sin \left(2 \pi(m+2) x_{0}\right)}{2 \pi(m+2)} \\
& -\frac{\sin \left(2 \pi(m-2) x_{0}\right)}{2 \pi(m-2)}-\frac{\sin \left(2 \pi(m+2) x_{0}\right)}{2 \pi(m+2) x_{0}} \\
= & -\frac{\sin \left(2 \pi(m-2) x_{0}\right)}{\pi(m-2)}-\frac{\sin \left(2 \pi(m+2) x_{0}\right)}{\pi(m+2)}
\end{aligned}
$$

To show $l_{1}(n)=o\left(\frac{n}{\log ^{2} n}\right)$.

$$
\int_{x_{0}}^{1-x_{0}} \pi(n) \cos (4 \pi x) d x=\left.\frac{\pi(n)}{4 \pi} \sin (4 \pi x)\right|_{x_{0}} ^{1-x_{0}}=-\frac{\pi(n)}{2 \pi} \sin \left(4 \pi x_{0}\right) .
$$

Now apply Lemma 6.
To show $l_{2}(n)=o\left(\frac{n}{\log ^{2} n}\right)$.

This is immediate by Statement 1.
To show $l_{3}(n)=o\left(\frac{n}{\log ^{2} n}\right)$.
This follows immediately from Lemma 6, Lemma 7 and the facts that $2 \pi(m-2) x_{0} \leq 2 \pi \leftrightarrow$ $m \leq x_{0}^{-1}+2$ and $2 \pi(m+2) x_{0} \leq 2 \pi \leftrightarrow m \leq x_{0}^{-1}-2$,

$$
2<m \leq \frac{n}{\log ^{2+\epsilon} n}, r(n, m) \leq(1-\epsilon) \frac{n}{\log n} \quad \text { and } x_{0}=\frac{\log ^{2+\epsilon} n}{n} .
$$

To show $I_{4}(n)=o\left(\frac{n}{\log ^{2} n}\right)$ for n in $a(n)$.

This follows immediately from the argument in the Introduction and the facts that

$$
\begin{gathered}
\frac{n}{\log ^{2+\epsilon} n} \leq m \leq n,\left|2 \int_{x_{0}}^{1-x_{0}} \cos (2 \pi m x) \cos (4 \pi x) d x\right| \\
\leq \frac{1}{\pi}\left(\frac{1}{m-2}+\frac{1}{m+2}\right) \text { by Lemma 7 } \\
\frac{\sum_{n}^{n}}{\log ^{2+\epsilon} n} \frac{1}{m} \leq \log n-\left\{\log \frac{n}{\log ^{2+\epsilon} n}\right\}=(2+\epsilon) \log n \quad \text { and } \frac{(2+\epsilon) \log n}{\log ^{\epsilon} n} \rightarrow 0
\end{gathered}
$$

Counterexample to Statement 3

Assume $n \geq N_{0}$. By the PNT the number of primes in $\left(\frac{n}{2}, n\right)$ is asymptotic to $\frac{n}{2 \log n}$ and the number of primes in $\left\{\frac{n}{8}, \frac{n}{4}\right\}$ is asymptotic to $\frac{n}{8 \log n^{*}}$.

Let $S=\left\{m=p_{i}-p_{j} \left\lvert\, \frac{n}{2} \leq p_{i} \leq n\right., \frac{n}{8} \leq p_{j} \leq \frac{n}{4}\right\}$
$|S|$ is (asymptotically) equal to $\frac{n^{2}}{16 \log ^{2} n}$ and $\frac{n}{4} \leq m \leq \frac{7 n}{8}$.
But by the assumption we have $|S| \leq \frac{7 n^{2}}{8 \log ^{2+\epsilon} n}$.

References

[1] T. Estermann, Introduction to Modern Prime Number Theory, London/New York: Cambridge University Press, 1961.
[2] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, London/New York: Oxford University Press, 1965.

