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Abstract

The production of a specific type of part entails a lengthy assembly process, concluding with

a short firing period in a furnace. Given the high operational costs of the furnace, multiple

assemblers share a single furnace, which can fire only one part at a time. The objective of this

study is to determine the optimal number of assemblers, m, that maximizes the furnace

utilization factor, K. We define the optimal value of m as the smallest quantity that meets the

specified condition K≥0.990. To this end, we develop an analytical and simulation model

based on a closed queueing system. Using an analitycal model and a GPSS World simulation

model, we investigate the dependencies of the optimal number of assemblers on the following

parameters: the coefficients of variation V(X), V(Y), and the ratio ρ=E(Y)/E(X). Here X

represents the assembly time for a part, and Y denotes the furnace firing time of a part. We

validate the simulation model by comparing its results with those obtained from an analytical

method.
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1. Introduction

In modern manufacturing industries, the optimization of production processes has become

increasingly important due to rising market demands, competition, and the need for cost

efficiency. One of the key challenges faced by manufacturers is to maximize productivity

while minimizing resource wastage and lead times. Achieving this balance requires a deep

understanding of how different components of the manufacturing system interact with one

another and how these interactions impact overall system performance.

Queueing theory, which studies the behavior of waiting lines or queues, provides valuable

insights for modeling such complex interactions in manufacturing processes [1, 2].

Specifically, closed queueing systems, where a fixed number of jobs circulate within the

system, offer a robust framework for analyzing the flow of parts through various stages of

production. These systems allow for a detailed examination of factors such as machine

utilization, job scheduling, and process bottlenecks, all of which are critical to optimizing

production [3, 4].

The application of queueing theory to manufacturing systems has been widely studied. For

example, Gershwin [5] highlighted the importance of queueing models in optimizing

production processes by addressing system variability and resource constraints. Similarly,

Papadopoulos et al. [6] explored the role of closed queueing networks in manufacturing,

showing their effectiveness in modeling production lines and assembly processes. These

works demonstrate the potential of queueing-based models to reduce lead times, improve

throughput, and enhance overall manufacturing efficiency.

The manufacturing of a certain type of parts involves an extended assembly process, which

ends with a brief firing period in a furnace. Since the operation of the furnace is very costly,

several assemblers use a single furnace that can only fire one part at a time. An assembler

cannot start a new assembly until the previous part has been removed from the furnace.

Therefore, the assembler works in the following mode:

1) Assembles the next part;

2) Waits for the opportunity to use the furnace on a FIFO basis;

3) Uses the furnace;

4) Returns to step 1.
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In this paper, we present analytical and simulation models based on a closed queueing system

to optimize the part manufacturing process. The proposed models aim to provide

manufacturers with a tool for analyzing and improving system performance under various

operational conditions. By simulating various configurations and process parameters, the

models assist in determining the optimal number of assemblers, thereby enhancing throughput

and improving overall manufacturing efficiency.

One of the methods for studying queuing systems is the simulation method. In this approach,

the model simulates the operation of a real system, reproducing the process of functioning of

a real system over time. In this paper, we use the GPSS World simulation system [7, 8].

GPSS (General-Purpose Simulation System) is a general process-oriented simulation software

environment. GPSSWorld is a Microsoft Windows application designed to run on various Windows

operating systems.

2. TheQueuingModel

2.1. The Analytical Model

Let us introduce the notation: m is the number of assemblers, X represents the assembly time

for a part, and Y is the furnace firing time of a part. The discrete random process Z(t)

represents the number of parts in the assembly stage at time t. The values of Z(t) from the set

{0, 1, ... , m} correspond to the states of a single-channel closed queueing system. We denote

by E(T) the mean of the random variable T, and ρ=E(Y)/E(X). Let us denote by kp the

stationary probability that there are k parts in the assembly stage. The furnace is idle if m parts

are in the assembly stage, meaning the random process Z(t) is in state “m”. Therefore, the

stationary value of the furnace utilization factor is determined by the formula

1 .mK p 

For exponential distributions of random variables X and Y, the stationary distribution of

random variable Z is known [9]:
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Here,  and  are the parameters of exponential distributions of the random variables X and

Y, respectively. Formulas (1) are valid for any distribution of the random variable X if we take

ρ=E(Y)/E(X).

The goal is to find the optimal number of assemblersm thatmaximizes the furnace utilization factorK.

Wewill consider optimal the smallest value ofm for which the condition с is satisfied.

Graphs illustrating the dependence of K on m are presented in Figures 1 to 3 for different

values of ρ. It is evident that as ρ increases, the optimal value of m decreases.

Figure 1. The dependence of the furnace utilization factor on the number of assemblers

in the case when ρ=0.1 and the random variable Y follows an exponential distribution

Figure 2. The dependence of the furnace utilization factor on the number of assemblers

in the case when ρ=0.5 and the random variable Y follows an exponential distribution
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Figure 3. The dependence of the furnace utilization factor on the number of assemblers

in the case when ρ=1.0 and the random variable Y follows an exponential distribution

2.2. The Gamma Distribution

In our simulation model, we can consider any distributions of random variables X and Y, but

we will only examine examples with exponential, degenerate and gamma distributions of

these random variables.

Let us denote for the random variable T the probability density function, variance and

coefficient of variation as ( ), ( ),Tf t D T and ( ),V T respectively, then for the gamma

distribution, we have
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For the gamma distribution, fixing ( )E T and varying the parameters  and , we can

consider distributions with different values of the coefficient of variation ( ).V T

For the degenerate distribution, the coefficient of variation V=0, while for the exponential

distribution, V=1.

In a single-channel closed queueing system with exponential distributions of the random

variables X and Y, we use the notation M/M. The degenerate distribution is represented by the
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letter D, while the gamma distribution with a coefficient of variation V is denoted as G(V).

For example, D/G(5) refers to a single-channel closed queueing system where X follows a

degenerate distribution, and Y follows a gamma distribution with ( ) 5.V Y 

3. The SimulationModel

3.1. Description of the Model

Below we provide a GPSS simulation model in the case when

18, ( ) 10 / 7, ( ) 1,m E X E Y   and 0.7.  We consider gamma distributions of random

variables X and Y, with the flexibility to easily adjust the parameters of these distributions.

The coefficients of variation for the random variables X and Y are 0.7 and 5, respectively. The

simulation time, 5
mod 10 .t 

The simulation model reproduces the functioning of the closed queue system over time and is

built with the minimum number of blocks necessary to calculate the furnace utilization factor.

GENERATE ,,,18
ASS ADVANCE (Gamma(1,0,49/70,100/49))
SEIZE Furnace
ADVANCE (Gamma(1,0,25,1/25))
RELEASE Furnace
TRANSFER ,ASS
GENERATE 100000
SAVEVALUE Koef,FR$Furnace
TERMINATE 1
START 1

The standard GPSS World report is provided below. Since K>0.990 for m=18 and K<0.990

for m=17, we accept m=18 as the optimal value for the given problem parameters. The value

of the furnace utilization factor is highlighted in red.

START TIME END TIME BLOCKS FACILITIES STORAGES
0.000 100000.000 9 1 0

LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
1 GENERATE 18 0 0

ASS 2 ADVANCE 100214 17 0
3 SEIZE 100197 0 0
4 ADVANCE 100197 1 0
5 RELEASE 100196 0 0
6 TRANSFER 100196 0 0
7 GENERATE 1 0 0
8 SAVEVALUE 1 0 0
9 TERMINATE 1 0 0

FACILITY ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY
FURNACE 100197 0.990 0.988 1 7 0 0 0 17

SAVEVALUE RETRY VALUE
KOEF 0 990.116
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The GPSS World uses random number generators to sample random numbers for ADVANCE

blocks. We can select which random number generator number is to be used as the source of

the random number. The results obtained for different values of the random number generator

may differ slightly from each other. In this work, we use the number of the random number

generator, which is equal to 1.

This model offers flexibility to easily change not only the number of assemblers but also the

probability distributions of the random variables X and Y, which are defined in the

ADVANCE blocks.

3.2. Checking the Simulation Model

Let us use analytical results from paragraph 2.1 to test the constructed simulation model and

to find the optimal number of assemblers, m. We assume that ( ) 1,E Y  and consider the

exponential distribution of the random variable Y. We take into account that for such a

distribution of Y, the stationary distribution of the random variable Z does not depend on the

distribution of the random variable X, but only on the value of ρ=E(Y)/E(X). For the

simulation time, 5
mod 10 ,t  we have almost identical analytical and simulation modeling

results for fixed values of ρ (see Table 1).

Table 1. Comparison of Analytical and Simulation Modeling Results in Calculating the Optimal

Value of m

ρ
m,

analitycal
model
for M/M

m,
GPSS
World
for M/M

K,
analitycal
model
for M/M

K,
GPSS
World
forM/M

m,
for
D/M

K,
for
D/M

m,
for

G(2)/M

K,
for

G(2)/M

0.1 18 18 0.993 0.993 18 0.992 18 0.994

0.2 11 11 0.992 0.991 11 0.992 11 0.992

0.3 9 9 0.995 0.995 9 0.995 9 0.995

0.4 7 8 0.990 0.997 7 0.991 7 0.990

0.5 7 7 0.997 0.997 7 0.997 7 0.997

0.6 6 6 0.994 0.995 6 0.995 6 0.995

0.7 6 6 0.997 0.997 6 0.997 6 0.997

0.8 5 5 0.993 0.993 5 0.993 5 0.993

0.9 5 5 0.995 0.995 5 0.995 5 0.996

1.0 5 5 0.997 0.997 5 0.997 5 0.997

2.0 4 4 0.998 0.998 4 0.998 4 0.998
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Table 1 lists the optimal values of m and the corresponding values of K found for various

values of ρ. In all simulation models presented in this article, we consider the case where

( ) 1E Y  and use a simulation time of 5
mod 10 .t 

4. A Study of Dependencies of the Optimal Number of Assemblers on Various

Process Configurations andParameters

4.1. Dependencies m(ρ) for the G(V)/M Systems

The dependence m(ρ) for the G(V)/M Systems is obtained using the analytical model, since

for this system the stationary distribution of the random variable Z does not depend on the

distribution of the random variable X, but only on the value of ρ. Graph illustrating the

dependence of m(ρ) is presented in Figure 4.

Figure 4. The dependence m(ρ) for the G(V)/M Systems

As ρ increases from 0 to 2, the value of m decreases sharply at the beginning and then

stabilizes. For small values of ρ, m starts at a high value but quickly declines, showing an

inverse relationship between m and ρ, particularly in the range 0 1.  After this range, the

values of m become relatively stable.

4.2. Dependencies m(ρ) for Different Values of V(Y)

We examine the dependencies of m on ρ for the D/G(V), M/G(V), and G(5)/G(V) systems. The

results are presented in Figures 5 to 7. The different curves are shown, corresponding to

different values of the parameter V(Y).
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Figure 5. The dependencies m(ρ) for the D/G(V) Systems

Figure 6. The dependencies m(ρ) for the M/G(V) Systems

Figure 7. The dependencies m(ρ) for the G(5)/G(V) Systems
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Overall, the value of m decreases as ρ increases. This indicates that as ρ grows, the optimal

number of assemblers (m) diminishes. For a fixed value of ρ, m increases as V(Y) rises. For

larger values of V(Y) (e.g., ( ) 5V Y  ), m is significantly higher compared to smaller V(Y)

values. However, at high ρ values, the m values for different V(Y) converge. As V(X) increases,

the values of m decrease and converge for varying V(Y).

4.3. Dependencies m(V) for the D/G(V), M/G(V), and G(5)/G(V) Systems

We study the dependencies of m on V(Y) for ρ values of 0.1, 0.7, and 2. The results are

presented in Figures 8 through 10. The various curves correspond to the D/G(V), M/G(V), and

G(5)/G(V) systems.

Figure 8. The dependencies m(V) for ρ=0.1

Figure 9. The dependencies m(V) for ρ=0.7
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We observe that m(V) is an increasing function. For ( ) 1,V Y  m increases as V(X) rises.

However, for ( ) 1,V Y  m decreases with increasing V(X). In the G(V)/M system, insensitivity

to V for is observed, causing all curves to intersect at a single point on the line 1.V 

Additionally, the property of decreasing m(ρ) is also evident for these systems.

Figure 10. The dependencies m(V) for ρ=2

4.4. Dependencies m(V) for the G(V)/D, G(V)/M, and G(V)/G(5) Systems

We study the dependencies of m on V(X) for ρ values of 0.1, 0.7, and 2. The results are

presented in Figures 11 through 13. The various curves correspond to the G(V)/D, G(V)/M,

and G(V)/G(5) systems.

Figure 11. The dependencies m(V) for ρ=0.1

We observe that m(V) is a decreasing function for ( ) 1,V Y  while m increases as V(X) rises

for ( ) 1,V Y  and m does not depend on V(X) in the G(V)/M system. These systems also

exhibit the property of decreasing m(ρ).
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Figure 12. The dependencies m(V) for ρ=0.7

Figure 13. The dependencies m(V) for ρ=2

4.5. Dependencies m(ρ) for Different Values of V(X)

We examine the dependencies of m on ρ for the G(V)/D, G(V)/M, and G(V)/G(5) systems. The

results are presented in Figures 14 and 15. The different curves are shown, corresponding to

different values of the parameter V(X). The points corresponding to the G(V)/M system are

located in the upper part of Figure 14 and the lower part of Figure 15. In these figures, we

again observe a decrease in m(ρ) and verify that m decreases as V(X) increases for ( ) 1,V Y 

while m is an increasing function of V(X) for ( ) 1.V Y 
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Figure 14. The dependencies m(ρ) for the G(V)/D and G(V)/M Systems

Figure 15. The dependencies m(ρ) for the G(V)/G(5) and G(V)/M Systems

5. Conclusion

In this paper, we have developed and applied analytical and simulation models based on a

closed queueing system to optimize the part manufacturing process. These models can serve

as valuable tools for manufacturers, offering insights into system performance under various

operational conditions. By utilizing the results obtained through the simulation of different

configurations and process parameters, it is possible to determine the optimal number of

assemblers, thereby increasing throughput and improving overall manufacturing efficiency.

The results indicate a significant dependence of the optimal number of assemblers on the

coefficient of variation in assembly time and the furnace firing time for each part.

Consequently, incorporating the practical application of analytical models becomes

challenging, as these models were derived exclusively for exponential distributions. Thus, the

practical application of analytical models becomes challenging, as these models were derived
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exclusively for exponential distributions. An exception is the analytical model for the case of

an exponential distribution of the furnace firing time for each part, which remains applicable

for any distribution of the assembly time for a part.
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