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Abstract

This study investigates the application of Markov birth–death models to the reliability

assessment of repairable systems with redundancy operating under constant failure and repair

rates. The systems considered are composed of identical units, with the assumption that no

further failures occur while the system is in the down state. Mathematical models are

developed for various system configurations, and analytical expressions are obtained for key

reliability measures, including the stationary availability coefficient, mean time to failure

(MTTF), mean time between failures (MTBF), and steady-state probabilities. Based on the

derived formulas for MTTF and MTBF, as well as for the stationary availability coefficient,

graphical dependencies on the input parameters are constructed and analyzed.
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1. Introduction

Reliability analysis of repairable systems plays a crucial role in the design, maintenance, and

operation of modern engineering systems. Such systems, which can be restored to working

condition after a failure, are common in a wide range of applications, including

telecommunications, transportation, energy, and manufacturing. Accurate modeling of their

failure and repair behavior is essential for predicting system availability, optimizing

maintenance strategies, and reducing operational costs.

Reliability and availability analysis of repairable systems is generally performed using

stochastic processes, including Markov, semi-Markov, and semi-regenerative processes [1].

One of the most widely used mathematical tools for modeling the stochastic behavior of

repairable systems is the class of Markov processes, particularly birth–death processes [2].

These processes offer a tractable and intuitive framework for representing systems that

transition between discrete states—such as operational, degraded, or failed – under random

failure and repair events. The birth–death paradigm, in particular, allows for elegant analytical

treatment of such transitions, where “births” represent the completion of repair actions,

resulting in transitions to states with higher operational capacity, and “deaths” correspond to

failure events, leading to transitions to lower-capacity states.

Birth-death stochastic process is one of the most important special cases of the continuous-

time homogenous Markov process where the states represent the current size of a population.

This process has many applications in queuing theory, reliability engineering, demography,

biology and other areas [3-6].

In paper [7], Markov birth–death processes with constant transition intensities between

neighboring states and possessing the ergodic property are considered. By utilizing the

properties of exponential distributions, formulas are derived for the mean time of transition

from state i to state j and for the reverse transitions from state j to state i, the mean time spent

outside a given state i, the mean time spent in the group of states (0, ..., i − 1) to the left of

state i, and the mean time spent in the group of states (i + 1, i + 2, ...) to the right. The results

obtained in [7] serve as the foundation for the present analysis.

This paper presents a study of Markov birth–death models applied to the reliability analysis of

repairable systems with constant failure and repair rates. It is assumed that the system consists

of identical units and that no additional failures occur while the system is in the down state.
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Several system configurations are modeled, and key reliability metrics are derived, including

the stationary availability coefficient, mean time to failure (MTTF), mean time between

failures (MTBF), and steady-state probabilities.

2. Basic Definitions andAssumptions

2.1. The Birth-Death Process with a Finite Number of States

Let us denote states by natural numbers 0, 1, 2, ... and assume that the intensities ,k i  are

constant. We consider a birth-death process with a finite number of states, illustrated by the

state-transition graph in Figure 1.
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Figure 1. Transition graph for the birth-death process with a finite number of states

It is well known that the distribution of the time intervals between any two successive jumps

in any Markov process with continuous time and discrete space of states is exponential. More

precisely, let iW be the instant of the ith jump of the birth-death process ( )Z t and

1i i iW W   be the sojourn time; suppose that ( ) ,iZ W k then the process spends

exponentially distributed time i in the state ( )Z t k with the mean  ( ) 1 / .i k kE    

When a jump occurs, the process moves to state ( ) 1Z t k  with probability  / ,k k k  

or to state ( ) 1Z t k  with probability  / .k k k  

Let us introduce notation i jT to denote the mean time from the instant the system comes to

state i to the transition to state j. The following equations hold [7]:
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Here kp is the steady-state probability of the system being in the state .k Thus, we have
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Let us denote by ( )out kT  and ( )out kT  the mean time the process spends in the group of states

(0,1,..., 1)k  to the left of state ,k and in the group of states ( 1, 2,..., )k k r  to the right of

state ,k respectively. Then the following expression holds [7]:
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2.2. Repairable Systems

Consider a repairable system that consists of r m c  identical units, namely, m main

operating units and c unloaded redundant units. At any given moment, a unit can be in one of

two states: operational or failed. Suppose that the number n of repair facilities is limited, so

failed units necessarily form a queue for repair. Assuming that the time to failure X and the

repair time Y for each unit follow exponential distributions with parameters  and ,

respectively, our task is to determine the reliability indices of the system.

The system states are numbered by non-negative integers 0, 1, 2, ..., such that each state

number corresponds to the number of failed units.

In this paper, we consider parallel repairable systems (see the transition graphs in Figures 2

and 3) and series repairable systems (Figure 4). A parallel repairable system continues to

operate as long as at least one unit remains functional. In a series repairable system, the entire

system fails if any single unit fails, as all components must function simultaneously.
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Figure 2. Transition graph for the parallel repairable system (case of n<c)
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Figure 3. Transition graph for the parallel repairable system (case of n>c)
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Figure 4. Transition graph for the series repairable system

For these systems, the time to failure ( SX ) and the time between failures ( SBX ) do not

coincide, because the interval SX begins at the moment of transition from state 1 to state 0,

whereas SBX begins at the transition from state r to state 1r  for parallel systems, and from

state 1c  to state c for series systems. Both intervals end simultaneously: at the transition

from state 1r  to state r for parallel systems, and from state c to state 1c  for series

systems. The system downtime ( SDX ) corresponds to the time spent in state r for parallel

systems and in state 1c  for series systems; therefore, ( ) 1 / ( ).SDE X n

The system’s stationary availability coefficient is given by the formula

( )1 ,
( ) ( )

SB
N

SB SD

E XK p
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  


where N r for parallel repairable systems and 1N c  for series repairable systems.

3. Formulas forReliabilityMetrics of Repairable Systems

3.1. Parallel Repairable Systems (Case of n<c)

The number of failed units forms a birth-death process with a finite number of states and the

following transition intensities (see Figure 2):
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3.2. Parallel Repairable Systems (Case of n>c)

The number of failed units forms a birth-death process with a finite number of states and the

following transition intensities (see Figure 3):
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The values of ( )SE X for 1n r  and n r are the same, as are the values of ( ).SBE X
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In the case of 0,c  the above formulas yield the expressions for the reliability metrics of a

non-redundant repairable system:
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3.3. Parallel Repairable Systems (Case of n=c)

In the case of ,n c we have:
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3.4. Series Repairable Systems

The number of failed units forms a birth-death process with a finite number of states and the

following transition intensities (see Figure 4):
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With the help of (1) and (2), we obtain:
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The values of ( )SE X for n c and 1n c  are the same, as are the values of ( ).SBE X

To obtain the corresponding formulas for a single-unit repairable system with redundancy

from (3) and (4), it is sufficient to set 1.m 

4. Graphical Analysis of Series Repairable SystemMetrics

4.1. Analysis of a Repairable System with one main operating unit

Since the mean time to failure ( ( )SE X ) and the mean time between failures ( ( )SBE X ) depend

not only on  but also on , it is convenient to consider the dependencies of ( )SE X and

( )SBE X on .

For a repairable system with one main operating unit and one unloaded redundant unit, the

values of ( )SE X and ( )SBE X increase significantly as  approaches zero, but decrease

rapidly as  approaches one (see Figures 5–8).

An increase in the number of unloaded redundant units results in improved system metrics

(see Figures 9–12).
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Figure 5. Dependence of μE(XS) on ρ for a repairable system with one main operating unit and one
unloaded redundant unit (case of m=n=c=1)
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Figure 6. Dependence of μE(XSB) on ρ for a repairable system with one main operating unit and one
unloaded redundant unit (case of m=n=c=1)
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Figure 7. Dependence of μE(XS) on ρ for a repairable system with one main operating unit and one
unloaded redundant unit (case of m=n=c=1)
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Figure 8. Dependence of μE(XS) on ρ for a repairable system with one main operating unit and one
unloaded redundant unit (case of m=n=c=1)
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Figure 9. Dependencies of μE(XS) on ρ for a repairable system with one main operating unit and c
unloaded redundant units (case of m=n=1 and various values of c)
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Figure 10. Dependencies of μE(XS) on ρ for a repairable system with one main operating unit and c
unloaded redundant units (case of m=n=1 and various values of c)
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Figure 11. Dependencies of μE(XSB) on ρ for a repairable system with one main operating unit and c
unloaded redundant units (case of m=n=1 and various values of c)
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Figure 12. Dependencies of stationary availability coefficient K on ρ for a repairable system with one
main operating unit and c unloaded redundant unit (case of m=n=1 and various values of c)

4.2. Analysis of the Impact of Increasing the Parameters m, c, and n

As the number of main operating units increases, system metrics deteriorate (see Figures

13-15). When the parameters m, c, and n are increased simultaneously, the values of K

increase (see Figure 16), whereas the values of ( )SE X increase only for 0.5  and

decrease for 1  (see Figures 17-19).



- 80 -

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

K

m n c 1

m 2,n c 1

m 3,n c 1

m 5,n c 1

Figure 13. Dependencies of stationary availability coefficient K on ρ for a series repairable system
with m main operating units and one unloaded redundant unit (case of n=1 and various values of m)
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Figure 14. Dependencies of μE(XS) on ρ for a series repairable system with m operating units and one
unloaded redundant unit (case of n=c=1 and various values of m)
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Figure 15. Dependencies of μE(XS) on ρ for a series repairable system with m operating units and one
unloaded redundant unit (case of n=c=1 and various values of m)
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Figure 16. Dependencies of stationary availability coefficient K on ρ for a series repairable system
(case of various values of m=c=n)
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Figure 17. Dependencies of μE(XS) on ρ for a series repairable system
(case of various values of m=c=n)
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Figure 18. Dependencies of μE(XS) on ρ for a series repairable system
(case of various values of m=c=n)
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Figure 19. Dependencies of μE(XS) on ρ for a series repairable system
(case of various values of m=c=n)

4.3. Comparison of Values E(XS) and E(XSB)

For all series repairable systems with 1m  main operating units and unloaded redundant

units, the ratio ( ) / ( )SB SE X E X decreases as  increases. If only the number of main

operating units increases while 1,c n  the ratio ( ) / ( )SB SE X E X also decreases (see

Figure 20). A similar effect is observed when 1m n  and the number of unloaded

redundant units c increases (Figure 21).

For a repairable system with one main operating unit, a simultaneous increase in c and n (i.e.,

c n ) leads to an increase in the ratio ( ) / ( )SB SE X E X for 0.5,  whereas for 0.5  the

ratio increases only when c and n grow significantly (see Figure 22). As illustrated in

Figure 23, in the case of a simultaneous increase in m, c, and n (i.e., m c n  ), the ratio

( ) / ( )SB SE X E X decreases.
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Figure 20. Dependencies of E(XSB)/E(XS) on ρ for a series repairable system with m operating units
and one unloaded redundant unit (case of n=c=1 and various values of m)
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Figure 21. Dependencies of E(XSB)/E(XS) on ρ for a repairable system with one main operating unit
and c unloaded redundant unit (case of m=n=1 and various values of c)
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Figure 22. Dependencies of E(XSB)/E(XS) on ρ for a repairable system with one main operating unit
and c unloaded redundant unit (case of m=1 and various values of n=c)

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

E XSB E XS

m n c 1

m n c 2

m n c 3

m n c 5

m n c 10

Figure 23. Dependencies of E(XSB)/E(XS) on ρ for a series repairable system
(case of various values of m=c=n)
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5. Graphical Analysis of Parallel Repairable System Metrics

5.1. Analysis of the Dependencies of μE(XS) and K on ρ, m, n, and c

As the number of main operating units increases, the values of ( )SE X and K increase for a

non-redundant parallel system with one repair facility (see Figures 24 and 25). With further

increases in m, the values of ( )SE X and K tend to stabilize (the curves showing the

dependence of K on  for 6, 10,m  and 14 nearly coincide). The stabilization of the values

of ( )SE X and K is caused by an insufficient number of repair facilities.

A simultaneous increase in the parameters m and n, as well as in m, c, and n, leads to a

substantial growth in K, which approaches 1 (Figures 26 and 27). As illustrated in Figure 28,

in the case of a simultaneous increase in m, c, and n (i.e., m c n  ), the values of ( )SE X

increase, but this growth slows down significantly for 1.  As the number of main

operating units increases while the sum с n remains constant, the values of ( )SE X and K

increase (see Figures 29 and 30).
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Figure 24. Dependencies of μE(XS) on ρ for a parallel non-redundant repairable system (case of c=0,
n=1 and various values of m)
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Figure 25. Dependencies of stationary availability coefficient K on ρ for a parallel non-redundant
repairable system (case of c=0, n=1 and various values of m)
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Figure 26. Dependencies of stationary availability coefficient K on ρ for a parallel non-redundant
repairable system (case of c=0 and various values of m=n)
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Figure 27. Dependencies of stationary availability coefficient K on ρ for a parallel repairable system
(case of various values of m=c=n)
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Figure 28. Dependencies of μE(XS) on ρ for a parallel repairable system
(case of various values of m=c=n)
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Figure 29. Dependencies of μE(XS) on ρ for a parallel repairable system
(case of n=5 and various values of m and c)
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Figure 30. Dependencies of stationary availability coefficient K on ρ for a parallel repairable system
(case of n=5 and various values of m and c)

5.2. Comparison of Values E(XS) and E(XSB)

As illustrated in Figures 31–34, the ratio ( ) / ( )SB SE X E X decreases with increasing  for all

parallel repairable systems, except in cases where the sum m c is small and the value of n

is comparable to this sum. In some of these cases, the ratio ( ) / ( )SB SE X E X not only

increases as a function of  but can also exceed 1 (see Figure 32).

If the number n of repair facilities is insufficient and fixed, then for a fixed value of , an

increase in m c leads to a decrease in the ratio ( ) / ( ).SB SE X E X In the case of a

simultaneous increase in m, c, and n, the ratio ( ) / ( )SB SE X E X increases (Figure 34), in
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contrast to series repairable systems. Figure 34 shows that, in this case, the dependence of

( ) / ( )SB SE X E X on  is non-monotonic in the range 0.5 1. 
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Figure 31. Dependencies of E(XSB)/E(XS) on ρ for a parallel non-redundant repairable system
(case of c=0, n=1 and various values of m)

0.5 1.0 1.5 2.0

0.7

0.8

0.9

1.0

1.1

1.2

1.3

E XSB E XS

m n 2,c 0

m n 6,c 0

m n 10,c 0

m n 14,c 0

Figure 32. Dependencies of E(XSB)/E(XS) on ρ for a parallel non-redundant repairable system
(case of c=0 and various values of m=n)
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Figure 33. Dependencies of E(XSB)/E(XS) on ρ for a parallel repairable system
(case of c=1 and various values of m=n)
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Figure 34. Dependencies of E(XSB)/E(XS) on ρ for a parallel repairable system
(case of various values of m=n=c)

6. Conclusion

The conducted study demonstrates the effectiveness of Markov birth–death models in

evaluating the reliability of repairable systems with constant failure and repair rates. The

developed models, based on the assumption of identical system units and the absence of

additional failures in the down state, allowed for deriving analytical expressions for key

reliability metrics, including the stationary availability coefficient, MTTF, MBTF, and steady-

state probabilities. Furthermore, graphical dependencies of MTTF, MBTF, and the stationary

availability coefficient on the system’s input parameters were constructed and analyzed,

providing valuable insights into the influence of these parameters on system performance.
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