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Abstract:

In this paper, we study the finite time blow up of classical solutions to the Navier-Stokes

system under vacuum free boundary conditions with degenerate viscosity, Coriolis force,

friction, capillary and gravity. We prove that under certain conditions, the classical solutions

of viscous compressible fluids will not exist globally if the initial data admits an isolated mass

group.
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1 Introduction

In this paper, we consider a full Navier-Stokes system with Coriolis force, gravity, friction

and capillary force:
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ρt+div(ρu)=0
ρ ut+u⋅ ∇u +∇P+fρu⊥+r0u+r1ρ|u|u−κρ∇Δρ=divS−ρΦ
St+u⋅ ∇S=0

(1.1)

Here space and time variable (x,t)∈Ω×R+,Ω⊂R3 is a bounded smooth domain, ρ(x,t)≥0 is

the density of the fluid surface, u(x,t)= u1,u2,u3 (x,t) is the velocity field, S is the specific

entropy, P=P(ρ,S) is the pressure satisfying the equation of state

P=AργeS

where the constant A>0 and γ≥1 is the adiabatic gas exponent. The constant

f>0 is the Coriolis frequency. r0u and r1ρ|u|u are the drag terms coming from friction with

constants r0≥0, r1>0, and κ≥0 is the capillary coefficient.

Without loss of generality, we can assume f=r0=r1=1.u⊥:= −u2,u1,0 for any vector

u= u1,u2,u3 , and the viscous stress tensor S is given by

S=2μ(ρ)Du+λ(ρ)divuI,

where Du= 1
2

∇u+∇ut is the deformation tensor and I is the identity matrix. μ(ρ),λ(ρ) are

the degenerate viscous coefficients which satisfy the restrictions:

μ(ρ)≥0,μ(ρ)+λ(ρ)≥0,μ(0)=λ(0)=0, and μ(ρ),λ(ρ)≲ 1+ργ . (1.2)

The term Φ=(0,0,g) represents the gravity term with g denoting the gravitational constant. As

a core model of free surface flow, (1.1) is widely used to simulate gas-liquid two-phase flows

affected by geostrophic effects in the atmospheric boundary layer, such as the interaction

between sea spray and air currents in typhoon systems. However, the combination of vacuum

initial data, degenerating viscosity, friction and capillary makes the dynamic behavior of the

solution of (1.1) become complicated. Some special cases of system (1.1) were concerned in

the past. Liu and Yang [9] first showed that compressible Euler equations [i.e. f=κ=r1=λ=μ=0

in (1.1) and without gravity] with vacuum and damping inevitably develop singularities if the

initial density has compact support. Xin and Yan [14] generalized this to viscous

compressible Navier-Stokes equations [i.e. f=κ=r0=r1=0 in (1.1) and without gravity], proving

blow-up for solutions with isolated mass groups. When the rotational effect is introduced [i.e.

f>0], a widely studied model is the rotating shallow water system. A key assumption of this

model is that the vertical scale is much smaller than the horizontal scale, so the vast majority

of results were generated from two-dimensional model. Hao et al. [6] analyzed the global

well-posedness of viscous rotating shallow water systems in Besov spaces, revealing how
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Coriolis forces couple velocity components. Rozanova [11] identiffed conditions for

singularity formation in 2D rotational gas dynamics, emphasizing the interplay between

pressure and rotation. Degenerate viscosity—where coefficients vanish with density—poses

another layer of difficulty. Li et al. [8] introduced the concept of “regular solutions” to tackle

2D shallow water equations with degenerate viscosities, while Duan et al. [4] linked such

degeneracy directly to finite-time blow-up in rotating systems. Besides, Duan et al. [4]

demonstrated that degenerate viscosity in shallow water equations induces blow-up when

initial data contains isolated mass groups, contrasting with the smoothing effects of capillarity

and drag. Similarly, Li et al. [7] established finite-time breakdown for degenerate viscous

polytropic fluids, even with small initial data. These results highlight the critical role of

vacuum and degeneracy in destabilizing solutions. In the study of solution existence for

shallow water system and compressible fluids, Ton [13] established short-time existence and

uniqueness of classical solutions with Hölder continuous derivatives. For scenarios involving

vacuum, Duan et al. [5] proved local existence of classical solutions to the rotating viscous

shallow water Cauchy problem. Luo [10] subsequently demonstrated local existence and

uniqueness of classical solutions for 2D compressible flows. For global solutions, Sundbye

[12] established global existence and uniqueness of strong solutions under small initial data

for viscous shallow water equations. Bresch and Desjardins [1] further constructed global

weak solutions for 2D viscous shallow water equations. Furthermore, Cho et al. [2, 3]

generalized these findings to polytropic fluids. In this paper, we investigate the finite-time

blow-up of classical solutions to the non-isentropic compressible Navier-Stokes system with

degenerate viscosity and gravity. The system under consideration includes a vacuum free

boundary and accounts for effects such as Coriolis force, drag terms, and capillary action. The

primary focus is on scenarios where the initial data contains an isolated mass group—a

localized region of non-zero density surrounded by vacuum. Under specific conditions, we

demonstrate that classical solutions will exhibit finite-time blow-up, meaning the solutions

become unbounded within a finite time frame. Our results extend previous blow-up criteria

(e.g., Xin and Yan [14]; Duan et al. [4]) to a more comprehensive physical framework.

Considering the influence of entropy and gravity, it provides a universal tool for the blasting

theory of compressible flows with complex multi-physical fields. The remainder of this paper

is organized as follows: In section 2 we introduce the main results and the concept of isolated

mass group and energy functional ; In section 3 we first make some prior estimates, and then

construct the second-order moment functional G(t) , combine with energy inequality and

parameter conditions, we prove the main result.
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2 Notations and main results

In this section, we state the initial data and vacuum boundary condition of system (1.1) and

the main result of this paper.

First, recall the definition of isolated mass group.

Definition 2.1. (Definition 2.2 in [14]) Let Ω be a smooth domain in R3 . The pair (U, V ) is

called an isolated mass group of ρ0(x), if both U⊂Ω and V⊂Ω are bounded open sets, U is

connected, and satisfy

V⊂V�⊂U
ρ0(x)=0, in U∖ V

and ρ0(x) is not identically equal to zero on V.

Next, we introduce some notations.

Suppose the bounded domain Ω⊂BR(0). Denote by m0 the initial mass of the isolated mass

group V. That is,

m0=
V
 �  ρ0(x)dx>0 (2.1)

Set

c0 =
V
 �  |x|2ρ0(x)dx>0, c1=

V
 �  ρ0(x)u0(x)⋅ x dx, (2.2)

E0 =
V
 �  
1
2
ρ0(x) u0(x) 2+

Aρ(x)γeS0
γ−1

+
κ ∇ρ0(x)

2

2
dx>0. (2.3)

Denote by X(ξ,t) the particle path starting from ξ when t=0, thus

d
dt
X(ξ,t)=u(X(ξ,t),t)

X(ξ,0)=ξ
(2.4)

Set

U(t)={X(ξ,t)∣ξ∈U} and V(t)={X(ξ,t)∣ξ∈V}.

Then, the initial data and vacuum boundary condition of system (1.1) are given by

ρ(x,0)=ρ0(x),u(x,0)=u0(x),S(x,0)=S0(x), on Ω×{t=0}. (2.5)

and
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ρ(x,t)=0, on ∂V(t)×R+, (2.6)

where ∂V(t) is a free boundary separating fluid from vacuum and (2.6) is the boundary

condition corresponding to continuous density.

On the vacuum free boundary ∂V(t), we give more explanations.

• The pressure P=AργeS continuously approaches zero.

• The velocity u and entropy S remain continuously differentiable.

We say that ρ x,t , u x,t , S(x,t) is a classical solution to the initial-boundary-value problem

for shallow water system (1.1), (2.5), (2.6) on Ω×(0,T) for some positive T, if

• ρ∈C1(Ω×[0,T)),u∈C1 [0,T),C2(Ω) ,S∈C1(Ω×[0,T)) and satisfies system (1.1)

point-wisely on Ω×(0,T);

• (ρ(x,t),u(x,t),S(x,t) ) satisfies the initial and boundary conditions (2.5), (2.6) continuously.

Finally, our main result of this paper is stated as follows.

Theorem 2.1. Suppose ( ρ(x,t),u(x,t),S(x,t) ) is a classical solution to the

initial-boundary-value problem for shallow water system (1.1), (2.5), (2.6) on

Ω×(0,T), and satisffes the following conditions:

(A1) The initial height ρ0(x) admits an isolated mass group (V,U).

(A2) The entropy at the initial state is non-negative, i.e. s0:= inf
x∈Ω

 S0(x)≥0.

(A3) 3Aes0
|Ω|γ−1

>gR and u3>0.

Then (ρ(x,t),u(x,t),S(x,t) ) will blow up in finite time, i.e. there exists a positive time T∗ <+∞,

such that T≤T∗ <+∞.

3 Proof of theorem

In this section, we prove the main results. Since ρ0(x)=0 in U∖ V, mass equation shows that

ρ(x,t)=0, in U(t)∖ V(t). (3.1)

Lemma 3.1. Suppose (ρ(x,t),u(x,t),S(x,t)) is a classical solution to system (1.1) on Ω×(0,T) ,

then
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U(t)  �  ρ(x,t)dx=m0>0, (3.2)

and

U t
 �  
1
2
ρ|u|2+

AργeS

γ−1
+
κ|∇ρ|2

2
dx

+
0

t
 �  

U(t)
 �  2μ(ρ)|Du|2+λ(ρ)|divu|2+|u|2+ρ|u|3+ρgu3 dxdt=E0, (3.3)

where E0 is defined in (2.3).

Proof. A straight calculation shows that for any f(x,t)∈C1 R3×R+ ,

d
dt U(t)

 �  f(x,t)dx=
U(t)

 �  ∂tf(x,t)dx+
∂U(t)

 �  f(x,t)(u(x,t)⋅ r)dt. (3.4)

where r is the unit out normal to ∂U(t) . Integrating the mass equation, then (3.2) holds by

(1.1)1 , (3.1) and (3.4). Note that ργ satisfies

ργ t+γργdivu+∇ ργ ⋅ u=0. (3.5)
Multiplying the second equation of (1.1) by u and integrating the result, we have

U(t)
 �  ρut⋅ u+ρu⋅ ∇u⋅ u+∇P⋅ u+ρu⊥⋅ u+|u|2+ρ|u|3−κρ∇Δρ⋅ udx

−
U(t)

 �  divS⋅ udx+
U(t)

 �  ρΦ⋅ udx

=
U(t)

 �  
1
2
ρ|u|2

t
+
AργeS

γ−1
t
+
κ|∇ρ|2

2
t

dx

+
U(t)

 �  2μ(ρ)|Du|2+λ(ρ)|divu|2+|u|2+ρ|u|3+ρgu3 dx=0, (3.6)

where one has used

U(t)
 �  ∇ AργeS ⋅ udx =

U(t)
 �  AeS∇ ργ ⋅ u+Aργ∇ eS ⋅ udx

=
U(t)

 �  AeS − ργ t−γργdivu +Aργ∇ eS ⋅ udx

=
U(t)

 �  −AeS ργ t+γ∇ AeSργ ⋅ u+Aργ∇ eS ⋅ udx,

which leads to



- 96 -

U(t)
 �  ∇ AργeS ⋅ udx =

1
γ−1 U(t)

 �  AeS ργ t−AργeS∇S⋅ u dx

=
1
γ−1 U(t)

 �  AeS ργ t+AργeSSt dx

=
1
γ−1 U(t)

 �   AργeS t dx.

Integrate (3.6) with respect to t, we obtain

U(t)
 �  
1
2
ρ|u|2+

AργeS

γ−1
+
κ|∇ρ|2

2
dx

+
0

t
 �  

U(t)
 �  2μ(ρ)|Du|2+λ(ρ)|divu|2+|u|2+ρ|u|3+ρgu3 dx dt=E0.

This completes the proof of Lemma 3.1.

Lemma 3.2. Suppose (ρ(x,t),u(x,t),S(x,t) ) is a classical solution to system (1.1) on Ω×(0,T).

As u3>0 on Ω×(0,T), the following estimates

0

t
 �  

U(t)
 �  (2μ(ρ)+3λ(ρ))divudx dt≤Ct

1
2, (3.7)

and

0

t
 �  |I(t)|dt≤Ct

1
2+Ct

1
3+Ct

2
3 (3.8)

hold, where I(t)= U(t)  � ρu⊥+u+ρ|u|u ⋅ x dx ， C is a positive constant depending on

E0,s0,m0,γ and the diameter of Ω.

Proof. According to (1.2) and (3.3) , we have

0

t
 �  

U(t)
 �  (2μ(ρ)+3λ(ρ))divudx dt

≤
0

t
 �  

U(t)
 �  (2μ(ρ)+3λ(ρ))|divu|dx dt

≤3
0

t
 �  

U(t)
 �  (μ(ρ)+λ(ρ))|divu|2 dx dt

1
2

0

t
 �  

U(t)
 �  (μ(ρ)+λ(ρ))dx dt

1
2

≤CE0
1
2

0

t
 �  

U(t)
 �  (μ(ρ)+λ(ρ))dx dt

1
2

(3.9)
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It is easy to see that ordinary differential equations (2.4) has a unique solution

x=φ(t)∈C1(Ω×(0,T)).

Then by (1.1) 3 we have

d
dt
S(φ(t),t)=0

Integrating the above equation we get

S(x,t)=S(φ(0),0)=S0(φ(0))≥0 (3.10)

Since μ(ρ),λ(ρ)≲ 1+ργ and (3.3), (3.10),

U(t)  � (μ(ρ)+λ(ρ))dx≤C U(t)  � 1+ργ dx≤C 1+ U(t)  �   Aρ
γeS

γ−1
dx ≤C 1+E0 ,

which together with (3.9) leads to

0

t
 �

U(t)
 �  (2μ(ρ)+3λ(ρ))divudx dt≤Ct

1
2,

where C>0 depends on the diameter of Ω,E0,s0 and γ.

Next, we will estimate

I(t):=
U(t)

 � ρu⊥+u+ρ|u|u ⋅ x dx

According to (3.3),
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0

t
 �  |I(t)|dt

≤
0

t
 �  

U(t)

t
 �  ρ u⊥⋅ x dx dt+

0

t
 �  

U(t)

t
 �  |u⋅ x|dx dt+

0

t
 �  

U(t)

t
 �  ρ|u||u⋅ x|dx dt

≤CR
0

t
 �  

U(t)

t
 �  ρ|u|dx dt+CR

0

t
 �  

U(t)
 �  |u|dx dt+CR

0

t
 �  

U(t)
 �  ρ|u|2 dx dt

≤CR
0

t
 �  

U(t)
 �  ρ|u|3 dx dt

1
3

0

t
 �  

U(t)
 �  ρdx dt

2
3

+CR
0

t
 �  

U(t)
 �  r0|u|2 dx dt

1
2

0

t
 �  1 dt

1
2

+CR
0

t
 �  

U(t)
 �  ρ|u|3 dx dt

2
3

0

t
 �  

U(t)
 �  ρdx dt

1
3

≤CRE0
1
3m0

2
3t
2
3+CRE0

1
2t
1
2+CRE0

2
3m0

1
3t
1
3

≤C t
1
3+t

1
2+t

2
3 (3.11)

where C>0 depends on E0,m0 and the diameter of Ω⊂BR(0).

Proof of Theorem 2.1. Set

G(t)=
U(t)

 �  |x|2ρ(x,t)dx (3.12)

Then, (1.1), (3.1) and (3.4) give that

G'(t)=
d
dt U(t)

 �  |x|2ρ(x,t)dx =−
U(t)

 � |x|2div(ρu)dx=2
U(t)

 � ρu⋅ x dx.

And

1
2
G''(t)=

d
dt U(t)

 �  ρu⋅ x dx =
U(t)

 �  (ρu)t⋅ x dx

=
U(t)

 �   −udiv(ρu)−ρu⋅ ∇u−∇P− ρu⊥+u+ρ|u|u +κρ∇Δρ+divS−ρΦ]⋅ x dx

=−
U(t)

 �  [udiv(ρu)+ρu⋅ ∇u]⋅ x dx−
U(t)

 �  ∇P⋅ x dx−I(t)

+
U(t)

 �  κρ∇Δρ⋅ x dx+
U(t)

 �  divS⋅ x dx−
U(t)

 �  ρgx3 dx
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=
U(t)

 �  ρ|u|2 dx+3A
U(t)

 �  ργeS dx−I(t)+
U(t)

 �  κρ∇Δρ⋅ x dx

−
U(t)

 �  (2μ(ρ)+3λ(ρ))divud x−
U(t)

 �  ρgx3 dx, (3.13)

where the vectors u= u1,u2,u3 and x= x1,x2,x3 .

According to condition (A2) and Jensen’s inequality, we know that in a bounded domain,

3A
U(t)

 �  ργeS dx≥3Aes0
U(t)

 �  ργdx≥C1
U(t)

 �  ρdx=C1m0 (3.14)

where the constant C1:=
3Aes0
|U(t)|γ−1

> 3Aes0
|Ω|γ−1

>0. And

U(t)
 �  κρ∇Δρ⋅ x dx=−

U(t)
 �  κΔρdiv(ρx)dx

=−
U(t)

 �  κΔρ∇ρ⋅ x+3κρΔρ dx

=
U(t)

 �  κ∇ρ⋅ ∇(∇ρ⋅ x)+3κ∇ρ⋅ ∇ρ dx

=
U(t)

 �  
κ
2

∇ |∇ρ|2 ⋅ x+4κ|∇ρ|2 dx

=
U(t)

 �  −
3
2
κ|∇ρ|2+4κ|∇ρ|2 dx

=
U(t)

 �  
5
2
κ|∇ρ|2 dx≥0, (3.15)

U(t)
 �  ρgx3 dx≤gR

U(t)
 �  ρdx=gRm0. (3.16)

Integrate (3.13) with respect to t,together with (A3),(3.5) - (3.8) and (3.14)- (3.16), we have

1
2
G'(t)≥

1
2
c1+ C1−gR m0t−Ct

1
2−Ct

1
3−Ct

2
3.

Therefore,

G(t)=
U(t)

 � |x|2ρ(x,t)dx≤R2
U(t)

 � ρ(x,t)dx=m0R2,
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where c0 is defined in (2.2).

It is obvious that G(t)→+∞ as t→+∞, while

G(t)=
U(t)

 � |x|2ρ(x,t)dx≤R2
U(t)

 � ρ(x,t)dx=m0R2

where Ω⊂BR(0). This leads to a finite bound on T, That is, there exists a positive time T, that

is, there exists a positive time T∗ <+∞ such that T≤T∗ <+∞. We finish the proof of Theorem

1.
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