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Abstract

The Crank-Nicolson and upwind difference schemes are used to solve the one dimensional

convection-diffusion equation. Then the numerical solutions obtained and the exact solution

are implemented to estimate the parameters, i.e. the convection and diffusion coefficients in

this type equation by the least squares method. The simulation results demonstrate that the

estimation error by using Crank-Nicolson numerical solution is smaller than that by the

upwind difference format. This conclusion tells us that the good accuracy of numerical

solution can improve the validity of the estimation parameters in the convection-diffusion

equation.
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1. Introduction

The convection-diffusion equation has been widely used in science and engineering. Many

physical phenomena such as the distribution of pollutants in pollution, the flow of fluids and

heat conduction in fluids [1-8]. It can be used to describe river pollution, air pollution and the

mathematical model of viscous fluid flow etc. Therefore, finding a stable and practical

numerical method has important theoretical and practical significance.

It is known that upwind difference format is required to be stable under conditions [7-12]. In

order to relax the stability conditions and decrease the error in numerical calculation, we

apply the Crank-Nicolson implicit difference scheme to solving this type equation [13-18]. In

this paper, we use the upwind difference format and the Crank-Nicolson implicit difference

scheme to simulate the distribution of the substance with different time and space and

compare the errors of the numerical solutions of the windward difference format and the

Crank-Nicolson format.

Finally, the two type difference solutions are applied to estimating the convection and

diffusion coefficients and time s02.0t and s2.0t by the least squares technique,

respectively. By comparison, the result of estimation parameters by the Crank-Nicolson

implicit difference format is better than that by the upwind difference solution.

2. Convection-diffusion equation and its difference solution

In this section, we first introduce the one dimensional convection-diffusion equation. Then we

specifically analyze the Crank-Nicolson implicit difference format how to applied to solving

this type equation.

2.1. One dimensional convection-diffusion equation

we consider the case that the convection-diffusion equation [1]
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with the initial condition of a Gaussian distribution of the substance in an infinite medium
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where v and  are parameters of velocity component of the fluid and diffusion coefficient,

respectively. The constants a , 0x and 0l are the initial amplitude, the abscissa of the

gravity centre of the profile and a measure of the width of the Gaussian profile, respectively.

Thus in a perfect solution, the original bump will move off at a constant speed and widen and

decrease in amplitude and the convenient analytical solution is denoted by [1-7]
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We now return to analyze the Crank-Nicolson type implicit difference format solution of this

type equation.

2.2. Preliminaries of difference scheme

For clarity, we begins with a discretization of the spatial and time domains R]1 ,0[ and

] ,0[ T , respectively. We subdivide the spatial interval ]1 ,0[ into M sub-intervals and the

time interval ] ,0[ T into N sub-intervals such that 1Mh and TN  , where h is

spatial step and  denotes time step, respectively. Consequently, the grid points ),( nj tx are

defined as

Mjjhx j ,,2 ,1 ,0     ,  , Nnntn ,,2 ,1 ,0     ,   .

Note that solving the numerical solution of Eq.(1) is to find the difference approximation

values n
ju of ),( txu at the points ),( nj tx .

2.3. Crank-Nicolson implicit difference format
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It is known that the Crank-Nicolson type implicit difference format can be described as [1]
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Its approximation accuracy is second order  22 h  and another difference form can be

demonstrated that
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where f , 1g and 2g are the initial and boundary conditions decided by the analytical

solution.

In order to solve the numerical solution 1n
ju from the n

ju in (5) , we should solve the

following linear algebraic systems

)(1 nn ubAu  , (6)
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where 0
ju is computed by the initial condition and 1

0
nu , 1n

Mu can be calculated by the

boundary conditions at different time.

We utilize Jacobian iterative method to solve the above linear algebraic systems [1-7]. To be

specific, the iterative format is described as
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where ila is the represented element of the matrix A and ib is the i th element of the

constant column )( nub . Additionally, the condition of stopping iteration is
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where  is the approximation accuracy.

3. Numerical simulation

In this section , we set the parameters and constants in (1) and (2) as 1v , 01.0 , 1a ,

5.00 x and 003125.02
0 l , respectively. The the concrete form of Eq.(1) and Eq.(2) is

represented as
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and its exact solution is

)]04.000125.0/()5.0(exp[
02.0000625.0
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t

txu 
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and the boundary conditions are decided by the analytical solution (10).
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In this example, the spacial and time steps of the difference grid points are set as

01.0 hx , 01.0 t , respectively. Then Eq.(9) is numerically solved by the the

Crank-Nicolson difference method and the corresponding numerical solution is depicted in

Figure 1.
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Figure 1. The Crank-Nicolson difference solution at different space and time

Accordingly, Figure 2 describes the absolute errors between the Crank-Nicolson difference

and the exact solutions are described at the grid points. Correspondingly, the 1L error of this

scheme is 0.0037.
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Figure 2. The error of the Crank-Nicolson difference solution compared with exact solution
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We also consider the situation that the extended spacial and time domains to ]5 ,0[]5 ,0[  .

Similarly, the numerical solution is demonstrated in Figure 3 and the 1L error of this scheme

is 0.027.

Figure 3. The error of the Crank-Nicolson difference solution compared with exact solution in

extended domains

Furthermore, we fixed the time 75.0t and compare the two types difference solutions with

the analytical solution. The comparison results are shown in Figure 4 and the the 1L errors of

the the Crank-Nicolson difference scheme and the upwind difference method are 0.0037 and

0.0334, respectively.
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Figure 4. Comparisons of the difference methods with exact solution at t=0.75

From Fig. 3 and Fig. 4, we can see that the approximation solutions is obtained by using the

Crank-Nicolson difference scheme is better than that by the upwind difference method.

4. Estimation parameters in convection-diffusion model

In this section, we utilize the above the Crank-Nicolson and upwind difference schemes to

estimate the unknown parameters v and  of the convection-diffusion equation.

We firstly use the values ),( nj txu of the analytical solution at the grid points ),( nj tx as given

sets of data. Secondly, we solve the numerical solution n
ju in (9) by using the

Crank-Nicolson difference scheme. Finally, we apply the least squares technique to optimally

adapting this model to the data ),( nj txu by determining the parameter values for v and  .

Then the deviation of model and data is minimized by the form
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where n
ju is the Crank-Nicolson difference solution at the grind point. Then, by using this



34

difference numerical solution at time 02.0t , 2.0t and the least squares method, the

estimated values Ev , E of the parameters v ,  in Eq.(9) are described in Table 1,

respectively.

Table 1. The results of parameters estimated by the the Crank-Nicolson difference scheme

Method t Ev v Eµ µ

Exact solution 0.02 1 1 0.01 0.01

C-N difference Solution 0.02 0.9809 1 0.0099 0.01

Upwind difference solution 0.02 0.8862 1 0.0101 0.01

Exact solution 0.2 1 1 0.01 0.01

C-N difference Solution 0.2 0.9984 1 0.0099 0.01

Upwind difference solution 0.2 0.7411 1 0.0126 0.01

From the results in Table 1, we know that the estimation by using the Crank-Nicolson

difference solution is better than that by using the upwind difference solution. Consequently,

we can find other validity methods for solving Eq.(9) to get good the parameter estimation.

5. Conclusion

In this paper, the Crank-Nicolson implicit difference scheme and the upwind difference

scheme are used to solve the one-dimensional convection-diffusion equation. By using the

least squares method, the parameters in Eq.(9) are estimated. The estimated values of the two

parameters show that the the Crank-Nicolson difference scheme is better than upwind

difference method used to estimate the parameters. Furthermore, better approximation

solution to Eq.(1) developed can improve the accuracy of the parameters estimated.
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