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Abstract. The famous Stirling’s formula is generalized and improved, by using the
arguments of analytic number theory and mathematical analysis.
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1. Introduction

The well-known Stirling’s formula, as can be found in almost every standard textbook of

mathematical analysis, states that(see [F]), , for each positive integer n,

SCIREA Journal of Mathematics

http://www.scirea.org/journal/Mathematics

December 4, 2022

Volume 7, Issue 6, December 2022

https://doi.org/10.54647/mathematics11183



120

There are two objectives in this short paper, the first is to generalize Stirling’s formula

to an arithmetic progression, and the second is to get an improved version of Stirling’s

formula. For these we use techniques of analytic number theory. We state the

generalization as follows.

Theorem 1. For any positive numbers n1 and d, and integer n ≥ 1,

is a positive number which only depends on n1 and d.

It is thus important to determine the value of f(n1, d) in terms of n1 and d.

Theorem 2. For any positive numbers n1 and d, we have

Theorem 2 infers easily the following corollaries, the proofs of which are left to readers

as exercises.

Corollary 1. f(n1, d) has the following properties:

here in (B) the Γ function is defined by
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Corollary 2. For a positive integer k (here (1+2m)!!≡1∙ 3 ∙ 5 ∙ ⋯ ∙ (1 + 2m))

Theorem 3. For the original Stirling’s formula,

2. Lemmas

Lemma 1. (i) For 0 ≤ x < 1 we have log(1 − x) ≤ −x; (ii) For 0 ≤ x ≤ 1/2 we have

log(1 − x) ≥ −x − x2.

The first assertion can be deduced similarly.

Lemma 2.(Euler Summation Formula) If f has the continuous derivative on the
interval [y, x], then

here [u] is the largest integer not exceeding u, and 中 (u) = u − [u] − 1/2..

Proof. This follows from a variant of Theorem 3.1 of [A].

Lemma 3. Let
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Then a(x) is a periodic function of period 1, and |a(x)| ≤ 1/8. Assume that k(x) has

continuous derivative function k,(x) on the interval [a, {3], here a and {3 are integers,

then

Proof. First we need to show a(x + 1) = a(x) for all x. For this we see that

where we have used the fact [t + n] = [t] + n for any integer n. Thus

To verify the remaining assertion, it suffices to show

for any integer m∈ [a, {3]. For any sufficiently small E > 0, we use
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Using (2) and the partial integration we get

Lemma 4. For s > 0 we have

Proof. For 0 ≤ t < n, by Lemma 1 (i) we know that

This obviously holds for t = n. By Lemma 1 (ii) we know that for 0 ≤ t ≤ n/2,
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By integration by parts we get

Thus the first assertion of Lemma 4 follows from (3). Put

Then
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By Lemma 3 we get

Therefore from (4), (5) and (6) we get

and the second assertion of Lemma 4 follows.

3. Proof of Theorem 2

By Lemma 2 we have
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where we have used Lemma 3. Thus

By Theorem 1 we get

From this and (7) we get, by taking n→∞, the equality

By Lemma 4 we have
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Using

and thus from “(8)+(9)” (taking summation on both sides respectively) we get

and therefore

The proof is completed.
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4.Proof of Theorem 1

Let
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exists. Also, using (12) we have

the stated formula follows.

5. Proof of Theorem 3
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We have

and thus (15) yields the required estimate.
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