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Abstract

In this paper we consider the structure of Dedekind in some developed cryptosystems. In one

case, the structure exists with respect to a key, and in the other case, the structure exists with

respect to two alphabets. The second part of this paper is an appendix that considers the

applications of polynomial composites and monoid domains in cryptology.
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1. Introduction

In this paper we consider the structure of Dedekind in freely developed cryptosystems. This is

the motivation coming from the reviewer of the paper [8].
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Dedekind domain are one of the most important rings in algebra. It has many valuable

properties and has many uses. Primary examples are Z, K[X] (K is a field), Gauss rings, Krull

rings.

Lemma 1.1. For an integral domain R that is not a field, all the following conditions are

equivalent:

(a) R is an integrally closed, Noetherian domain, every nonzero maximal ideal is prime.

(b) Every nonzero proper ideal factors into primes.

(c) R is Noetherian, and the localization at each maximal ideal is a discrete valuation ring.

(d) Every nonzero fractional ideal of R is invertible.

An integral domain R satisfying one of the equivalent conditions of the above Lemma is called

Dedekind domain.

In section 2 we introduce a cryptosystem where the key is analog to the fractional ideal. In

section 3 we have a cryptosystem where an alphabet is analog to the fractional ideal.

Sections 4 and 5 are complementary of [8]. We present the application of polynomial

composites and monoid domains in cryptology in the form of certain cryptosystems.

2. A key that is a fractional ideal

Let A = {a0,a1,...,an} be an alphabet such that |A| be a prime number. Let x ∈ {2,3,...,|A|} be the

value of one of the letters of the alphabet, k > 2 be an key. Then

y = xk (mod |A|),

where y be the value of one of the letters of the alphabet be an encrypted letter.

Now, assume we have encrypted letter y. Then we get a decrypted letter x by a formula

x = (y + (k − d) · |A|) · k−1,

where d be the remainder of dividing y by k.

Proof.
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As proposed in [8] (Introduction of section 3), this cipher can be generalized to a complete

algebraic structure. It is enough to adopt the infinite alphabet as in [8], x be transformed into

the principal ideal (x), k be transformed into the principal ideal (k), y into the principal ideal (y).

This way we get algebraic encryption where the key (k) be the fractional ideal in the

Dedekind’s ring, in this case Z.

3. The alphabet as a fractional ideal

Let A be a set of characters.Assume |A| is equal to any prime number.

Secretly establish a second alphabet A0 such that A0⊂ A with a prime length.

Let m1m2m3 ...mnbe a message, we want to encrypt.

A secret short alphabet A0 divides a large public alphabet into zones. We skip the extra

characters such that 0, 1. So we have a clean alphabet from

2. Let’s move one over, so we have 1. Suppose p = |A|, q = |A0|.We have zones. Zero zone,

includes the alphabet from 1 to q. The first zone, i.e. the alphabet from q + 1 to 2q and so on.

The last zone ( 1) includes the alphabet from .

Let’s extend the message values with random numbers informing us about a given zone of a

given letter (this information denote by zi):

z1m1z2m2 ...znmn

Denote by k the key. Multiply each value of the message (not the information about the zone)

by k and use the modulo q.

Hence ciphertext is:

z1d1z2d2 ...zndn,

where d1d2 ...dnbe a encrypted message.
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Now let’s decode the message.

z1d1z2d3 ...zndn

by dividing it into blocks (each block contains a zone and a message).

Let’s apply the formula:

,

where mi is the decoded letter, di encrypted letter, z is a number satisfies a congruence |A|−1zi≡

di (mod k), k be the key, t be a zone.

Of course, this cryptosystem can also be easily generalized by turning individual elements into

ideals.

4. Applications of polynomial composites in cryptology

In 1976 [3] authors considered the structures in the form D +M, where D is a domain andM is

a maximal ideal of ring R, where D ⊂ R. In [6] we could prove that in composite in the form D

+ XK[X], where D is a domain, K is a field with D ⊂ K, that XK[X] is a maximal ideal of K[X].

Next, Costa, Mott and Zafrullah ([4], 1978) considered composites in the form D+XDS[X],

where D is a domain and DS is a localization of D relative to the multiplicative subset S. In 1988

[2] Anderson and Ryckaert studied classes groups D+M. Zafrullah in [12] continued research

on structure D+XDS[X] but he showed that if D is a GCD-domain, then the behaviour of D(S) =

{a0+ PaiXi | a0 ∈ D,ai ∈ DS} = D + XDS[X] depends upon the relationship between S and the

prime ideals P od D such that DP is a valuation domain (Theorem 1, [12]). Fontana and Kabbaj

in 1990 ([5]) studied the Krull and valuative dimensions of composite D+XDS[X]. In 1991

there was an article ([1]) that collected all previous composites and the authors began to create

a theory about composites creating results. In this paper, the structures under consideration

were officially called as composites. After this article, various minor results appeared. But the

most important thing is that composites have been used in many theories as examples. The first

ordered results The first ordered results can be found in Matysiak’s papers. In [6], [7], [11] we

can find studies of polynomial composites in terms of many basic algebraic properties. In [9]
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we have relationships between polynomial copmposites and certain field extensions. In [10]

we have a construction of polynomial coposite as a sum of a field and a maximal ideal.

Consider A and B as rings such that A ⊂ B. Put T = A + XB[X]. The structure defined in this way

is called a composite. (The definition comes from [1]).

I generalized the concept of a composite in two different directions.

Consider A0,A1,...,An−1 and B be rings for any n ≥ 0 such that A0⊂ A1⊂ ··· ⊂ An−1⊂ B. Put Tn= A0

+ A1X + ··· + An−1Xn−1+ XnB[X].

And let other A0,A1,...,An−1 and B be rings for any n ≥ 0 such that there exists i ∈ {0,1,...,n−1},

where Ai 6⊂ Ai+1 and for every j ∈ {0,1,...,n−1} we have Aj ⊂ B.

Put

Each such polynomial is the sum of the products of the variable and the coefficient. And what

if subsequent coefficient sets are appropriate cryptographic systems? Instead of encrypting

with one system, we can create one system composed of many systems. Such a cipher is very

difficult to break. If the spy detects encryption systems (composite coefficients), then the

problem will be to find the right sum and product of such systems.

Assume that we have two people: Alice und Bob. Alice wants to send a message to Bob. Alice

has one composite and Bob has another one composite.

They can build such composite by various encryption systems (even known ones). Let see note

Lemma:

m

Lemma 4.1. Let f = a0+a1X +···+an−1Xn−1+ PajXj, g = b0+b1X +

j=n

m

··· + bn−1Xn−1+ PbjXj∈ Tn0 , where ai,bi∈ Ai for i = 0,1,...,n − 1 and

j=n

aj,bj∈ B for j = n,n + 1,...m. Then

fg ∈ A0+ XB[X].
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Put Ai,Bj (i,j = 0,1,...,n − 1) be different encryption systems. Then we have f and g are

composition of encryption systems.No consider B. To improve security, let’s fix that degf = n −

1, degg = n − k, where k ∈ {2,...n − 1}. And such f, g Alice and Bob agree before the message is

sent.

Alice and Bob multiply these composites to form one. We have fg = (A0 + A1X + ...AkXk)(B0 +

B1X + ··· + BlXl) = A0B0+ (A0B1+ A1B0)X + ··· + AkBlXk+l.

Note that the sum and product of the encryption systems must be defined in the formula above.

Definitions we leave Alice and Bob. But in this section we can put SiSj : x → (x)Si(x)Sj and Si +

Sj : x → ((x)Si)Sj. We can define the product and the sum of cryptosystems completely

differently.

So in the product we encrypt the letter as two letters, the first in the first system and the second

in the second system. And in the sum we encrypt the letter using the first system and then the

second system. Of course,we can define completely different, at our discretion.

Assume that degree of fg is m and text to encrypt consists of more letters then m + 1. Then we

divide the text into blocks of length m + 1.We can assume that fg(0) encrypts the first letter of

each block. Expression at X of fg encrypts the second letter of each block, and expression at X2

of fg encrypts the third letter and so on.

Now, let’s see how to decrypt in this idea.

Assume that we have an encrypted message M0M1 ...Mn. If our key is degree m, then we divide

message on m + 1 partition. And every partion divide to two. Every two letters are one letter of

message.

Earlier we define SiSj : x → (x)Si(x)Sj and Si + Sj : x → ((x)Si)Sj. Then decryption of two letters

MlMl+1 (l = 0,2,4,...) areMlMl+1=

(Ml)Si(Ml+1)Sj = Nl,l+1 (one letter) andMl = ((Ml)Si)Sj = (Nl)ij (one letter).

The use of many cryptosystems in various configurations in a polynomial composite increases

our security. The security here lies in the fact that the encrypted message is resistant to

breaking under many cryptanalyst criteria.

It is very easy to decrypt the message when you know the key.
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5. Applications of monoid domains in cryptology

Recall that if F be a field andM be a submonoid of Q+ then we can construct a monoid domain:

F[M] = F[X;M] = {a0Xm0+ ··· + anXmn | ai∈ F,mi∈M}.

Any alphabet of characters creates a finite set.Most ciphers are based on finite sets. But we can

have the idea of using the infinite alphabet A, although in reality they can be cyclical sets with

an index that would mean a given cycle. For example, A0 - 0, B0 - 1, ... , Z0 - 25, A1 - 0, B1 - 1, ... ,

where Ai=A, ..., Zi=Z for i = 0,1,....We see that this is isomorphic to a monoid N0 non-negative

integers by a formula

f : A→ N,f(mi) = i.

Then we can use a monoid domain by a map ϕ: A→ F[A],ϕ(m0,m1,...,mn) = a0Xm0+ ...anXmn.

We want to encrypt the message m0m1m2 ...mn (the letters transform to numbers by a function ϕ).

We establish the secret key X. Let F be a field. We determine any coefficients from this field:

a0, a1, ..., an. Then the message m0m1m2 ...mnbe transformed into a polynomial of the form:

a0Xm0 + a1Xm1 + ··· + anXmn.

We compute for i = 0,1,...,n: di = aiXmi (mod |A|) (|A| must be prime) and then we have a

decrypt message d0d1 ...dn.

To decrypt it we need to use a formula (for i = 0,1,...,n):

.

Proof.

.
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