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Abstract
This paper discusses the minimax estimator of parameter for binomial distribution. The

likelihood function is constructed based on the probability function of the Binomial

distribution. The posterior distribution is obtained from the joint of the likelihood function

and prior distribution. Furthermore, the Bayes estimator is obtained based on the posterior

mean and provide the constancy of the risk of Bayes the minimax estimator can be

concluded.
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1. Introduction
The binomial distribution is frequently used to model the number of succes in a sample of size

n drawn from a population of size N and its application can be used in the business field. The

major problem in discussing the binomial distribution and the other distributions is how to

estimate the parameters contained in the distribution. In classical statistics, the population

parameters will be estimated viewed as a fixed quantity of the unknown, while in the Bayes

statistics the parameters will be estimated as a quantity of a random variable which the

variation is described by a probability distribution and knowned as the prior distribution. One
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way to determine the estimator in Bayes statistics is to use a risk function. Mathematically, if

�1, �2, ⋯, �� are random samples from � �; � with the risk function � �; � , then the main

principles of estimation theory is how to determine estimator of � which minimizes of risk

function for each value of � . The estimator of � that minimizes the risk is called a Bayes

estimator and the Bayes estimator that minimizes the maximum risk is called a minimax

estimator.

2. Materials and method
The material in this paper is the binomial distribution and several interrelated theories in

mathematics and statistics. The literature study method is used by applying a Bayesian

analysis based on previous conjugation assumptions.

Definition 2.1. A random variable � has a binomial distribution with parameter � and �

(� = 1,2, . . . ; 0 < � < 1) if � has a discrete distribution whose probability function:

�(�|�, �) =
�
� ����−�, � = 1,2, …, �

0, ��ℎ������
(2.1)

where � = 1 − �, �(�) = �� and ���(�) = ���

Definition 2.2. A random variable � has a beta distribution with parameter � and � (� >

0, � > 0) if � has an absolutely continuous distribution whose probability density function:

�(�|�, �) =
�(�+�)

�(�)�(�)
��−1(1 − �)�−1, 0 < � < 1

0, ��ℎ������
(2.2)

with �(�) = �
�+�

and ���(�) = ��
�+� 2 �+�+1

Definition 2.3. The Bayes theorem be stated as:

�(�|�) ∝ �(�|�)��(�) (2.3)

where �(�|�) is posterior distribution, �(�|�) is likelihood function and ��(�) is prior

distribution.

Definition 2.4. If T is a Bayes estimator with constant risk � �; � = � then � is a minimax

estimator

3. Results
The likelihood function of p is
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� � = �=1
� �(��|�, �)�

= �=�
� �

��
� �����−��

∝ �=�
� �����−���

∝ �=1
� ���(1 − �)�−���

∝ � ��� (1 − �)�2− ���

The conjugate prior of p is beta distribution with the parameters � > 0 and � > 0 , that is

�(�) = �(�+�)
�(�)�(�)

��−1(1 − �)�−1

∝ ��−1(1 − �)�−1 (3.1)

3.1. Bayes estimator

The Bayes estimator is obtained based on the posterior mean.

Theorem 3.1 The Bayes estimator of p is

�� = �=1
� ��� +�

�2+�+�
(3.2)

Proof. By applying the Bayes theorem, the posterior distribution of p is

�(�) ∝ �(�) × �(�)

∝ � �=1
� ��� (1 − �)�2− �=1

� ��� × ��−1(1 − �)�−1

∝ � �=1
� ��� +�−1(1 − �)�2− �=1

� ��� +�−1 (3.3)

p has a beta distribution with paramater �=1
� ��� + � and �2 − �=1

� ��� + � and the Bayes

estimator for the parameter p equal to the posterior mean of beta distribution, namely

�� = �=1
� ��+��

�=1
� ��+�� + �2− �=1

� ��+��

= �=1
� ��+��

�2+�+�
∎

3.2. Minimax estimator

Let the Bayes estimator in equation (3.2) is written in the form �� = �� + � where

� = �2 + � + � −1 , � = �=1
� ��� and � = �2 + � + � −1 . The minimax estimator be

concluded by investigated whether the risk � ��, � is constant or not respect to p.

Theorem 3.2. The minimax estimator of p use the weighted squared error loss function is

�� = ��
�

(3.4)

Proof. In this case the loss function is �−�� 2

� 1−�
, so that the risk function is
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� ��, � = � �−�� 2

� 1−�

= 1
� 1−�

� � − �� 2

= 1
� 1−�

� � − �� + � 2

= 1
� 1−�

� � − �� + � 2

= 1
� 1−�

� � − �� − � 2

= 1
� 1−�

� −� � − �2� + � − � − ��2� 2

= 1
� 1−�

� −� � − �2�
2

+ � − � − ��2� 2 −

2� � − �2� � − � − ��2�

= 1
� 1−�

� �2 � − �2� 2 + � � − � − ��2� 2 −

� 2� � − �2� � − � − ��2�

= 1
� 1−�

�2� � − �2� 2 + � � − � − ��2� 2 −
2� � − � − ��2� � � − �2�

Since � � = �2�, � � − �2� = 0 and ��� � = �2� 1 − � , then be obtained

� ��, � = 1
� 1−�

�2��� � + � − � − ��2� 2

= 1
� 1−�

�2�2� 1 − � + � − � − ��2� 2

= �2�2 + �−�−��2�
2

� 1−�

= �2�2 + � 1−��2 −�
2

� 1−�

= �2�2 + �2 1−��2 2

� 1−�
+ �2

� 1−�
− 2�� 1−��2

� 1−�

= �2�2 + �
1−�

1 − ��2 2 �2

� 1−�
− 2�

1−�
1 − ��2

In order to � ��, � constant of �, the precondition is 1 − ��2 = 0 and �2 = 0 which gives

the value of � = 1
�2 and � = 0, so that by substituting to �� = �� + � can be obtained the

minimax estimator of � is �� = 1
�2 � = 1

�2 �=1
� ��� = ��

�
∎

Theorem 3.3 The minimax estimator of p use the squared error loss function is

�� = �2+�+�−2 �=1
� ��+��2�

�2 �2+�+�
(3.5)

Proof. �� = �2+�+�−2 �=1
� ��+��2�

�2 �2+�+�



64

= �2+�+�−2
�2 �2+�+� �=1

� ��� + �
�2+�+�

= �� + �

where � = �2+�+�−2
�2 �2+�+�

, � = �=1
� ��� and � = �

�2+�+�

The squared error loss function is � − �� 2, so that the risk function is

� ��, � = � � − �� 2

= � � − �� + � 2

= � � − �� − � 2

= � −� � − �2� + � − � − ��2�
2
2

= � −� � − �2� + � − � − ��2�
2
b

= � −� � − �2�
2

+ � − � − ��2� 2 − 2� � − �2� � − � − ��2�

= � �2 � − �2� 2 + � � − � − ��2� 2 − � 2� � − �2� � − � − ��2�

= �2� � − �2� 2 + � � − � − ��2� 2 − 2� � − � − ��2� � � − �2�

= �2���(�) + � � − � − ��2� 2 − 2� � − � − ��2� � � − �2�

Since ��� � = �2� 1 − � and � � − �2� = 0, then be obtained

� ��, � = �2 �2� 1 − � + � − � − ��2� 2

= �2�2� 1 − � + � − � − ��2� 2

= �2�2� − �2�2�2 + � 1 − ��2 − � 2

= �2�2� − �2�2�2 + �2 1 − ��2 2 + �2 − 2�� 1 − ��2

= �2 1 − ��2 2 − �2�2 + � �2�2 − 2� 1 − ��2 + �2

In order to � ��, � constant of �, the precondition is 1 − ��2 2 − �2�2 = 0 and �2�2 −

2� 1 − ��2 = 0 which gives 2� 1 − ��2 = 1 − ��2 2 or � = 1−2�
�2 , so that by

substituting to �� = �� + � can be obtained

�� = 1−2�
�2 � + �

= 1−2 �2+�+�
−1

�2 � + � �2 + � + � −1

=
1−. 2

�2+�+�

�2 � + �
�2+�+�
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=
.�

2+�+�−2
�2+�+�

�2 � + �
�2+�+�

= �2+�+�−2 �=1
� ���

�2 �2+�+�
+ ��2

�2 �2+�+�

= �2+�+�−2
�2 �2+�+� �=1

� �� + ��2

�2 �2+�+�
�

= �2+�+�−2 �=1
� ��+��2�

�2 �2+�+�
∎

4. Conclusion
Based on the discussions that have been made, when the weighted squared error loss function

is used, the minimax estimator is �� = ��
�

but when the squared error loss function is used, the

minimax estimator is �� = �2+�+�−2 �=1
� ��+��2�

�2 �2+�+�
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