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Abstract

Counterexamples are given to residue theorem of complex analysis. The functional equation

of Riemann zeta-function is invalid.
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1. Introduction

Complex Analysis(CA) dated back to the time of Gauss, after he put a square-root of −1 on

the 2-dimensional Euclidean space, whose action would be unreasonable, although later on

CA has been developed by Riemann, Cauchy, et al, making CA to be a rich branch of

mathematics. Recently in [L1] a manner of constructing a counterexample to CA was

introduced, however [L1] used the invalid equality(see (7) of p.62 of [D], and (1) of p.189 of

[L1])
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(1) �(� − 1)�−0.5�Γ(0.5�)ζ �

= 1 + �(� − 1) 1
∞ �0.5�−1 + �−0.5�−0.5 � � ��� ,

� � = 1
∞ �−��2�,�

because to deduce (1) one must use the below invalid equation (2) of the present paper(see

pp.61-62 of [D]). Here we need to speak more about (1). (1) is certainly incorrect, for in

conjunction with the work of [L1](see the arguments given on pp.192-193, especially (2) of

[L1]), the validity of (1) can result in the absurd equality “1 = 0”. Precisely speaking, in (2)

of [L1] now we know that �2 = 8� 7.5� + 4�2� − 15�� ≠ 0(see (7) below of the present

paper; symbols are the same as in [L1]), and thus we need not to consider the coefficient of

�−3 of (2) of [L1](we can estimate simply the term containing �−3 as �(�−3); here we note

that the coefficient of �−3 given by (2) of [L1] is incorrect), and the arguments of [L1] then

indicate that if (1) is valid then we can obtain the estimate 1 + �(�−1) = � �3�−�/5 for any

large �(see the situation “�1 = 0, �2 ≠ 0” given on p.192 of [L1]), which yields the absurd

equality “1 = 0” after letting � ��� + ∞. The “functional equation” of ζ function is, for � � =

0.5�(� − 1)�−0.5�Γ(0.5�)ζ � ,

� � = � 1 − � .

(see p.62, [D]). This follows only from using (1). Due to the invalidity of (1), the “functional

equation” is now invalid also.

In this paper, we shall give a simple method to construct a convincing counterexample,

showing(see below) the invalidity of the “residue theorem” of CA, which makes results of

number theory obtained by using CA to be invalid. Our work needs the help of a suitable

calculator(our calculator has the accuracy up to 10−15).

2. The construction of the counterexample

By (6) of p.62 of Davenport’s book [D], we have

(2) �0.5 1 + 2 1
∞ �−��2�� = 1 + 2( 1

∞ �−��2/�� ),

for all � > 0 . Note that this formula is derived by means of the “residue theorem” of

complex analysis, where one needs to move lines of integrations on the complex plane, see

pp.63-64. Our purpose is to deduce a contradiction, by assuming the validity of (2), which in
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turn shows the invalidity of (2), and also shows the invalidity of the “residue theorem”,

because the Possion’s summation formula part of p.63 of [D] can be replaced by the usual

Fourier series treatment, as disclosed in the proof of Lemma 1.3.3(it is just (8) of p.63 of [D])

of [L2].

Assuming (2). Taking derivatives on both sides of the above equality, we get

0.5�−0.5 1 + 2 1
∞ �−��2�� + �0.5 −2� ( 1

∞ �2�−��2�� )

= 2��−2 ( 1
∞ �2�−��2/�� ),

and thus

0.5�−0.5 1 + 2 1
∞ �−��2�� = 2��−2 ( 1

∞ �2�−��2/�� )

(3) + 2��0.5 ( 1
∞ �2�−��2�� ).

Taking derivatives on both sides of (3), we get

− 0.25�−1.5 1 + 2 1
∞ �−��2�� − 2��−0.5( 1

∞ �2�−��2�� )

+ 2�2�0.5
1
∞ �4�−��2�� =− 4��−3( 1

∞ �2�−��2/�� ) +

(4) + 2�2�−4( 1
∞ �4�−��2/�� ).

We use (3) to substitute the first term on the left side of (4), getting

− 0.5�−1 2��−2 ( 1
∞ �2�−��2/�� ) + 2��0.5 ( 1

∞ �2�−��2�� )

− 2��−0.5( 1
∞ �2�−��2�� ) + 2�2�0.5

1
∞ �4�−��2��

=− 4��−3( 1
∞ �2�−��2/�� ) + 2�2�−4( 1

∞ �4�−��2/�� ),

and thus

(5) 3� � = 2�� � ,

where

� � =− �−0.5
1
∞ �2�−��2�� + �−3

1
∞ �2�−��2/�� ,

� � = 1
∞ �−4�4�−��2/� − �0.5

1
∞ �4�−��2��� .

We have
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�' � = 0.5�−1.5( 1
∞ �2�−��2�� ) + ��−0.5( 1

∞ �4�−��2�� )

−3�−4( 1
∞ �2�−��2/�� ) + ��−5

1
∞ �4�−��2/�� ,

�' � =− 4�−5( 1
∞ �4�−��2/�� ) + ��−6

1
∞ �6�−��2/��

− 0.5�−0.5
1
∞ �4�−��2�� + ��0.5( 1

∞ �6�−��2�� ),

and from (5) we get

(6) 3�' � = 2��' � .

We choose � = 1 in (6) to get

3 0.5� + �� − 3� + �� = 2� −4.5� + 2�� ,

where

� = 1
∞ �2�−��2� , � = 1

∞ �4�−��2� , � = 1
∞ �6�−��2� ,

which gives

15�� = 7.5� + 4�2�.

But we shall prove that actually

(7) 15�� > 7.5� + 4�2�.

Thus we conclude that (2) must be invalid.

For verifying (7), we note that

� = 3.141592653589793…, � = 2.718281828459045… ,

and thus

(8) 15�� − 7.5� + 4�2� > � + � + � + �,

� = �−� 15� − 7.5 − 4�2 > 0.006286423781,

� = �−4� 240� − 30 − 256�2 >− 0.006286410606 ,

� + � > 10−8 × 1.317,

� = (1215� − 67.5 − 2916�2)�−9� >− 1.316 × 10−8,

(9) � + � + � > 10−11,

and



143

(10) � =− �≥4 (4�2�6)�−��2� .

To estimate �, we need to prove

(11) 4�2�6 < (0.000001)���2−��, for � ≥ 4.

To verify (11), we first note that (11) is true for � = 4 − � , by taking the logarithm(� is a

sufficiently small positive number). Thus (11) can be verified, if one can show that(using the

method of verifying the monotonic property)

(12) (10−6)���2−�� > 24��4, for any � > 4 − 2�.

Similarly, to verify (12) it suffices to verify

(13) (10−6)���2−�� > 96�2, for any � > 4 − 3�.

And, to verify (13) it suffices to verify

(14) (10−6)����2−�� > 192, for any � > 4 − 4�.

Obviously (14) holds. Thus (11) is proved. By (10) and (14) we have

� >− �≥4 (10−6)�−�� >� − (10−6) �≥4 �−���

=− 10−6 �−4�

1−�−� >− 3.65 × 10−12,

and the inequality (7) follows from (8) and (9).

Remark 1. Using the similar method, it may be possible to show that �1 = 1 + 2� − 8�� ≠

0, here(using the symbols of p.192 of [L1])

� = 1
∞ �−��2 ,� � = 1

∞ �2�−��2� ,

and if this can be verified, then we can derive our assertions(the invalidity of (2), (1), and the

“residue theorem”) more easily, see p.192 of [L1]; note that by letting � = 1 in (3), we get

“1 + 2� − 8�� = 0”.

3. Another counterexample to the “residue theorem” of CA

Here we shall give another example, for the purpose of negating the “residue theorem” of

complex analysis. Let

� = 0
∞ ����

�0.5 ��.�
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On the one hand, by using the “residue theorem” we can deduce that

15 � = �
2

= 1.253314137315500… .

Whereas on the other hand a direct calculation using a calculator reveals that actually

16 0
∞ ����

�0.5 �� > �
2
,�

and the difference of the two values is greater than 7 × 10−13. A comparison of (15) and (16)

then yields our another counterexample to the “residue theorem” of CA.

First we derive (15). The details are taken from the proof of Lemma 1.4.1 of [L3], which

we present at here for the sake of completeness. Let � be the closed path of four-sides

trapezoid on the complex plane, consisting of the four vertexes �, 0 ,

�, 0 , �, � , and �, � , here � > � > 0. By the “residue theorem” we have (here � � =

��� 2���   = �2���)

(17) �
� � �2 �� = �1 + �2 + �3,�

where �1, �2 and �3 are the complex linear integrals of the function � �2 along the straight

lines from �, � to �, 0 , from �, � to �, � , and from �, 0 to �, � , respectively.

Let � be sufficiently large, and � be sufficiently small, then

�1 = � 0
� ��� −4��� ��� = � 1

�
,

�2 = 1 + � �
� ��� 2�� � + �� 2 ��� = 1 + � �

� ��� −4��2 ��� ,

�3 = � 0
� ��� −4��� ��� = � � ,

and thus, letting � � ∞ and � � 0 in (17) we get

(18) 0
∞ � �2 �� = 1 + � �, � = 0

∞ ��� −4��2 ��.��

The value � = 0.25 can be obtained by a familiar method. Let � be a sufficiently small

positive number. Then

(19) �2 = 0
∞

0
∞ = � ��� −4� �2 + �2 ���� + � � ,���

where � = �, � : 0 ≤ � < ∞, 0 ≤ � < ∞, �2 + �2 ≥ �2 . Using the substitution of variables

� = �����, � = �����, � ≥ �, 0 ≤ � ≤ 0.5�, we have



145

� = �����, ����� : � ≤ � < ∞, 0 ≤ � ≤ 0.5� ,

and thus

�2 = �
∞

0
0.5� ��� −4��2 ����� = 1

16
�� ��� −4��2 .

Letting � � 0 , from (18) and (19) we get � = 0.25 . Then, using a substitution of the

variables, we obtain

0
∞ ����−0.5�� = ( 2�) 0

∞ � � �−0.5����

= 2( 2�) 0
∞ � �2 �� = 2 2� 1 + � �,�

which implies (15).

Next we verify (16). Let � = 1200.0883936, and

� = 382� − � = 0.000000071300… = 10−8 × 7.1300… .

We find that

(20) 0
� ����

�0.5 �� = 1.224447702040165….�

Note that ���� = ����, ���� =− ����. Integrating by parts several times, we get

( 21) �
∞ ����

�0.5 �� = (����)∙ �−0.5�

−0.5 ���� �−1.5 − 0.75 ���� �−2.5 + 1.875 ���� �−3.5

+ 6.5625 ���� �−4.5 − 945
32

���� �−5.5 + 945
32 �

∞ −5.5 ���� �−6.5��� =

1≤�≤7 ��,� say.

Using the Taylor expansion we know that

1 − �2

2
< ���� < 1, � − �3

6
< ���� < �,

and consequently (21) gives

�1 = �1 + ∆1, �1 = �−0.5, ∆1 < �2

2
∙ �−0.5 < 10−15,

�2 = �2 + ∆2, �2 =− 0.5��−1.5, ∆2 < �3

12
∙ �−1.5 < 10−15,

�3 = �3 + ∆3, �3 =− 0.75�−2.5, ∆3 < 0.375�2�−2.5 < 10−15,

0 < �4 < 10−15,
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�5 = �5 + ∆5, �5 = 6.5625�−4.5, ∆5 < 4�2�−4.5 < 10−15,

�6 ≤ 945
32

��−5.5 < 10−15,

�7 ≤ 945
32

�−5.5 < 10−15,

and hence

(22) �
∞ ����

�0.5 �� = �1 + �2 + �3 + �5 + � ∙ 7 × 10−15� ,

here � < 1. We have

�1 = 0.028866450308450…,

�2 =− 10−13 × 8.575109…,

�3 =− 10−8 × 1.503239484… ,

�5 = 10−13 × 0.9132…,

�1 + �2 + �3 + �5 = 0.028866435276112…,

which gives, by means of (20) and (22), the numerical value

0
∞ ����

�0.5 �� = 1.253314137316277… + � ∙ 7 × 10−15� ,

and therefore the proof of (16) is finished.

Remark 2. In view of our present research, it is natural to suspect many “identities”

involving fractions which are guessed by Ramanujan, such as

1
�

= 2 2
992 �=0

∞ 4� !
(�!)4 ∙ 26390�+1103

(396)4�� ,

for using a powerful calculator one may find that the two sides are not the same, requiring the

sufficient accuracy. We have to admit that sometimes a computer can win a chess

championship, and mention the solution to the “four-colour problem”. It is during such a time

that it is possible to disclose the drawback of works of previous scholars.
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