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Abstract

We consider a multi-server G/G/n queue that operates the bi-level randomized  1 2, ,p N N -

policy or the N-policy. This means that as soon as there are no more customers in the system,

the server will be shut down immediately. If the number of arriving customers falls to a

particular low threshold value 1N , the server will be activated for work with a probability of p

or remain turned off with a probability of 1 .p If the number of arriving customers reaches a

specified high threshold value 2N ( 1N ), the server will start serving waiting customers until

the system is empty again. When 1p  or 0p  or 1 2 ,N N N  the  1 2, ,p N N -policy

becomes the classic N-policy. Using GPSS World simulation models, we studied the

dependencies of system performance measures on the following parameters: threshold values

1 2,N N or ,N the load factor, coefficient of variation of inter-arrival times, and number of

servers. We validated the simulation models by comparing the results with those obtained by an

analytical method. We determined the simulation time required to obtain results corresponding

to the stationary process. By utilizing the created simulation models, we can solve the problem
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of minimizing a long-run expected cost rate by selecting appropriate values for the thresholds

1N and 2 .N

Keywords: queueing system, N-policy, be-level randomized policy, simulation model, GPSS
World

1. Introduction

As it is widely understood, the majority of queueing models research focuses on optimizing

the design and control of queues. The primary goal of studying controllable queueing systems

is to reduce operational costs and enhance overall efficiency. Broadly speaking, there are

several approaches to controlling the service, including the N-policy developed by Yadin and

Naor [1], the T-policy introduced by Heyman [2], and the D-policy outlined by Balachandran

[3]. The N-policy queue assumes that when the number of customers in the system reaches N,

the idle server should immediately resume service. To address the issue of customer

sensitivity to delays and to improve the flexibility of queueing systems, some researchers

have proposed queueing systems that use joint control policies. For instance, Lee and Seo [4]

studied the M/G/1 queueing system with the dyadic Min(N,D)-policy combined with the N-

policy and the D-policy. Under this system, the server resumes service when either N

customers are in the queue or the total service time of waiting customers exceeds D,

whichever happens first.

In many practical production systems, determining the exact threshold for starting service is

crucial for operating the systems in a cost-efficient manner. If the threshold is set too low, the

system will experience frequent state switching and incur significant switching costs over an

extended period. Conversely, if the threshold is set too high, customers will have to wait

longer, resulting in lower satisfaction and potential loss of customers. In light of the situation

described earlier, the paper [5] suggests a new M/G/1 queueing model that utilizes a bi-level

randomized  1 2, ,p N N -policy. This means that as soon as there are no more customers in the

system, the server will be shut down immediately. If the number of arriving customers falls to

a particular low threshold value 1N ( 1 ), the server will be activated for work with a

probability of p ( 0 1p  ) or remain turned off with a probability of 1 .p If the number of
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arriving customers reaches a specified high threshold value 2N ( 1N ), the server will start

serving waiting customers until the system is empty again.

One of the methods for studying queuing systems is the simulation method, when the model

simulates the operation of a real system, that is, the model reproduces the process of

functioning of a real system in time. In many cases, simulation becomes the most effective

and often practically the only available method for studying systems. For example, an

efficient analysis of a G/G/n multi-server queuing system by analytical methods is impossible,

while such an analysis using simulation methods is not particularly difficult [6]. In this paper,

we use the GPSS World simulation system [7, 8].

GPSS (General-Purpose Simulation System) is a general process-oriented simulation software

environment. GPSSWorld is a Microsoft Windows application designed to run on various Windows

operating systems.

The main contributions of this paper are as follows.

1) We construct the GPSS World simulation models of the N-policy and bi-level randomized

 1 2, ,p N N -policy for the G/G/n multi-server queueing system, which allows us to study the

dependencies of the system performance measures on the following parameters: threshold

values 1 2,N N or ,N the load factor , coefficient of variation V of inter-arrival times, and

number of servers n.

2) Using the constructed simulation models, we have the opportunity to obtain not only the

average values of the system performance measures but also the distributions of all

performance measures, as well as their graphical representations.

3) By utilizing the created simulation models, we can solve the problem of minimizing a long-

run expected cost rate by selecting appropriate values for the thresholds 1N and 2 .N

2. SimulationModels

2.1. Basic Definitions and Assumptions

We consider a G/G/n multi-server queueing system in which both service times and the inter-

arrival times have arbitrary distributions. A random variable X, the time to serve a customer,

has a general distribution with a cumulative distribution function (CDF) ( )XF x , and ( )YF x is
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CDF of inter-arrival time Y. We denote as ( )E X and ( )E Y the mean of the random variables

X and ,Y respectively. We assume that the service is organized according to the natural

FIFO discipline.

The bi-level randomized  1 2, ,p N N -policy consists of the following. Whenever the system is

empty, all servers keep dormant in the system. If the number of customers reaches 1N ( 1 )

in the system, all the deactivated servers are turned on, with probability p ( 0 1p  ), or are

still left off, with complementary probability 1 .p If the number of customers reaches 2N

1( )N in the system, the system starts to serve customers immediately. Furthermore, once the

system is activated, it will keep providing service until the system becomes empty.

When 1p  or 0p  or 1 2 ,N N N  the G/G/n queueing system with  1 2, ,p N N -policy is

equivalent to the G/G/n queueing system with the conventional N-policy [1].

Let us denote for the random variable Y the probability density function, variance and

coefficient of variation as ( ), ( ),Yf t D Y and ,V respectively, then for the gamma distribution,

we have
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In this paper, we use a cost structure proposed in [5], that consists of a linear waiting cost with

rate ℎ and a fixed startup cost R for each busy period. Using the renewal reward theorem, for a

cycle period that is defined as the finite interval between two consecutive system busy period

ending instants, and the average number of customers in the system ( ),E L we obtain the

long-run expected cost rate given by

( ) .
( )
RF h E L

E C
  

Here C denotes a busy cycle duration, which consists of the system idle period and the system

busy period, denoted by I and B, respectively. The system idle period refers to the duration of

time when there are no customers present in the system. On the other hand, the system busy

period is the time interval that begins with the arrival of the first customer and ends when the

system becomes empty again.
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We denote the waiting time of customers as W and its average value as ( ).E W

2.2. A System with the Bi-Level Randomized  1 2, ,p N N -Policy

Below we provide a GPSS simulation model in the case when 1 25, 9, 10,n N N  

0.7, 15, 1500,p h R   the random variables X and Y have the uniform and gamma

distributions, respectively. We assume that ( ) 2.5, ( ) 1,E X E Y  ( ) / ( ( )) 0.5,E X nE Y  

the random variable X is uniformly distributed on the interval [0, 5] , the parameters of the

gamma distribution of the random variable Y are as follows: 4 / 9, 9 / 4, 1.5.V    The

simulation time 5
mod 4 10 .t  

*****Definition of parameters and tables

Tmod EQU 400000 ;simulation time

Sys STORAGE 5

en1 EQU 9 ;value of N1

en2 EQU 10 ;value of N2

T1 VARIABLE 0 ;initial value of I

T2 VARIABLE 0 ;initial value of C

T3 VARIABLE 0 ;initial value of B

Dis TABLE (S$Sys+Q1),0,1,100 ;distribution of L

Wtime QTABLE 1,0,1,100 ;distribution of W

Ctime TABLE X$T2,0,10,100 ;distribution of C

Btime TABLE X$Tbusy,0,5,100 ;distribution of B

Itime TABLE X$Tidle,0,5,200 ;distribution of I

*****Tabulation of L

GENERATE 1

TABULATE Dis

TERMINATE

***** At the initial time t=0, the logic switch is set to the on state

GENERATE ,,,1

LOGIC S Key

TERMINATE

*****Flow of customers and service

GENERATE (Gamma(1,0,9/4,4/9))

GATE LR Key,LQ1

TEST E (S$Sys+Q1),(en1-1),LT1

TRANSFER .3,,LT1

SAVAIL Sys

SAVEVALUE T3,AC1 ;start of busy period
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SAVEVALUE Tidle,(AC1-X$T1) ;completion of idle period

TABULATE Itime

LOGIC S Key

TRANSFER ,LQ1

LT1 TEST E (S$Sys+Q1),(en2-1),LQ1

SAVAIL Sys

SAVEVALUE T3,AC1 ;start of busy period

SAVEVALUE Tidle,(AC1-X$T1) ;completion of idle period

TABULATE Itime

LOGIC S Key

LQ1 QUEUE 1

ENTER Sys

DEPART 1

ADVANCE (Uniform(1,0,5))

LEAVE Sys

TEST E (S$Sys+Q1),0,TER

SUNAVAIL Sys

LOGIC R Key

SAVEVALUE T2,(AC1-X$T1)

SAVEVALUE Tbusy,(AC1-X$T3) ;completion of busy period and busy cycle

TABULATE Ctime

TABULATE Btime

SAVEVALUE T1,AC1 ;start of idle period and busy cycle

TER TERMINATE

*****Completion of the simulation

GENERATE Tmod

SAVEVALUE Cost,(15#TB$Dis+1500/TB$Ctime) ;calculation of F

SAVEVALUE BC,(TB$Btime/TB$Ctime) ;calculation of E(B)/E(C)

TERMINATE 1

START 1

The simulation model is constructed as a sequence of blocks and called block segments.

Block segments generally start with a GENERATE block that inserts transactions into the

simulation model and ends with a TERMINATE block that removes transactions from the

simulation model. Such a block segment specifies a process, i.e., a life cycle, for transactions.

We begin the model by setting the parameters and tables of distributions for the random

variables that we aim to obtain through the simulation. The STORAGE command defines a

Storage Entity named Sys with a total capacity of 5 units. By changing the capacity, we can

set a desired value for the number of servers. The Tables are used to calculate the distributions

for several random variables, including the number of customers in the system (L), the
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waiting time of customers in the queue (W), the duration of the system busy cycle (C), the

duration of the system busy period (B), and the duration of the system idle period (I).

The main segment forms the basis of the model and is designed to simulate the process of

arrival and service of customers. The last segment sets a simulation time, saves a value of the

expected cost rate function F, the ratio of ( )E B and ( ),E C and stops the simulation process.

The main segment of the model consists of the combination of blocks ENTER and LEAVE

provides the operation of a Storage Entity. The Storage Entity models the operation of a

multi-server system. We use the SUNAVAIL and SAVAIL blocks to model the unavailable

of the system according to the  1 2, ,p N N -policy. The GATE and TEST blocks are also

involved in the implementation of this policy, as well as the logic switch Key, controlled by

the LOGIC blocks. The logic switch is in the on state, if the system is available; otherwise, it

remains off. The GATE block checks the state of the logic switch, while the three TEST

blocks are used to verify that the number of customers in the system reaches the values of

1 2, ,N N and 0, respectively.

The policy “If the number of customers reaches 1N in the system, all the deactivated servers

are turned on, with probability p or are still left off, with complementary probability 1 p ” is

implemented using the TRANSFER block, which operates in Fractional Mode and is located

after the first TEST block. The second TRANSFER block operates in Unconditional Mode

and directs transactions to the QUEUE block.

The QUEUE and DEPART blocks are used to update the statistics associated with a queue.

Transactions (customers) are delayed for a random service time using the ADVANCE block.

To obtain the distributions of the random variable L, we use the GENERATE block, which

creates transactions through each unit of model time and directs them to the TABULATE

block associated with the table of the distribution of this random variable (Dis TABLE).

To obtain the distributions of the random variables I, C, and B, we use the SAVEVALUE and

TABULATE blocks, as well as the arithmetic variables T1, T2, and T3. The SAVEVALUE

blocks are located in such a way that transactions enter them at the start and end of the busy

cycle, the busy period, and the idle period, respectively. The start time of each period is fixed

using the system numerical attribute AC1.
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This model offers flexibility to easily change not only the number of servers but also the

probability distributions of the random variables X and Y, which are defined in the

GENERATE and ADVANCE blocks.

2.3. A System with the N-Policy

We can obtain a simulation model for a system with the N-policy from the previous model if

we substitute 1 2N N N  in it. To reduce a calculation time, it is advisable to use the model

shown below.

*****Definition of parameters and tables

Tmod EQU 400000 ;simulation time

Sys STORAGE 5

en EQU 10 ;value of N

T1 VARIABLE 0 ;initial value of I

T2 VARIABLE 0 ;initial value of C

T3 VARIABLE 0 ;initial value of B

Dis TABLE (S$Sys+Q1),0,1,100 ;distribution of L

Wtime QTABLE 1,0,1,100 ;distribution of W

Ctime TABLE X$T2,0,10,100 ;distribution of C

Btime TABLE X$Tbusy,0,5,100 ;distribution of B

Itime TABLE X$Tidle,0,5,200 ;distribution of I

*****Tabulation of L

GENERATE 1

TABULATE Dis

TERMINATE

***** At the initial time t=0, the logic switch is set to the on state

GENERATE ,,,1

LOGIC S Key

TERMINATE

*****Flow of customers and service

GENERATE (Gamma(1,0,9/4,4/9))

GATE LR Key,LQ1

TEST E (S$Sys+Q1),(en-1),LQ1

SAVAIL Sys

SAVEVALUE T3,AC1 ;start of busy period

SAVEVALUE Tidle,(AC1-X$T1) ;completion of idle period

TABULATE Itime

LOGIC S Key

LQ1 QUEUE 1

ENTER Sys
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DEPART 1

ADVANCE (Uniform(1,0,5))

LEAVE Sys

TEST E (S$Sys+Q1),0,TER

SUNAVAIL Sys

LOGIC R Key

SAVEVALUE T2,(AC1-X$T1)

SAVEVALUE Tbusy,(AC1-X$T3) ;completion of busy period and busy cycle

TABULATE Ctime

TABULATE Btime

SAVEVALUE T1,AC1 ;start of idle period and busy cycle

TER TERMINATE

*****Completion of the simulation

GENERATE Tmod

SAVEVALUE Cost,(15#TB$Dis+1500/TB$Ctime) ;calculation of F

SAVEVALUE BC,(TB$Btime/TB$Ctime) ;calculation of E(B)/E(C)

TERMINATE 1

START 1

This model contains fewer blocks compared to the previous one, specifically only two TEST

blocks, since according to the N-policy, it is necessary to verify that the number of customers

in the system reaches the values of N and 0, respectively.

2.4. Checking the Simulation Models and Choice the Simulation Time

Let us use analytical results for the M/M/1 system in the case of bi-level randomized

 1 2, ,p N N -policy [5] to test the constructed simulation models and to choose the optimal

value of the simulation time.

We assume that 1 25, 12, ( ) 5 /14, ( ) 5 / 3,N N E X E Y    and 0.6.p  Let us denote by

kp and ( )k simp the stationary probabilities that there are k customers in the system, calculated

by the analytical method [5] and using the simulation model, respectively. Given that
610kp
 for 18,k  we evaluate the accuracy of the results using the error calculated by the

formula
17

( )
0
| |.k k sim

k
p p



  We obtain the following values of : 0.0420, 0.0103,  

and 0.0035  for the modeling time 4 5
mod mod10 , 10 ,t t  and 6

mod 10 ,t  respectively.

The modeling time on the interval 4 5(10 , 10 ) appears to be the optimal choice for further

calculations due to its high accuracy and quick implementation time.
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The GPSS World uses random number generators to sample random numbers for

GENERATE and ADVANCE blocks. We can select which random number generator number

is to be used as the source of the random number. The results obtained for different values of

the random number generator may differ slightly from each other. In this work, we use the

number of the random number generator, which is equal to 1.

3. Study of theN-Policy andBi-Level Randomized Policy

3.1. Basic Designations

We consider the case when the random variables X and Y have the uniform and gamma

distributions, respectively. We assume that the random variable X is uniformly distributed

on the interval [0, ],n where n is a number of servers. The coefficient of variation of the

gamma distribution is related to its parameter  by the relation 1/ ,V  and we

have ( ) , ( ) / ( ( ).E Y E X nE Y   The above equalities completely define the relationship

between the parameters of the input flow and service time. In the expression of the expected

cost rate function F we take 15h  and 1500.R 

3.2. Minimization of Function F under a Constraint of Customers Waiting Time

Because extended waiting times lead to customer dissatisfaction and reduced revenue for the

system, it results in a situation where nobody wins. Thus, following the work [5], our aim

here is to determine the optimal policy * *
1 2( , )N N such that the expected cost rate function F is

minimized under the premise that the average waiting time of customers does not exceed the

predetermined threshold 0.W

Let us consider the case when 5, 1.5, 0.5, 0.7,n V p    and 5
mod 4 10 .t   Figures 1−4

show dependencies of values of min/F F and ( )E W on 1N for different values of 2.N Here,

min 129.421F  and this value is achieved when 1 2 7.N N  The graphs show that value of

F decreases together with 1N and 2 ,N reach a minimum, and then increase together with 1N

and 2.N The values of ( )E W increase together with 1N and 2N for values 1N and 2N not

exceeding 6, but for values exceeding 6, these dependencies may have a minimum when 1N is

small.
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By using the results of calculations for F and ( ),E W we can determine the minimum value of

function F while adhering to a given constraint on the average waiting time. For instance, if

we set a limit of 0 2W  for the average waiting time, then the minimum value of function

129.703F  is attained when 1 7N  and 2 8.N  Similarly, if 0 1.5,W  the minimum value

of function 130.438F  is achieved when 1 2 6.N N  If we set 0 1,W  then the minimum

value of function 135.293F  is obtained when 1 4N  and 2 5.N 

N2 1

N2 2

N2 3

N2 4

N2 5

N2 6

N2 7

N2 8

N2 9

N2 10

Figure 1. The dependence of min/F F on 1N for different values of 2N in the case when

5, 1.5, 0.5n V    and 0.7p 
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F Fmin for N2 6

E W for N2 6

Figure 2. The dependencies of min/F F and ( )E W on 1N for 2 6N  in the case when

5, 1.5, 0.5n V    and 0.7p 

F Fmin for N2 7

E W for N2 7

Figure 3. The dependencies of min/F F and ( )E W on 1N for 2 7N  in the case when

5, 1.5, 0.5n V    and 0.7p 
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F Fmin for N2 8

E W for N2 8

Figure 4. The dependencies of min/F F and ( )E W on 1N for 2 8N  in the case when

5, 1.5, 0.7n V p   and 0.5 

3.3. Dependencies of the System Performance Measures on N for Various Values of ρ

Let us consider the case of applying the N-policy when 5, 1.5,n V  and 5
mod 5 10 .t  

Figures 5−8 show dependencies of values of ( ), ( ) / ( ), ( )E C E B E C E L and F on N for

different values of the load factor .

0.1

0.3

0.5

0.7

0.8

Figure 5. The dependencies of ( )E C on N in the case when 5n  and 1.5V 
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0.1

0.3

0.5

0.7

0.9

Figure 6. The dependencies of ( ) / ( )E B E C on N in the case when 5n  and 1.5V 

0.1

0.3

0.5

0.7

0.8

Figure 7. The dependencies of ( )E L on N in the case when 5n  and 1.5V 
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0.1

0.2

0.3

0.5

0.7

0.8

Figure 8. The dependencies of F on N in the case when 5n  and 1.5V 

Analyzing the graphs, we can make the following conclusions: 1) as  increases, the values

of all indicators increase; 2) the average cycle duration ( )E C significantly increases together

with N, especially for 0.1;  3) as N increases, the ratio ( ) / ( )E B E C slightly decreases

(where B is the duration of the system busy period); 4) the average number of customers in

the system ( )E L slightly increases together with N; 5) the value of the function F decreases

together with N, reaches a minimum, and then increases together with N.

3.4. Dependencies of the System Performance Measures on N for Various Values of V

Let us consider the case of applying the N-policy when 5, 0.5,n   and 5
mod 5 10 .t  

Figures 9−12 show dependencies of values of ( ), ( ) / ( ), ( )E C E B E C E L and F on N for

different values of the coefficient of variation of inter-arrival times, V .

Analyzing the graphs, we can make the following conclusions: 1) as V increases, the values

of ( )E L and F increase, and the values of ( )E C and ratio ( ) / ( )E B E C decrease; 2) the

values of ( )E C and ( )E L increases together with N; 3) as N increases, the ratio ( ) / ( )E B E C

decreases; 4) the value of the function F decreases together with N, reaches a minimum, and

then increases together with N.



63

V 0.1

V 0.5

V 0.9

V 1.5

V 2

Figure 9. The dependencies of ( )E C on N in the case when 5n  and 0.5 

V 0.1

V 0.5

V 0.9

V 1.5

V 2

Figure 10. The dependencies of ( ) / ( )E B E C on N in the case when 5n  and 0.5 
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V 0.1

V 0.5

V 0.9

V 1.5

V 2

Figure 11. The dependencies of ( )E L on N in the case when 5n  and 0.5 

V 0.1

V 0.5

V 0.9

V 1.5

V 2

Figure 12. The dependencies of F on N in the case when 5n  and 0.5 

3.5. Dependencies of the System Performance Measures on N for Various Values of n

Let us consider the case of applying the N-policy when 0.5, 1.5,V   and 5
mod 4 10 .t  

Figures 13−17 show dependencies of values of ( ), ( ) / ( ), ( ), ( )E C E B E C E L E W and F on

N for different values of the numbers of servers n .
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n 1

n 5

n 10

Figure 13. The dependencies of ( )E C on N in the case when 0.5  and 1.5V 

n 1

n 5

n 10

Figure 14. The dependencies of ( ) / ( )E B E C on N in the case when 0.5  and 1.5V 
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n 1

n 5

n 10

Figure 15. The dependencies of ( )E L on N in the case when 0.5  and 1.5V 

n 1

n 5

n 10

Figure 16. The dependencies of ( )E W on N in the case when 0.5  and 1.5V 
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n 1

n 5

n 10

Figure 17. The dependencies of F on N in the case when 0.5  and 1.5V 

Analyzing the graphs, we can make the following conclusions: 1) as n increases, the values

of ( ), ( ) / ( )E C E B E C and ( )E L increase, and the values of ( )E W and F decrease; 2) the

values of ( ), ( )E C E L and ( )E W increases together with N, moreover, the ranges of values

for ( )E L and ( )E W are the largest when 1;n  3) as N increases, the ratio ( ) / ( )E B E C

decreases, but for the case when 1,n  it practically does not change; 4) the value of the

function F decreases together with N, reaches a minimum on the interval (1, 10), and then

increases together with N. The range of values of the function F significantly narrows as the

number of servers increases.

3.6. Examples of Obtaining Distributions of the System Performance Measures

We can get the distributions of those random variables for which tables are given in a

simulation model. GPSS World tools make it possible to obtain graphic representations of

distribution tables in the form of histograms and use graphs to track the dynamics of changes

in random variables over time. The constructed simulation models contain tables to obtain

distributions of the number of customers in the system (L), the waiting time of customers in

the queue (W), the duration of the system busy cycle (C), the duration of the system busy

period (B), and the duration of the system idle period (I).

Let us consider the case of applying the N-policy when 5, 0.5, 7,n N   and
5

mod 5 10 .t   We will analyze the cases of different coefficient of variation values for inter-

arrival times, specifically 0.5V  and 1.5V 
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Figure 18. Distribution of L for the case when 5, 0.5, 0.5,n V    and 7N 

Figure 19. Distribution of L for the case when 5, 1.5, 0.5,n V    and 7N 
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Figure 20. Distribution of W for the case when 5, 0.5, 0.5,n V    and 7N 

Figure 21. Distribution of W for the case when 5, 1.5, 0.5,n V    and 7N 
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Figure 22. Distribution of C for the case when 5, 0.5, 0.5,n V    and 7N 

Figure 23. Distribution of C for the case when 5, 1.5, 0.5,n V    and 7N 
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Figure 24. Distribution of B for the case when 5, 0.5, 0.5,n V    and 7N 

Figure 25. Distribution of B for the case when 5, 1.5, 0.5,n V    and 7N 
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Figure 26. Distribution of I for the case when 5, 0.5, 0.5,n V    and 7N 

Figure 27. Distribution of I for the case when 5, 1.5, 0.5,n V    and 7N 

From the histograms presented in Figures 18−27, it follows that an increase in the coefficient

of variation of inter-arrival times leads to an increase in the mean and variance of the random

variables , ,L W and ,I while the mean and variance of the random variables C and B

decrease. The histograms clearly demonstrate the impact of changing the coefficient of

variation of inter-arrival times on the distribution shape of each of these random variables.
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4. Conclusion

Simulation models are developed to describe the stochastic process of the G/G/n multi-server

queueing system, which utilizes the N-policy or bi-level randomized  1 2, ,p N N -policy. The

constructed simulation model provides us with a fundamental opportunity to predict the

impact of each input parameter on system performance measures for the G/G/n queue with

arbitrary inter-arrival times and service time distributions. The calculations showed a good

convergence of our simulation results with the results of the analytical model for the M/G/1

queue.

The results obtained for the G/G/n queue show a significant dependence of the system

performance measures on the values of the coefficient of variation of inter-arrival times and

the number of servers. This dependence increases even more if we consider the possibility of

changing the coefficients of variation of service times. Therefore, it is difficult to take into

account the practical application of the results of analytical models that were obtained only

for M/G/1 queues.
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