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Abstract

This paper firstly presents knowledge representations of generalized syllogisms, and then uses

relevant facts and reasoning rules to conduct knowledge reasoning on the basis of the

generalized syllogism MMI-3 with the quantifier ‘most’. The main conclusion is that there are

at least the other 25 valid generalized syllogisms that can be deduced from the validity of this

syllogism. The paper achieves the initial goal of knowledge mining for this generalized

syllogism logical fragment.
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1. Introduction

Syllogistic reasoning is a common form of reasoning in scientific language and natural

language (Hui, 2023). Since Aristotle, scholars have studied various types of syllogisms. For

example, Aristotelian syllogisms (Łukasiewicz, 1957; Moss, 2008; Yijiang, 2023),

Aristotelian modal syllogisms (Thomson, 1997; Johnson, 2004; Malink, 2013; Long and

Xiaojun, 2023), generalized syllogisms (Moss, 2010; Endrullis and Moss, 2015; Liheng,

2024), and generalized modal syllogisms (Jing and Xiaojun, 2023).

Generalized syllogisms commonly exist in everyday reasoning, and there are few studies on

them by domestic and foreign scholars. Therefore, this paper focuses on their study.

Generalized syllogism reasoning is not only a common form of reasoning in human thinking,

but also one of the important contents of knowledge mining in artificial intelligence.

2. Knowledge Representation for Generalized Syllogisms

Let g, c and p be lexical variables, and G, C and P be the set of g, c, and p, respectively, and

U be the domain of lexical variables. Let , , , and  be well-formed formulas (i.e. wff). Let

Q be a quantifier, and Q and Q be its outer and inner negative quantifiers, respectively.

‘G’as usual indicates the cardinality of the set G. ‘⊢’ represents that the wff  is provable,

and ‘⊨ ’ that the wff  is valid. ‘=def ’ means that one can use  to define  . The other

operators (such as  ,  ,  ,  ) are common symbols in mathematical logic (Hamilton,

1978).

This paper studies generalized syllogisms involving the quantifiers all and most, as well as

their three kinds of negative (i.e. inner, outer and dual) quantifiers, that is, all, some, no, not

all, most, at least half of, fewer than half of and at most half of. Thus, the propositions we

consider in these syllogisms are as follows: all(g, c), some(g, c), no(g, c), not all(g, c), most(g,

c), at least half of(g, c), at most half of(g, c) and fewer than half of(g, c). They are abbreviated

as Proposition A, I, E, O, M, S, H, and F, respectively. A non-trivial generalized syllogism

includes at least one of the last four. For example, the third figure syllogism most(c,
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p)most(c, g) some(g, p) is a non-trivial generalized syllogism, which is abbreviated as

MMI-3. A natural language example of MMI-3 is as follows:

Major premise: Most flowers wither in winter.

Minor premise: Most flowers bear fruits.

Conclusion: Some things that bear fruits wither in winter.

Let c be a lexical variable that represents flowers, p be a lexical variable denoting things that

wither in winter, and g be a lexical variable denoting things that bear fruits. Then the above

example can be represented as most(c, p)most(c, g)some(g, p).

3. Generalized Syllogism System with the Quantifier ‘Most’

To formalize a logical system, it is necessary to provide its syntax and semantics.

3.1 Syntax

The syntax of a logical system includes initial symbols, formation rules, basic axioms and

deductive rules.

3.1.1 Primitive Symbols

(1) lexical variables: g, c, p

(2) quantifiers: all, most

(3) operators: ,

(4) brackets: (, )

3.1.2 Formation Rules

(1) If Q is a quantifier, g and c are lexical variables, then Q(g, c) is a wff.

(2) If  is a wff, then so is .

(3) If  and  are wffs, then so is .

Only the formulas constructed in line with the above rules are wffs.



- 87 -

3.1.3 Basic Axioms

A1: all tautologies in propositional logic are axioms.

A2: most(c, p)most(c, g)some(g, p). (that is, the syllogismMMI-3).

3.1.4 Deductive Rules

Rule 1 (subsequent weakening): From ⊢() and ⊢() infer ⊢().

Rule 2 (anti-syllogism): From ⊢() infer ⊢().

Rule 3 (anti-syllogism): From ⊢() infer ⊢().

The above rules are basic rules of first-order logic (Hamilton, 1978).

3.2 Semantics

Let �= (U, ) be a model, in which U, and  be an interpretation, where

(g)=G, G⊆U and G.

(c)=C, C⊆U and C.

(p)=P, P⊆U and P.

(ud)= U(d), in which d is g, c or p.

If a wff  is true in � under an interpretation , one can say that �, ⊨.

(S1) �, ⊨all(g, c), if and only if, (g)⊆(c), that is G⊆C.

(S2) �, ⊨not all(g, c), if and only if, G⊈C.

(S3) �, ⊨no(g, c), if and only if, G∩C=.

(S4) �, ⊨some(g, c), if and only if, G∩C.

(S5) �, ⊨most(g, c), if and only if, |G∩C|0.5|G|.

(S6) �, ⊨at most half of(g, c), if and only if, |G∩C|0.5|G|.

(S7) �, ⊨fewer than half of(g, c), if and only if, |G∩C|0.5|G|.

(S8) �, ⊨ at least half of(g, c), if and only if, |G∩C|0.5|G|.
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If  is true under all interpretations in a model �, one can say that  is valid in �, that is

�⊨. If  is valid in all models, one can say that  is valid, ⊨.

3.3 Relevant Definitions

D1 (conjunction): ()=def()

D2 (biconditional): () =def ()()

D3 (inner negation): Q(g, c)=defQ(g, uc). More specifically,

(D3.1) no(g, c)=def all(g, c);

(D3.2) all(g, c)=def no(g, c);

(D3.3) some(g, c)=def not all(g, c);

(D3.4) not all(g, c)=def some(g, c);

(D3.5) most(g, c)=def fewer than half of the(g, c);

(D3.6) fewer than half of(g, c) =defmost(g, c);

(D3.7) at least half of the(g, c)=def at most half of the(g, c);

(D3.8) at most half of the(g, c)=def at least half of the(g, c).

D4 (outer negation): (Q)(g, c)=def It is not that Q(g, c). To be more specific,

(D4.1) all(g, c)=def not all(g, c);

(D4.2) not all(g, c)=def all(g, c);

(D4.3) some(g, c)=def no(g, c);

(D4.4) no(g, c)=def some(g, c);

(D4.5) most(g, c)=def at most half of the(g, c);

(D4.6) at most half of the(g, c)=defmost(g, c).

(D4.7) fewer than half of(g, c) =def at least half of the(g, c);

(D4.8) at least half of the(g, c)=def fewer than half of(g, c);
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3.4 Relevant Facts

Fact 1: ⊢some(g, c)some(c, g);

Fact 2: ⊢no(g, c)no(c, g);

Fact 3: ⊢all(g, c)some(g, c);

Fact 4: ⊢no(g, c)not all(g, c);

Fact 5: ⊢all(g, c)most(g, c);

Fact 6: ⊢all(g, c)at least half of the(g, c);

Fact 7: ⊢most(g, c)some(g, c);

Fact 8: ⊢at least half of the(g, c)some(g, c);

Fact 9: ⊢fewer than half of the(g, c)not all(g, c);

Fact 10: ⊢at most half of the(g, c)not all(g, c).

The above facts can be easily proven by generalized quantifier theory (Peters and

Westerståhl, 2006).

4. Knowledge Reasoning for Generalized Syllogisms

The following theorem 1 proves the generalized syllogism MMI-3 is valid. Theorem 2

illustrates that generalized syllogisms after implication symbol (i.e.) can be deduced from

MMI-3.

Theorem 1(MMI-3): The generalized syllogism most(c, p)most(c, g)some(g, p) is valid.

Proof: For any �,  , suppose that most(c, p) and most(g, c) are true, then |C∩P|0.5|C|

and |C∩G|0.5|C| according to (S5) in the above semantic part. Hence it can be concluded

that G∩P. If not, then G∩P=, while |C∩P|0.5|C|, It follows that |C∩G|0.5|C|, which

contradicts |C∩G|0.5|C|. Therefore, G∩P≠, so some(g, p) is true. It means that MMI-3 is

valid.

Theorem 2: There are at least the following 25 generalized syllogisms inferred fromMMI-3:
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(1) MMI-3→EMH-2

(2)MMI-3→EMH-2→EMO-2

(3)MI-3→EMH-2→EMO-2→EMO-1

(4)MMI-3→EMH-1

(5)MMI-3→FMO-3

(6)MMI-3→EMH-2→AFH-2

(7)MMI-3→EMH-2→AFH-2→AFO-2

(8)MMI-3→EMH-2→EMO-2→MAI-3

(9)MMI-3→EMH-2→EMO-2→MAI-3→AMI-3

(10)MMI-3→EMH-2→EMO-2→EAH-1

(11)MMI-3→EMH-2→EMO-2→EAH-1→EAH-2

(12)MMI-3→EMH-2→EMO-2→EAH-1→EAH-2→EAO-2

(13)MMI-3→EMH-2→EMO-2→EAH-1→EAH-2→EAO-2→EAO-1

(14)MMI-3→EMH-2→EMO-2→EMO-1→AMI-1

(15)MMI-3→EMH-2→EMO-2→EMO-1→MAI-4

(16)MMI-3→EMH-1→ AMS-1

(17)MMI-3→EMH-2→EMO-2→EMO-1→AMI-1→AEH-2

(18)MMI-3→EMH-2→EMO-2→EMO-1→AMI-1→AEH-2→AEO-2

(19)MMI-3→EMH-2→EMO-2→EMO-1→AMI-1→AEH-2→AEO-2→AEO-4

(20)MMI-3→EMH-2→EMO-2→EMO-1→AMI-1→EMO-3

(21)MMI-3→EMH-2→EMO-2→EMO-1→AMI-1→EMO-3→EMO-4

(22)MMI-3→EMH-2→AFH-2→AFO-2→FAO-3

(23)MMI-3→EMH-2→AFH-2→AFO-2→AAS-1

(24)MMI-3→EMH-2→AFH-2→AFO-2→AAS-1→AAI-1
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(25)MMI-3→EMH-2→AFH-2→AFO-2→AAS-1→AAI-1→AAI-4

Proof:

[1] ⊢most(c, p)most(c, g)some(g, p) (i.e.MMI-3, AxiomA2)

[2] ⊢most(c, p)some(g, p)most(c, g) (by [1] and Rule 2)

[3] ⊢most(c, p)no(g, p) at most half of(c, g) (i.e. EMH-2, by [2] and (D4.3) and (D4.5))

[4] ⊢most(c, p)no(g, p) not all(c, g) (i.e. EMO-2, by [3] and Fact 10)

[5] ⊢most(c, p)no(p, g) not all(c, g) (i.e. EMO-1, by [4] and Fact 1)

[6] ⊢some(g, p)most(c, g)most(c, p) (by [1] and Rule 3)

[7] ⊢no(g, p)most(c, g) at most half of(c, p) (i.e. EMH-1, by [2] and (D4.3) and (D4.5))

[8] ⊢few than half of(c, p)most(c, g)not all(g, p) (by [1] and (D3.5) and (D3.4))

[9] ⊢few than half of(c, up)most(c, g)not all(g, up) (i.e. FMO-3, by [8] and (D3))

[10] ⊢few than half of(c, p) all(g, p) at most half of(c, g) (by [3] and (D3.5) and (D3.1))

[11] ⊢few than half of(c, up)all(g, up) at most half of(c, g) (i.e. AFH-2, by [10] and (D3))

[12] ⊢few than half of(c, up)all(g, up) not all(c, g) (i.e. AFO-2, by [11] and Fact 10)

[13] ⊢most(c, p)not all(c, g)no(g, p) (by [4] and Rule 3)

[14] ⊢most(c, p)all(c, g) some(g, p) (i.e.MAI-3, by [13], (D4.2) and (D4.4))

[15] ⊢most(c, p)all(c, g) some(p, g) (i.e. AMI-3, by [14] and Fact 1)

[16] ⊢not all(c, g)no(g, p)most(c, p) (by [4] and Rule 2)

[17] ⊢all(c, g)no(g, p) at most half of(c, p) (i.e. EAH-1, by [16], (D4.2) and (D4.5))

[18] ⊢all(c, g)no(p, g) at most half of(c, p) (i.e. EAH-2, by [17] and Fact 2)

[19] ⊢all(c, g)no(p, g) not all(c, p) (i.e. EAO-2, by [18] and Fact 10)

[20] ⊢all(c, g) no(g, p) not all(c, p) (i.e. EAO-1, by [19] and Fact 2)

[21] ⊢most(c, p) all(p, g) some(c, g) (by [5], (D3.2) and (D3.4))

[22] ⊢most(c, p) all(p, ug) some(c, ug) (i.e. AMI-1, by [21] and (D3))
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[23] ⊢most(c, p) all(p, ug) some(ug, c) (i.e.MAI-4, by [22], by Fact 1)

[24] ⊢all(g, p) most(c, g) at least half of(c, p) (by [7], (D3.1) and (D3.8))

[25] ⊢all(g, up) most(c, g) at least half of(c, up) (i.e. AMS-1, by [24] and (D3))

[26] ⊢some(c, ug) all(p, ug)most(c, p) (by [22] and Rule 2)

[27] ⊢no(c, ug) all(p, ug) at most half of(c, p) (i.e. AEH-2, by [26], (D4.3) and (D4.5))

[28] ⊢no(c, ug) all(p, ug) not all(c, p) (i.e. AEO-2, by [27] and Fact 10)

[29] ⊢no(ug, c) all(p, ug) not all(c, p) (i.e. AEO-4, by [28] and Fact 2)

[30] ⊢most(c, p) some(c, ug)all(p, ug) (by [22] and Rule 3)

[31] ⊢most(c, p) no(c, ug) not all(p, ug) (i.e. EMO-3, by [30], (D4.3) and (D4.1))

[32] ⊢most(c, p) no(ug, c) not all(p, ug) (i.e. EMO-4, by [31] and Fact 2)

[33] ⊢few than half of(c, up) not all(c, g)all(g, up) (by [12] and Rule 2)

[34] ⊢few than half of(c, up) all(c, g) not all(g, up) (i.e.FAO-3, by [33], (D4.2)and (D4.1))

[35] ⊢not all(c, g) all(g, up)few than half of(c, up) (by [12] and Rule 3)

[36] ⊢all(c, g) all(g, up) at least half of(c, up) (i.e. AAS-1, by [35], (D4.2) and (D4.7))

[37] ⊢all(c, g) all(g, up) some (c, up) (i.e. AAI-1, by [36] and Fact 8)

[38] ⊢all(c, g) all(g, up) some (up, c) (i.e. AAI-4, by [37] and Fact 1)

If one continues with similar deductions, more valid generalized syllogisms can be deduced

from the generalized syllogism MMI-3.

5. Conclusion and FutureWork

This paper firstly presents knowledge representations of generalized syllogisms, and then

uses relevant facts and reasoning rules to conduct knowledge reasoning on the basis of the

generalized syllogism MMI-3 with the quantifier ‘most’. The main conclusion is that there are

at least the other 25 valid generalized syllogisms that can be derived from the validity of this
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syllogism. The paper achieves the initial goal of knowledge mining for this generalized

syllogism logical fragment.

There are many generalized syllogisms in natural language. Which syllogisms are valid?

What are the correlations between these valid syllogisms, and these questions need further

discussion.
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