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Abstract:

Firstly this paper proves the validity of traditional syllogism EIO-4, and then makes full use

of relevant definitions, facts, and some inference rules. On the basis of 34 reasoning steps, the

other 23 syllogisms can be inferred from the syllogism EIO-4. This is because Aristotelian

quantifiers (that is, all, no, some, and not all) can be mutually defined. Thus, a minimalist

formal axiomatic system can easily be constructed for traditional syllogistic logic. This formal

research method is not only beneficial for the study of other types of syllogisms, but also for

better knowledge mining and thus for better understanding of natural language.
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1. Introduction

It is common knowledge that syllogistic reasoning is indispensable in daily life and scientific
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research [1-4]. As a matter of fact, only 24 are valid out of 256 traditional syllogisms [5-6].

Łukasiewicz derived the remaining 22 valid traditional syllogisms on the basis of AAA-1 and

AII-3 [2]. Xiaojun and Sheng used two traditional syllogisms (i.e. AAA-1 and EAE-1) as the

basic axioms to derive 22 valid traditional syllogisms [5].

In recent years, there have been some breakthroughs in the study of the reducible relations

between/among traditional syllogisms. For example, Cheng used the valid syllogism IAI-3 as

the basic axiom to infer the other 23 syllogisms [7]. Long did the same work on the basis of

the syllogism AEE-4 [8].

Inspired by previous work, from the perspective of natural language information processing,

this paper only takes the valid traditional syllogism EIO-4 as a basic axiom to study the

reducible relations between/among valid syllogisms. One can make full use of propositional

logic [9], set theory [10], and generalized quantifier theory [11-12] to derive 23 remaining

valid traditional syllogisms.

2. Knowledge Representation of Traditional Syllogisms

In the paper, Q represents a quantifier. Q and Q denote the inner and outer negation of Q,

respectively. And d, n and z represent lexical variables. The sets composed of d, n and z are

respectively D, N, and Z. And U stands for the domain of d, n and z.  ,  ,  and  are

well-formed formulas (abbreviated as wff). ‘⊢’ denotes that  is provable.

A traditional syllogism is composed of three categorical propositions which have four types:

‘all ds are z’, ‘no ds are z’, ‘some ds are z ’, and ‘not all ds are z’. They are respectively called

Proposition A, E, I and O. From the mathematical structuralist perspective [13], the four

propositions can be respectively expressed as the following: all(d, z), no(d, z), some(d, z), and

not all(d, z).

The figures of traditional syllogisms are defined as usual. For example, the fourth figure

syllogism EIO-4 denotes ‘no ds are z, and some ds are z, so not all ds are z, which can be

symbolized as no(z, n)some(n, d)not all(d, z).

3. Formal System of Traditional Syllogistic

This system is composed of the following: initial symbols, facts, definitions, axioms,
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formation and deductive rules.

3.1 Initial Symbols

(3.1.1) lexical variables: d, n, z

(3.1.2) quantifier: some

(3.1.3) unary negative connective: 

(3.1.4) binary implication connective:

(3.1.5) brackets: (, )

3.2 Formation Rules

(3.2.1) If Q is a quantifier, d and z are lexical variables, then Q(d, z) is a wff.

(3.2.2) If  is a wff, then so is .

(3.2.3) If  and  are wffs, then so is .

(3.2.4) Only the formula obtained from the above is a wff.

3.3 Basic Axioms

(3.3.1) If  is a valid formula in first-order logic, then ⊢.

(3.3.2) ⊢no(z, n)some(n, d)not all(d, z) (i.e. the syllogism EIO-4).

3.4 Deductive Rules

Rule 1: If ⊢() and ⊢(), then ⊢().

Rule 2: If ⊢(), then ⊢().

3.5 Relevant Definitions

(3.5.1) ()def();

(3.5.2) ()def ()();

(3.5.3) (Q)(d, z)def Q(d, Ud);

(3.5.4) (Q)(d, z)def It is not that Q(d, z);

(3.5.5) all(d, z)defDZ is true;

(3.5.6) some(d, z)defD∩Z is true;
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(3.5.7) no(d, z)defD∩Z is true;

(3.5.8) not all(d, z)defD⊈Z is true.

3.6 Relevant Facts

The following facts can be easily proved in generalized quantifier theory [11-12].

Fact 1 (inner negation):

(1.1) ⊢some(d, z)not all(d, z); (1.2) ⊢not all(d, z)some(d, z);

(1.3) ⊢all(d, z)no(d, z); (1.4) ⊢no(d, z)all(d, z).

Fact 2 (outer negation):

(2.1) ⊢some(d, z)no(d, z); (2.2) ⊢no(d, z)some(d, z);

(2.3) ⊢not all(d, z)all(d, z); (2.4) ⊢all(d, z)not all(d, z).

Fact 3 (symmetry):

(3.1) ⊢some(d, z)some(z, d); (3.2) ⊢no(d, z)no(z, d).

Fact 4 (assertoric subalternations):

(4.1) ⊢all(d, z)some(d, z); (4.2) ⊢no(d, z)not all(d, z).

4. Knowledge Reasoning Based on the Syllogism EIO-4

The proof of the validity of the syllogism EIO-4 has been given in Theorem 1. Theorem 2

reveals the reducible relationship between syllogisms with different figures and forms. That is

to say that the validity of one syllogism can be deduced from that of another syllogism. For

example, ‘(2.1) EIO-4EIO-3’ says that the validity of EIO-3 can be deduced from that of

EIO-4.

Theorem 1 (EIO-4): The syllogism no(z, n)some(n, d)not all(d, z) is valid.

Proof: Assuming that no(z, n) and some(n, d) are true, it follows that Z∩N and N∩D are

true in terms of Definition (3.5.7) and (3.5.6). Then D⊈Z is true. This can be proven by

reductio ad absurdum. Assume that D⊈Z is not true. That is, DZ is true, and Z∩N has

been proven to be true. Thus, it follows that N∩D is true, which contradicts N∩D. So

DZ is not true. This means D⊈Z is true. Then in accordance with Definition (3.5.8), some(d,
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z) can be obtained, just as required.

Theorem 2: The validity of the remaining 23 valid syllogisms can be deduced from that of

the syllogism EIO-4:

(2.1) EIO-4EIO-3

(2.2) EIO-4EIO-2

(2.3) EIO-4EIO-3EIO-1

(2.4) EIO-4AEE-4

(2.5) EIO-4AEE-4AEE-2

(2.6) EIO-4AEE-4EAE-1

(2.7) EIO-4AEE-4EAE-1EAE-2

(2.8) EIO-4AEE-4AEO-4

(2.9) EIO-4AEE-4AEE-2AEO-2

(2.10) EIO-4AEE-4EAE-1EAO-1

(2.11) EIO-4AEE-4EAE-1EAE-2EAO-2

(2.12) EIO-4EIO-3AII-3

(2.13) EIO-4EIO-3AII-3AII-1

(2.14) EIO-4EIO-3AII-3IAI-3

(2.15) EIO-4EIO-3AII-3IAI-3IAI-4

(2.16) EIO-4EIO-2AOO-2

(2.17) EIO-4AEE-4EAE-1AAA-1

(2.18) EIO-4AEE-4EAE-1AAA-1AAI-1

(2.19) EIO-4AEE-4EAE-1AAA-1AAI-1AAI-4

(2.20) EIO-4AEE-4EAE-1AAA-1OAO-3

(2.21) EIO-4AEE-4EAE-1AAA-1AAI-1EAO-3

(2.22) EIO-4AEE-4EAE-1AAA-1AAI-1EAO-3EAO-4

(2.23) EIO-4AEE-4EAE-1EAO-1AAI-3

Proof:

[1] ⊢no(z, n)some(n, d)not all(d, z) (i.e. EIO-4, basic axiom)

[2] ⊢no(n, z)some(n, d)not all(d, z) (i.e. EIO-3, by [1] and Fact (3.2))
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[3] ⊢no(z, n)some(d, n)not all(d, z) (i.e. EIO-2, by [1] and Fact (3.1))

[4] ⊢no(n, z)some(d, n)not all(d, z) (i.e. EIO-1, by [2] and Fact (3.1))

[5] ⊢not all(d, z)no(z, n)some(n, d) (by [1] and Rule 2)

[6] ⊢all(d, z)no(z, n)no(n, d) (i.e. AEE-4, by [5], Fact (2.1) and Fact (2.3))

[7] ⊢all(d, z)no(n, z)no(n, d) (i.e. AEE-2, by [6] and Fact (3.2))

[8] ⊢all(d, z)no(z, n)no(d, n) (i.e. EAE-1, by [6] and Fact (3.2))

[9] ⊢all(d, z)no(n, z)no(d, n) (i.e. EAE-2, by [8] and Fact (3.2))

[10] ⊢no(n, d)not all(n, d) (by Fact (4.2))

[11] ⊢all(d, z)no(z, n)not all(n, d) (i.e. AEO-4, by [6], [10] and Rule 1)

[12] ⊢all(d, z)no(n, z)not all(n, d) (i.e. AEO-2, by [7], [10] and Rule 1)

[13] ⊢no(d, n)not all(d, n) (by Fact (4.2))

[14] ⊢all(d, z)no(z, n)not all(d, n) (i.e. EAO-1, by [8], [13] and Rule 1)

[15] ⊢all(d, z)no(n, z)not all(d, n) (i.e. EAO-2, by [9], [14] and Rule 1)

[16] ⊢all(n, z)some(n, d)some(d, z) (by [2], Fact (1.2) and Fact (1.4))

[17] ⊢all(n, Uz)some(n, d)some(d, Uz) (i.e. AII-3, by [16] and Definition (3.5.3))

[18] ⊢all(n, Uz)some(d, n)some(d, Uz) (i.e. AII-1, by [17] and Fact (3.1))

[19] ⊢all(n, Uz)some(n, d)some(Uz, d) (i.e. IAI-3, by [17] and Fact (3.1))

[20] ⊢all(n, Uz)some(d, n)some(Uz, d) (i.e. IAI-4, by [19] and Fact (3.1))

[21] ⊢all(z, n)not all(d, n)not all(d, z) (by [3], Fact (1.1) and Fact (1.4))

[22] ⊢all(z, Un)not all(d, Un)not all(d, z) (i.e. AOO-2, by [21] and Definition (3.5.3))

[23] ⊢all(d, z)all(z, n)all(d, n) (by [8] and Fact (1.4))

[24] ⊢all(d, z)all(z, Un)all(d, Un) (i.e. AAA-1, by [23] and Definition (3.5.3))

[25] ⊢all(d, Un)some(d, Un) (by Fact (4.1))

[26] ⊢all(d, z)all(z, Un)some(z, Un) (i.e. AAI-1, by [24], [25] and Rule 1)

[27] ⊢all(d, z)all(z, Un)some(Un, z) (i.e. AAI-4, by [26] and Fact (3.1))

[28] ⊢all(d, Un)all(d, z)all(z, Un) (by [24] and Rule 2)

[29] ⊢not all(d, Un)all(d, z)not all(z, Un) (i.e. OAO-3, by [28] and Fact (2.4))

[30] ⊢some(d, Un)all(d, z)all(z, Un) (by [26] and Rule 2)

[31] ⊢no(d, Un)all(d, z)not all(z, Un) (i.e. EAO-3, by [30], Fact (2.1) and Fact (2.4))

[32] ⊢no(Un, d)all(d, z)not all(z, Un) (i.e. EAO-4, by [31] and Fact (3.2))
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[33] ⊢not all(d, n)all(d, z)no(z, n) (by [14] and Rule 2)

[34] ⊢all(d, n)all(d, z)some(z, n) (i.e. AAI-3, by [33], Fact (2.2) and Fact (2.3))

So far, one basic axiom (i.e., the syllogism EIO-4 in this paper) can be used to deduce all the

remaining 23 valid traditional syllogisms. Then, can any one of the other valid traditional

syllogisms be used as a basic axiom to deduce the remaining 23 valid traditional syllogisms?

This question requires further research.

5. Conclusion

Making full use of set theory, generalized quantifier theory and propositional logic, the other

23 syllogisms can be inferred from the syllogism EIO-4. Then a minimalist formal axiomatic

system can be established for traditional syllogistic logic. In the process of deduction, one can

reveal the reducible relations between/among syllogisms with the same or different figures.

This is because Aristotelian quantifiers can be mutually defined, which leads to changes in the

structures of research objects and the relations between structures. One or more valid

syllogisms can be derived from the validity of one syllogism, which is beneficial for better

knowledge mining and thus for better understanding of natural language.

In fact, the formal research method in this paper not only provides a straightforward

mathematical model for the study of traditional syllogisms, but also benefits the study of other

types of syllogisms (e.g., generalized syllogisms and modal syllogisms). The formal study of

different types of syllogisms is beneficial for natural language information processing.

Acknowledgements

This work was supported by the National Social Science Foundation of China under Grant

No.22&ZD295.

Reference

[1] Chater, N., & Oaksford, M. (1998). The probability heuristics model of syllogistic

reasoning. Cognitive psychology, 38(2), 191-258.

[2] Cheng, Z. (2022). The Remaining 23 Valid Aristotelian Syllogisms can be Deduced only

from the Syllogism IAI-3, SCIREA Journal of Computer, 7(5), 85-95.



102

[3] Hamilton, A. G. (1988). Logic for mathematicians. Cambridge University Press.

[4] Hellman, G. (2001). Three varieties of mathematical structuralism. Philosophia

Mathematica, 9(2), 184-211.

[5] Hellman, G. (2001). Three varieties of mathematical structuralism. Philosophia

Mathematica, 9(2), 184-211.

[6] Kunen, K. (1980). Set theory: an introduction to independence proofs. The Netherlands:

Elsevier Science Publishers B.V., 186-187.

[7] Long, W. (2023). Formal System of Categorical Syllogistic Logic Based on the Syllogism

AEE-4, Open Journal of Philosophy, 13(1), 97-103.

[8] Łukasiewicz, J. (1957). Aristotle's syllogistic from the standpoint of modern formal logic.

Oxford: Clarendon Press.

[9] Moss, L. S. (2008). Completeness Theorems for Syllogistic Fragments. In F. Hamm, & S.

Kepser (Eds.), Logics for linguistic structures. Mouton de Gruyter.

[10]Peters, S., & Westerståhl, D. (2006). Quantifiers in language and logic. Claredon Press.

[11]Westerståhl, D. (1989). Aristotelian syllogisms and generalized quantifiers. Studia

Logica, 48, 577-585.

[12]Xiaojun, Z. (2018). Axiomatization of Aristotelian Syllogistic Logic Based on

Generalized Quantifier Theory. Applied and Computational Mathematics, 7(3), 167-172.

[13]Xiaojun, Z., & Sheng L. (2016). Research on the formalization and axiomatization of

traditional syllogisms, Journal of Hubei University (Philosophy and social sciences), No.

6, 32-37. (In Chinese).

[14]Yijiang, H. (2016). Formal research on discourse reasoning in natural language. Journal

of Hunan University of Science and Technology (Social Sciences Edition), (1), 33-37. (In

Chinese).


