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Abstract

The possibilities of using the Kalman filter for cleaning (filtering) signals from gy-roscopes

and accelerometers of a strapdown inertial navigation system (SINS) with a rough initial

alighnment on a fixed base are considered. For this, algorithms for averaging filters with

forward and backward computations (forward and backward filters) are proposed. It is shown

that with a relatively short recording of the signal (30 s), in comparison with the simple

average of the signal, it is possible to signifi-cantly, practically to zero, reduce the influence

of the measurement noise. This is achieved by successively applying forward and then

backward filters. The results were obtained both in the modeling of filtration and in the field

experiment of the initial alighnment.
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1. Introduction

A rough initial alignment of a strapdown inertial navigation system (SINS) is most often

performed on a stationary base, when the signals of the gyroscopes and accelerometers can

be taken stationary. The alignment is called rough conventionally, so later, clarification

procedures can be performed, called the precision alignment.

The initial alignment mode is characterized by two main parameters - accuracy and time. The

accuracy depends on the alignment algorithm (preсision or iterative [1,2,3]), systematic and

random errors (noise) of gyroscopes and accelerometers. The main problem of rough

alignment is the selection of the useful signal component in very high noise conditions. The

noise can be tens of times greater than the useful signal. Figure 1 shows the signals of laser

gyroscopes (axis y – deg/hr) and accelerometers (axis y – m/s2) and their characteristics

(mean value, std - root-mean-square deviation).

To filter the signal from the noise, a sufficiently long (tens of minutes) recording of the signal

is required. At the same time, the working conditions of an object with SINS may require an

alignment in a time not exceeding 1 min. Thus, there is always a contradiction between the

accuracy and the time of the alignment. These characteristics need to be explored and

brought together.

To filter signals, simple averaging, moving average, exponential average, algorithms based

on the least squares method, various modifications of Kalman filters [2,4,5], and wavelets

[6,7,8,9] are used.

2. Problem statement

Let’s consider the application of the Kalman filter for filtering the signals of the SINS

sensors. We will obtain averaging Kalman filters with forward flow [2] and with backward

flow calculations, based on the provisions set forth in [10,11,12,13,14]. Will represent the

linear model of the system under study in matrix form

x x u w  A B G
    , (1)

where x

is the n-dimensional vector of the systems state; u


- r -dimensional control vector;

w - k-dimensional vector of random actions; A - matrix of state with nxn dimension; B is a

control matrix with nxr dimension; G - matrix of transfer the random actions with nxk

dimension.

Usually the observer can’t measure the full vector of the systems state. Measured information

(available or necessary) is determined by the equation
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Figer1. Signals from SINS gyroscopes and accelerometers on a fixed base
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y x v H  
, (2)

where y - m -dimensional vector of measurement; v - m - dimensional vector of

measurement nois; H - is a matrix of measurement with mxn dimension.

Influences w and noise v will be considered Gaussian random processes of the white noise

type with zero mathematical expectation

M[w(t)wТ()]=Q(t)(t-); M[v(t)vТ()]=R(t)(t-),

where Q(t) - symmetric nonnegative definite (kk) white noise intensity matrix w(t); R(t) -

symmetric positive definite (mm) - white noise intensity matrix v(t);  (t) - delta - Dirac

function.

Initial state of the system x(t0) characterized by a known mathematical expectation

   00 xtxM  and correlation matrix         00
T
0000 t,txtxxtxM P . Will

assume that the initial state of the system, random influences and measurement noises are

mutually uncorrelated for all tt0 .

The construction of the Kalman filter is reduced to determining the matrix of gain coefficients

K, which would provide an optimal estimate (in the sense of the minimum variance of the

estimation error) of the state vector.

Discrete Kalman filter

In a discrete Kalman filter (FK), a continuous dynamic system (1) and measurements (2)

correspond to a discrete system recorded in a difference form and discrete measurements

k 1 k k k k k kx x u w   F Ψ Γ   
; (3)

k k k ky x v H  
, (4)

where subscripts «k» and «k+1» indicate the number of the discrete moment in time tk and tk+1;

sampling step k1k ttt   ; k exp( t) F A - system transition matrix at time tk, which

we represent approximately in the form of a series expansion

  ...t
2
1t 2

kkk  FFIF ;

tkkk  GFΓ – matrix defining the influence of the input noise vector wk–1 at the moment

tk At a first approximation tkk GΓ ; tkkk  BFΨ – matrix defining the influence of
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the control vector uk–1 at the moment tk. At a first approximation tkk  BΨ ; I - identity

matrix.

Intensity matrices of vector discrete Gaussian noise wk system and vk measurements are

related to the corresponding matrices of a continuous dynamic system by the relations

t
)t(,

t
)t( k

k
k

k 





RRQQ .

Will use the linear discrete Kalman filter algorithm to estimate the state vector :

- set the initial value 0kx
 estimates of the state variable vector, the initial value of the

predicted (a priori) error correlation matrix 0kP


, noise intensity matrices kQ и kR ;

- we get the predicted (apriori) value of the vector of state variables

kkk1k BFx ux 
 ,

- calculate the values of the filter coefficients

  1T
kkk

T
kkk RHPHHPK


 k


,

- calculate the corrected (posterior) value of the state vector estimate

 kkkkkk xHyKxx   ,

- calculate the corrected (a posteriori) correlation matrix of filter errors

  kPHKIP kkk


 ,

- calculate the value of the predicted (a priori) error correlation matrix for the new

computation step

kQFPFP T
kkk1k 


,

- go to a new computation cycle.

To facilitate calculations, you can take the approximate value of the transition matrix F = I +

A t . n equations is the corrected (posterior) value of the state vector estimate, kx
 - the

predicted (a priori) value of the state vector estimate, K – Kalman gain matrix, kP

- corrected

(posterior) correlation matrix of filter errors, kP


- predicted (a priori) correlation matrix of
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filter errors, R- observation (measurement) noise intensity matrix v, Qk – input disturbance

intensity matrix w. Initial matrix kP usually contains diagonal elements corresponding to the

initial error variances of the corresponding state variables.

It is necessary to use a Kalman filter to remove noise from the useful signal.

3. Kalman averaging filter

3.1 Filter algorithm

The Kalman averaging filter algorithm can be represented as follows.

Let us assume that the errors of the accelerometers ia and gyros di

,wa 1iaiii  di i i i2w ,     z,y,xi  .

have a systematic i , i and random components 1iaiw ; 2iiw .

Let's write signals with systematic errors

ii
c
iii

c
i aa,  , z,y,xi  .

We take these signals as state variables and compose a state variables vector

Tc
z

c
y

c
x

c
z

c
y

c
x )a,a,a,,,(x 


.

We write the equation of dynamics (state) in the form

kk1k wxx 
 .

It is seen from this equation that the transition matrix kF is the identity matrix I.

Let us assume that the random components z,y,xi,w,w 2iai1ii  are white

noise, i and ai - root-mean-square errors of signals from angular rate sensors and

accelerometers, )1,6(
T

2i1i w]ww[w 


– generating "white noise" of unit intensity.

Will write the equation of measurements in the form

kkkk vxy 
H .
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Measurement vector Tc
z

c
y

c
x

c
z

c
y

c
xk ]a,a,a,,,[y 


. Hence the measurement matrix will be

H =  diag [1 1 1 1 1 1] , measurement noise kv


= kw


,  1 2 ndiag f f ... f -

shorthand notation for a diagonal matrix with 1 2 nf f ... f - elements of the main

diagonal. Perturbation matrix

2 2 2 2 2 2
x y z ax ay azQ kQ diag( )          .

Measurement matrix

2 2 2 2 2 2
x y z ax ay azR kR diag( )          .

Here kQ и kR - tuning coefficients.

Than we obtain a forward averaging KF by applying the discrete linear Kalman filter

algorithm.

3.2 A forward averaging filter simulation

Figure 2 shows the gyro signals and the results of their averaging by the forward Kalman

filter. Will put for simulation kR=1е3, kQ=0,1. The graphs show the transient filtration

process. Increasing kR helps to increase noise smoothing (increasing std), but increases the

duration of the transient. Increasing kQ helps to reduce the duration of the transient, but

worsens smoothing. It is obvious that the transient of the filter (in fig. 2 it takes 3 sec) should

be excluded from further work.

Figer 2. Gyro signal averaging (receiving useful signal)

using the forward Kalman filter
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When simulating in each numerical experiment, the noise generator creates a sequence that

changes with each run. Therefore, the conclusion should be drawn from a series of

experiments (statistical test method). The results for 3 numerical experiments are shown in

Table 1.

Table 1. Averaging simulation results for a fixed base . n  27 deg/hr,

signal duration tosr = 30 sec, sampling step h=0,01 sec

Gyro signals, deg/hr

omx omy omz rms

Start
1

Start
2

Start
3 aver Start

1
Start
2

Start
3 aver Start 1 Start 2 Start 3 aver

original -6,734-6,734-6,734 -6,734 7,035 7,035 7,035 7,035 11,825 11,82511,825 11,825

simple average -6,806-6,407-6,469 -6,561 7,268 6,907 7,331 7,168 10,840 11,67211,342 11,285

forward FK -6,734-6,734-6,734 -6,734 7,035 7,035 7,035 7,035 11,825 11,82511,825 11,825

simple average
error 0,173 0,134 -0,540 0,336

forward FK error -2,7е-5 5е-5 3,3е-5 3,8е-5

The accuracy increasing can be achieved by adjusting the FK (changing the matrices P, Q, R ).

Simulation shows that to improve accuracy, we can reduce the coefficient kR, leaving the

coefficient kQ=1 (Fig.3).

Figer.3. Error surface when tuning coefficients
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As can be seen from Table 1, smoothing by the Kalman filter is performed much better than

when using a simple average.

4. Averaging Kalman filter with backward motion (backward filter)

The noise reduction task can be accomplished by applying the averaging Kalman filter

(forward filter), as well as the Kalman filter in reverse time (backward filter) [9, 10, 11, 12,

13]. Expressions of the suboptimal backward filter practically coincide with the equations of

the forward Kalman filter [9]. This allows the standard Kalman filter software to be used for a

robust numerical implementation of the inverse backward filter. The computational

procedures are as follows.

4.1 Backward filter start point initialization

ImP,0x~ bNbN  

(m – big number, index b means backward, N – end number of counts of forward stroke, I –

dentity matrix).

In this case, a significant reverse flow transient is likely. To reduce it, you can take the final

value of the evaluation of the forward stroke as the starting point of the backwarde stroke
  NbN x~x~ , and the final value of the covariance matrix of the forward run errors is taken as

the starting covariance matrix of the backward run 
bNP = 

NP .

4.2 Measurement processing stage (keeping the designations [9])

b j b j b j j j b j

b j b j j b j

T T 1
b j b j j j b j j j

x x K [z H x ],

P [I K H ]P ,

K P H [H P H R ] .

  

 

  

  

 

 

  

These ratios exactly coincide with the ratios of the correction stage of the forward Kalman

filter.
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4.3 Forecast stage

1
b j 1 j, j 1 b j

1 T
b j j, j 1 b j j 1 j, j 1

T 1 T
j, j 1 j, j 1

x Ф x ,

P Ф [P Q ]Ф ,

Ф [Ф ] .

  
 

   
  

 
 



 



 

1 1Ф F  - the inverse of the forward filter transition matrix.

For averaging filter Ф=I, Q=R.

4.4 Backward filter simulation

The simulation results of the backward Kalman filter are shown in Fig. 4, 5

Figer.4. Gyro signal and systematic component estimates

forward and backward Kalman filters.

The advantage of an inverse filter is that it (as opposed to a forward filter) operates under

precise initial conditions (initial values of the variables   NbN x~x~ and the error covariance

matrix 
bNP = 

NP ). If in the evaluation of the forward filter it is necessary to exclude the

transient process, then in the evaluation of the inverse filter there is practically no transient.
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Figer.5. Characteristics of estimates by the forward and backward Kalman filter

Shown in Fig. 5. errors correspond to the average error values for the last 25 sec of the

process (forward filter transient excluded). As can be seen from Fig. 5, the errors of the

forward filter are several times less than the errors of averaging by the arithmetic mean

(simple mean), and the errors of the inverse filter are several times less than the errors of the

forward filter.

5. Natural experiment

Let us compare the results of applying the forward and backward averaging filters with an

autonomous initial alignment (Table 2) according to the universal algorithm given in [2]. A

measuring unit with the following characteristics was used in the experiments:

- gyro zero instability - 0,01 deg/hr;

- instability of gyro scale factor - 50 ppm (5e-5);

- accelerometers zero instability – 2e-3 m/s2;

- instability of accelerometers scale factor – 200 ppm (2 e-4).

The block noise characteristics are shown in Fig. 1.
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The alignment results (Tab. 2) were obtained when recording for 30 s and setting the direct

filter kQf=0.01, kRf = 1e3 and reverse filter kQb=1, kRb=1e-2.

Table 2. Results of an autonomous alignment by heading

when using forward and backward averaging Kalman filters

Backward filter heading angle Forward filter heading angle

№
of test.

True, deg filter, deg Error,
angular
minute

filter., Error, angular
minutedeg

1 356,466 356,508 2,54 356,542 4,592

2 356,466 356,515 2,936 356,518 3,158

3 356,466 356,472 0,38 356,471 0,302

4 356,466 356,449 -1,018 356,497 1,874

5 356,466 356,458 -0,472 356,474 0,506

6 356,466 356,457 -0,514 356,435 -1,822

7 358,415 358,419 0,218 358,383 -1,906

8 358,415 358,453 2,276 358,403 -0,73

rms8 1,657 rms8 2,302

The backward filter worked with a sample of 30 s (like the forward filter) after the forward

filter. Such a sequence lengthens the alignment process not much, since the processing speed

is much higher than the measuring speed. The time interval of the signal processed by the

backward filter is larger by the time of the transient process of the forawrd FK. With the

correct initialization of the backward filter (Pb0 = P), there is practically no transient in it (Fig.

4). The backward filter is applied during the heading angle estimation phase because the roll

and pitch estimation is performed reasonably well without an backward filter. For the final

estimate, the root mean square errors (rms) from 8 experiments were used.

6. Conclusions

Simulation the proposed algorithms of forward and backward averaging Kalman filters has

shown that the use of averaging Kalman filters significantly improves the filtering of signals

from noise in comparison with averaging (filtering) by the arithmetic mean. A significant

positive result is achieved with the sequential application of
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forward and backward averaging filters.
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