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Abstract

A Rubik’s Snake is a toy that has been around for 40 years. It is a system of serial chain. It

traditionally only allows rotations of its pieces in 90 degree increments. In this paper we are

not going to restrict ourselves to these limited number of incremental rotations. We prove a

theorem about the sum of rotations of a Rubik’s Snake that closes on itself. We present an

alternative representation for the Rubik’s Snake, different from the standard representation

that the toy has. We will use matrices to study the rotations of the pieces of the Rubik’s Snake.

In particular we will study two cases where all of the pieces of a Rubik’s Snake have the same

rotation angle, proving a theorem comparing the first and last pieces of a Rubik’s Snake.
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1．Introduction

The Rubik’s Snake is a toy [1] that was invented by Prof. Erno Rubik in 1981 [2,3]. It

typically consists of 24 right isosceles triangular prisms (what we are calling blocks) that,

except for the first and last block, are connected to two other blocks at the centers of the

square faces. In this paper we will not be restricted to 24 blocks.

In [2] Rubik states that “The snake is not a problem to be solved; it offers infinite possibilities

of combination ...a lifetime is not sufficient to realize all of its possibilities.” Rubik’s original

design of the toy allowed for rotations of 0° (or 360°), 90°, 180°, or 270° of one block relative

to an adjacent block. In this paper we are going to allow any rotation angle between 0° and

360° which will give even more possibilities than Rubik’s original concept.

The Rubik’s Snake has been used as a tool for the study of protein folding [4,5] and for the

construction of reconfigurable modular robots [6–8]. It can be viewed as a serial chain [9].

More applications of robots can be found in [10,11]. Some ideas in the study of Rubik’s

Snake such as the use of rotation matrix is also used in rigid Origami folding [12,13]. In

previous papers, strategies have been given for the design of a Rubik’s Snake [14], and some

mathematical problems concerning a Rubik’s Snake have been studied [15]. Rotations that are

not 0° (or 360°), 90°, 180°, or 270° are mentioned in [14] but not much theoretical work is

presented. On the other hand, [15] has quite some theoretical work but is only concerned with

integer multiple of 90 degree rotations. Also, in [16], theorems about palindromic, periodic

and Möbius Rubik’s snakes were proved but most of them were concerned with integer

multiple of 90 degree rotations. As was mentioned earlier, in this paper we are going to allow

any rotation between 0° and 360°. Theoretical work and applications are both included.

In this paper, we first define what is meant by the degree of rotation of a block. We then

describe a tube representation for the snake and compare it to the block representation. We

also develop a diagonalized rotation matrix for the rotation of one block relative to the

previous block. Finally, we apply our results to the study of a Rubik’s Snake with a constant

degree of rotation and discuss the orientation and shift of the last block.

2．Degree of Rotation of a Block of a Rubik’s Snake

Let θ be the angle of rotation between two blocks. As in [14] and [15], we define d = θ/90° to

be the degree of this rotation. In a normal Rubik’s Snake the degree of rotation is fixed to be
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either 0, 1, 2, or 3, corresponding to a rotation of 0°, 90°, 180°, or 270°, respectively. This

definition makes it convenient to write sequences involving a lot of integer multiple of 90

degree rotations. In the current paper we are not going to restrict the rotation of the blocks to

these four choices: we can have d ∈ [0,4). For example, if we rotate it 45°, then the rotation

will have degree 0.5.

In [15], we proved that the sum of degrees of a Rubik’s Snake closed loop with integer

degrees of rotation must be an even number. In other words it is 0 or 2 in the mod 4 sense.

Below we prove a theorem about the sum of degrees when the non-integer degrees of rotation

are allowed. The idea is to construct a class of closed loops with special geometry with

parameters that allow us to adjust the sum of degrees.

Theorem 2.1. For any real number t ∈ [0,4), there exists a Rubik’s Snake closed loop such

that the sum of degrees, given by equals t.

Proof. To prove this theorem, we use the sequence [d,3,0,3,d−4/n,3,0,3], where d ∈ [0,4),

repeated n times to form a closed loop. Our choice of d is completely random: to get closed

loops of different geometries, we simply need to vary the values of d and n.

For blocks 2 through 9, each rotation in the sequence [d,3,0,3,d−4/n,3,0,3] is applied in order.

This process is repeated for each successive grouping of eight blocks: n times until there is a

closed loop. For example, looking at Fig. 1, it can be seen that every grouping of eight blocks

(starting with block 2) repeats the sequence with d = √3−1 and n = 12.

By considering the projection onto a 2D plane, we could see that the difference in angle

between the first and the fifth entry in the sequence [d,3,0,3,d−4/n,3,0,3] is equal to the

difference in orientation angles for every eighth block (starting with block 2). If the 4/n term

were missing, every eighth block (starting with block 2) would have the same orientation

angle and a closed loop would not be possible. Looking at Fig. 1 again, this means that blocks

2, 10, 18, ... would all point in the same direction.

Since the difference in orientation angles are the same for every eighth block (starting with

block 2), the sum of these n orientation angle differences must add to 2π in order for the loop

to be closed. This gives that each orientation angle difference must be 2π/n, which is

equivalent to a degree of 4/n. This explains why we need the 4/n term to make a closed loop.

Calculating the sum of the degrees for our example sequence repeated n times, we obtain S =

2dn+12n−4. Taking S modulo 4, we obtain S mod 4 = 2dn mod 4. Obviously S can be any real
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number in [0,4) in the sense of mod 4 with the freedom to choose d and n. This completes the

proof.

Let us choose d = √3−1 and n = 12 as a specific example. Using these choices, we obtain the

closed loop given in Fig. 1 with S ≈ 157.56921938 with S mod 4 ≈ 1.56921938 being a real

number in [0,4).

We would make a remark that it can be seen from the proof that the period of a closed loop

with general angle rotations can be any positive integer. This is different from the integer

degree case in [15] where the period is proved to be no more than 4.

Fig. 1: Closed loop with 96 blocks. The sequence [d,3,0,3,d−4/n,3,0,3] has been repeated n = 12 times

with d = √3−1.

3．Tube Representation of a Rubik’s Snake

We can consider each block of the Rubik’s Snake as a small piece of a tube as shown in Fig. 2.

We can study the Rubik’s Snake using the tube representation instead of the block

representation. This will allow us to see finer details.

Fig. 2: The left figure shows the projection of the tube onto a triangular face. The right figure shows

the tube on the entrance or exit square faces.
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In [15], we defined the trail an ant would take (subject to certain rules) while walking along a

closed loop. We can apply this idea on a tube instead of the original block representation. If

an ant stands on the surface of a tube and walks “straight” (to be more precise, the angle

parameter on the cross section of the tube within one block is unchanged for the ant and the

path is continuous within a block or between blocks) along the surface, it will eventually

come back to the piece of tube on which it started. Between the ith and the next block, the

cross section angle parameter for the ant is changed by π−θi, where θi is the rotation angle in

radian measure between the ith block and the next block. From Theorem 2.1, we know the

sum of θi for one round of a closed loop could be any real number in [0,2π) when removing a

multiple of 2π. This means the sum of π−θi could be any real number in [0,2π) when

removing a multiple of 2π as well. Eventually when the ant travels one round on a closed

loop, the angle parameter on the cross section for the ant could be any real number in [0,2π)

when removing a multiple of 2π. The ant might not come back to where it started due to the

angle difference.

We see two examples of the tube representation side-by-side with its block representation. In

Fig. 3, the sequence includes non-integer degrees of rotation. It is [0 2 0 -1 β -1 1 γ -1 0 2 0 1

-γ -1 1 -β 1 0 2 0 2 2], where and γ= β-1/2. β and γ are computed using

geometry to make this a closed loop. In [15], we proved that a closed loop with integer

degrees of rotations must have even number of pieces, and if two blocks of the same Rubik’s

Snake share a cube, they must have the same color (assuming the regular coloring of the

snake, i.e. alternated coloring). However, this example is a closed loop with an odd number of

pieces (23 pieces), and it has two blocks sharing a cube that have different colors. The reason

is non-integer degrees are included. In Fig. 4, only integer degrees of rotation are included in

an example of a racing car shape.

We can see that the tube representation looks smooth compared to the original block

representation. The irregularity of the non-integer degree rotation cannot be easily observed in

the tube version. Also, some hidden details of a complicated path is revealed in the tube

version: you can trace the path easier in the tube version of the racing car example than the

original version. We proved earlier that the sum of degrees of a Rubik’s Snake closed loop

can be any real number in [0,4) in the sense of mod 4. This means the ant trail going one

round can get back to any angle of the tube’s cross section by choosing parameters in the

sequence [d,3,0,3,d −4/n,3,0,3]. In the racing car example, the ant would come back to the
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original angle on the tube with the sum of degrees being a multiple of 4. In the example with

odd pieces, the ant also comes back to the original angle because when summing up π−θi, the

odd piece would contribute an extra π compared with the even piece case, and this effect

cancels with the effect from the extra 2 in 4k+2 form (note that the sum of degrees in the

sequence with 23 pieces is 10). It is not really a Möbius strip even with the sum of degrees of

4k+2 because the assumption of integer degree in the theorem in [15] is violated here.

Fig. 3: Closed loop with 23 blocks on left. Tube representation on right.

Fig. 4: Closed loop with 144 blocks on left. Tube representation on right.

4．Matrix Representation of a Rubik’s Snake

Let α be the angle between the longest sides of two adjacent blocks, and let θ be the angle of

rotation between two adjacent square faces. For the purposes of finding a relationship

between α and θ, we define the coordinate system relative to the first block as shown in Fig. 5,

where ���1 and ���2 are the vectors for the longest sides of the adjacent blocks and are given by

(1)
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Fig. 5: View of blocks 1 and 2 before and after rotation of block 2. ���2’ is what ���2 becomes after a

rotation of θ about the x-axis, and α is the angle between ���1 and ���2’

and θ is the angle of rotation about the x-axis with the rotation matrix being

(2)

Let us rotate about the x-axis to obtain

(3)

Using ���1 ꞏ ���2’=||���1|| ||���2’|| cos α with ���1 ꞏ ���2’=1+cosθ,we have the following relationship

between θ and α:

(4)

4.1 Rotation Matrix

We can define the rotation matrix relating the neighboring snake blocks as was done in [14]

by

(5)
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The formula can be viewed as a special case of the Denavit–Hartenberg convention [9] after

the translation is separated from the rotation.

We need to find the eigenvalues for R(θ) by solving the characteristic equation for R(θ):

(6)

These eigenvalues along with their corresponding eigenvectors are listed below, where the *

stands for complex conjugate:

(7)

Note: If θ=π (i.e. α= π/2), then ���1=(0,0,1) not (0,0,0).

Now we can diagonalize R(θ) as follows: R(θ) = PΛP-1where P=(���1, ���2, ���3) and

(8)

In the next two subsections we will be looking at examples where all blocks have the same α:

α = π/m and α = 2π/m, where m is an integer. Further restrictions will be placed upon m in the

corresponding subsections.

4.2 Blocks with α = π/m

In this subsection we are going to look at what happens if all blocks have the same degree of

rotation. In particular all blocks will have α = π/m.

Theorem 4.1. In a Rubik’s Snake with m (m ≥ 3,m odd) junctions or 2m (m ≥ 2,m even)

junctions and with every junction having degree d = 2arccos(2cos(π/m)−1)/π (i.e. α = π/m),

then the orientations of the “start” and “end” blocks are the same.

Proof. Let “a” denote the orientation of a random block. Proving that the “start” and “end”

blocks are the same orientation is equivalent to showing that aR(θ)n = a, where n = m (m ≥

3,m odd) or n = 2m (m ≥ 2,m even). This means that we need to show that R(θ)n = I for n = m
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(m ≥ 3,m odd) or n = 2m (m ≥ 2,m even).Using α = π/m in the diagonalized R(θ), we have R(θ)

= PΛP-1, where P=(���1, ���2, ���3) and

(9)

Using this we have R(θ)n= PΛnP-1, where

(10)

If n = m (m ≥ 3,m odd) or n = 2m (m ≥ 2,m even), then we have Λn = I. This gives that R(θ)n =

I for n = m (m ≥ 3,m odd) or n = 2m (m ≥ 2,m even). This completes the proof.

Since we have shown that the “start” and “end” blocks have the same orientation for n = m (m

≥ 3,m odd) or n = 2m (m ≥ 2,m even) for α = π/m, we would like to know what the shift in

position of the “end” block is. We have seen in [14] that to find the location of the (n+1)th

block we apply an iterative technique:

(11)

where , and

(12)

Di represents the local coordinate system that is attached to the ith block. When a block is

rotated, the coordinate system is also rotated. ��� i represents the position of the ith block.

Performing all of the iterative steps, we derive a formula for the position of the (n+1)th block

relative to the “starting” block:

(13)

where and

(14)
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This sum is diagonal, and for n = m (m ≥ 3,m odd) and n = 2m (m ≥ 2,m even):

(15)

Then we have for n = m (m ≥ 3, m odd) and n = 2m (m ≥ 2,m even):

(16)

Using this and P=(���1, ���2, ���3), we can calculate :

(17)

where δ = n/(2+2cos(π/m)) and θ = arccos(2cos(π/m)−1). Using Eq. 13, we can calculate the

shift

(18)

Sn represents the shift in position after rotation of the nth junction, about which the (n+1)th

block rotates. Substituting n = m (m ≥ 3,m odd) or n = 2m (m ≥ 2,m even), we can calculate

the shifts for odd or even m.

As two trivial examples of this, we are going to look at m = 3 (n = m = 3, which means four

blocks) and m = 2 (n = 2m = 4, which means five blocks). For the m = 3 case d =

2arccos(2cos(π/m)−1)/π=1 and S3 = (1,1,1). Taking the starting block at the origin and making

only 90 turns, the fourth block will end up at the position (1,1,1). For the m = 2 case d =

2arccos(2cos(π/m)−1)/π=2 and S4 = (0,0,0). Taking the starting block at the origin and making

only 180° turns, the fifth block will end up at the same position of the starting block. In the

next subsection, we will present two non-trivial examples.

4.3 Blocks with α = 2π/m

Now we are going to consider a Rubik’s Snake where the degree for each rotation is d =

2arccos(2cos(2π/m)−1)/π. If m is even (i.e. m = 2k), then we get the results discussed



133

previously, looking at whether k is odd or even. Therefore, we need only consider the case

where m is odd. In order to have α = 2π/m be in the range 0 ≤ α ≤ π/2, we need to have m ≥ 5.

For α = 2π/m, we have for Λ:

(19)

In order for the “start” and “end” blocks to have the same orientation, 2m junctions are needed

since Λ2m = I. Going through a similar process as before, we find that the shift in position

(given α = 2π/m, 2m junctions, m odd, and m ≥ 5) is

(20)

Now we present two nontrivial examples. Fig. 6 shows the snake sequence

2arccos(2cos(π/5)−1)/π repeated times on the left part, and then 2arccos(2cos(2π/5)−1)/π

repeated 10 times on the right. Note that the first and the sixth blocks on the left figure have

the same orientation as we proved in the previous subsection, and the first and the eleventh

blocks on the right figure have the same orientation as we proved in this subsection. The shifts

also agree with the results produced by our formulas. As a remark, some local collisions

between the ith and the (i+2)th blocks occur, but these can be avoided if we use the tube

representation of the snake discussed earlier because it is the rotation of the corners of the

cross sectional square faces that leads to the problem and because the tube cross section is a

circle with rotation invariance.

Fig. 6: Two nontrivial examples of the first and last block having exactly the same orientation.

5．Conclusion

We have generalized a Rubik’s Snake to have any angle of rotation between 0° and 360°,

proving a theorem about the sum of degrees of rotation for a snake that is a closed loop with
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an arbitrary number of blocks. We also looked at an alternative picture (i.e. the tube

representation) for the Rubik’s Snake that allows us to see finer details that cannot be seen

with the block representation. We used matrices to prove a theorem about the orientation of

the ending block of the Rubik’s Snake relative to the beginning block where all blocks had the

same rotation angle and to derive the shift in position of the ending block relative to the

beginning block in this case. The Rubik’s Snake was originally meant to only rotate integer

multiples of 90° for each joint. Once it is generalized to allow general angles, it is easy to get

lost. Fortunately, mathematical theories can be applied to help us to keep track and design

shapes.
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