
136

Accelerating SegNet-Based Semantic Segmentation Using

a Model Post-Pruning Strategy

Wei Liu

School of Business Administration, Shandong University of Finance and Economics,

Jinan 250014, China.

Correspondence should be addressed to Wei Liu; vivian.liu@sdufe.edu.cn

Abstract

Accelerating deep convolutional networks has recently attracted a great deal of attention due

to the demand of real-time applications. SegNet is a typical deep convolution network in the

field of semantic segmentation, and also is a smaller and more memory, time efficient model.

In this paper, we focus on accelerating the SegNet-based semantic segmentation by using a

model post-pruning strategy. Despite the fact that several methods have been proposed for

accelerating deep models including pruning and compressing the weights of each layer, these

methods may cause a certain loss of segmentation accuracy by irregular pruning. To address

this issue, we propose a post-pruning strategy for deep model compression, which is

commonly used to essentially deal with the over-fitting problem of decision tree. Different

from some existing methods that employ the irregular pruning strategy, the proposed method

can significantly improve the generalization ability of the compressed model. Inspired by the

post-pruning method originally used in decision tree, our method minimizes a channel

pruning loss function. The compressed model is then retrained to further improve its

performance of semantic segmentation. Experimental results on two segmentation datasets

SCIREA Journal of Information Science

and Systems Science

http://www.scirea.org/journal/ISSS

December 21, 2021

Volume 5, Issue 6, December 2021

https://doi.org/10.54647/isss12188

137

show that our method obtain competitive results compared with other existing methods in

terms of reducing the computational burden and improving the generalization ability of the

SegNet model.

Keywords: Deep learning, Convolutional neural networks, Semantic segmentation, Model

pruning

1. Introduction

Semantic segmentation of natural images has attracted a tremendous interest in the computer

vision and image processing community, which is widely used in some tasks such as scene

understanding, autonomous driving, medical image analysis, and so on. Deep convolutional

neural network (DCNN) has achieved state of the art breakthroughs in image semantic

segmentation task thanks to its high ability of feature extraction. In recent years, there have

been many deep models for semantic segmentation, including FCN [1], SegNet [2], U-Net [3],

DeepLab [4], RefineNet [5], etc. Among them, the SegNet model is more suitable than others

for real-time applications due to its low memory occupancy and computational time during

inference. SegNet is composed of a symmetric structure of the encoder and decoder.

Compared with the above mentioned network models, the key component of SegNet is the

position index recorded by the maximum pooling layer of the encoder, which effectively

improves calculation efficiency and decoding accuracy. The pooling indices with location

information is transferred to the decoder and then used in the upsampling process. The

location information transmission is illustrated as dotted lines in Figure 1. Despite the fact

that SegNet shows faster performance than other semantic segmentation models, a

shortcoming of SegNet is the information discarded by the maximum pooling layer of the

encoder, causing a loss of network segmentation accuracy. However, in high-precision real-

time semantic segmentation tasks such as autonomous driving, scene understanding and

inferring support-relationships among objects, it is quite important to improve segmentation

accuracy as well as speed.

138

Figure 1: The structure diagram of SegNet. The orange layers correspond to pooling layers and up-

sampling layers; the light blue layers denote convolutional layers; the dark blue layers mean batch

normalization layers and relu layers; the purple ones are the classification layers; and the dotted

lines represent pooling indices.

Generally speaking, the computational complexity of DCNNs is determined by the number of

the parameters of convolutional layers. Therefore, most network acceleration methods focus

on reducing the computational burden of convolutional layers to improve the computational

efficiency of deep models [1, 8]. At present, the commonly used strategies for model

acceleration can be divided into three categories: tensor factorization [9, 16, 17], sparse

connection [10], and channel pruning [6, 12]. Tensor factorization of convolutional layers

aims to replace convolutional layers in the original deep convolutional network with multiple

low-rank subtensors, and model parameters in the resulting new deep network can be

effectively compressed compared with the original one. However, the width of convolutional

layers after tensor decomposition has not changed, and it even brings additional

computational costs during the decomposition process [14, 15]. Unlike tensor factorization,

sparse connection is to remove redundant connection weights and obtain the smallest possible

model structure. However, due to the irregular channel shape after weight sparsification, it

brings some challenges to further accelerate DCNNs by other possible techniques, especially

for parallel implementations. Channel pruning is a specific structured case of sparse

connection, which performs model compression by removing redundant the channels with

small contributions in the network. Specifically, after pruning a layer filter, the number of

input channels of the next layer filter is also reduced relatively [7, 11]. Therefore, channel

pruning method has received extensive attention from researchers due to its effectiveness. The

key issue of channel pruning is how to select the pruning channel to maintain the network

segmentation accuracy.

139

In this paper, we employ a post-pruning strategy to accelerate the SegNet, a state-of-the-art

network in fast semantic segmentation. Post-pruning is a widely used strategy for pruning

decision tree to improve the overall performance of decision tree. We apply it to prune the

SegNet channel for accelerating the SegNet model. Moreover, we retrain the model to update

weights of the pruned model, which can reduce the computational cost and improve the

generalization ability and accuracy of the SegNet model.

The main contributions of this paper are as follows.

1) We propose a post-pruning strategy for the SegNet acceleration, which minimizes a loss

function and introduces LASSO regression to achieve pruning channel selection. Our channel

pruning method not only effectively compresses the width of convolutional layers, reducing

the computational cost, but also improves the segmentation accuracy and generalization

ability of the SegNet.

2) We retraining the model to update weights after pruning. Through the global adjustment of

convolution weights of the SegNet model, it can effectively improve the discriminativeness of

the model after channel pruning.

3) We construct a footpath scene dataset called "EyeCan" for the footpath segmentation task,

which focuses on image segmentation of footpaths and obstacles. In addition, we verify the

presented post-pruning method on the CamVid road scene segmentation dataset and the

EyeCan footpath scene dataset. Our method shows better generalization ability, as well as the

improvement of segmentation speed and segmentation accuracy.

2. Related Work

This paper mainly focuses on accelerating the SegNet model by adopting a post-pruning

strategy used in decision tree, which can effectively sparsify and speed up a deep model. In

this section, we review some related works to accelerate deep model, i.e., model sparsification

and post-pruning decision tree methods.

2.1 Model Sparsification

Recently, a variety of acceleration methods by sparsifying model structure have been

proposed in the literature. Most related works attempt to transform the channel pruning into a

sparse optimization problem [9-11]. One prominent method for accelerating deep model is the

structured sparse learning method (SSL) [9], which relies on the group sparsity on

140

convolution weights to generate a sparse structure. In the training process, SSL exploits the

group LASSO to achieve channel pruning by sparsifying the filter weights. Another similar

method uses group sparsity to sparsify the model by introducing regularization sparsification

into the training loss function [10]. It is worth noting that this method automatically

determines the number of neurons in each layer of a deep network while learning the network

parameters. Instead of explicitly solving LASSO, the above methods integrate sparsity

regularization into the training loss. He et al. [11] applied the scale factor of the normalization

layer to directly evaluate the importance of filters, using a two-steps iterative pruning strategy,

which includes LASSO regression-based channel selection and least squares method to

reconstruct convolution weights. This strategy does not introduce additional selection factors.

In practice, an independent two-steps solution has been introduced to reduce the computing

time for solving the iterative pruning problem [11]. But it makes the selection of pruning

channels unstable, which leads to a loss of accuracy.

Although the above-mentioned methods for channel pruning can improve the calculation

speed of DCNNs, they may reduce the segmentation accuracy to some extent. However, for

real-time semantic segmentation tasks, improving model accuracy is important as well as

accelerating the model. The main goal of this paper is to accelerate the SegNet model by

channel pruning to obtain a more sparse structure. After the model channel pruning is

conducted, if we update weights based on the feature maps of the pre-trained model, the

discrimination of the pruned model will depend on the pre-trained model and ignore the

discrimination of the new network. Most of existing pruning methods perform layer-by-layer

by minimizing a loss function, which can only ensure local optimization of each layer. In this

paper, an alternative method is given to retraining the model, which can make the model

achieve the effect of global optimization.

2.2 Post-pruning Using in Decision Tree

Intuitively, the more complex the decision tree, the better the classification effect of the

training data. However, the higher the complexity of the decision tree, the more likely to

cause a over-fitting problem. Post-pruning is an important strategy to solve over-fitting of

decision trees. Commonly-used pruning strategies include reduced-error pruning, pesimistic-

error pruning, cost-complexity pruning, and error-based pruning. The work most closely

related to ours and actually inspires us is the CART tree [18]. The CART tree algorithm, a

post-pruning algorithm based on cost complexity, shows that decision trees are often pruned

by minimizing an overall loss function or cost function. Based on the cost complexity

141

algorithm to guide the SegNet post-pruning process, conveniently, we construct the indicator

vector  to mark the pruning channel. Briefly, in the cost complexity algorithm, if the leaf

node before pruning does not improve the accuracy very well but brings more complexity, we

can consider cutting this leaf node. In this way, the validation set data can be used to

selectively prune the decision tree, effectively preventing the decision tree from over-fitting.

This means that the post-pruning method can more safely remove redundant information and

keep key information in the decision tree. Therefore, we explore a post-pruning method for

SegNet compression, which can effectively improve the generalization ability and the speed

of SegNet.

In this paper, we employ the idea of post-pruning to accelerate the SegNet model, and

propose a method for selecting pruning channels by minimizing a loss function and

introducing the LASSO regression. Furthermore, we present a pruning and retraining once

strategy to update the weights and optimize the model globally during the retraining process.

The proposed strategy can effectively accelerate model, improving the global accuracy and

generalization ability of the compressed SegNet model, which has been verified in subsequent

experiments.

3. Post-Pruning Method

We focus mainly on a post-pruning method to prune channels of the SegNet. In Figure 2, we

highlight the channel input feature maps of the next layer convolutional filters that will be

reduced with orange dotted boxes, where the SegNet structure is effectively sparsified by

post-pruning. More importantly, the key strategy of channel pruning is how to select pruning

channels. Inspired by a post-pruning strategy used in decision tree, we select pruning channels

which maintain the verification set accuracy after pruning and minimize the pruning loss

function.

142

Figure 2: Illustrate of post-pruning method on the SegNet second encoder. The orange layer is the

pruned channel and feature maps. If the channel group of the first layer is pruned, the

corresponding feature maps of the second layer will be removed.

3.1 Overview

The acceleration strategy of the SegNet model is implemented in the following three steps.

1) Single-layer pruning. We conduct a single-layer pruning experiment for a pre-trained

SegNet model. According to the sensitivity of the convolutional layer to channel pruning, the

rough range of channel pruning of each layer is empirically determined.

2) Layer-by-layer channel pruning. The input maps vector of a channel in the next

convolutional layer is generated by the channel corresponding to the current convolutional

layer. We use statistical information of the next convolutional layer and the pruning rate

determined by the single-layer experiment to guide the pruning of the current convolutional

layer with ensuring the global accuracy of network pruning.

3) After channel pruning, the model segmentation error is minimized through retraining,

which improves the segmentation accuracy and generalization ability of the SegNet model.

Figure 2 illustrates the process of single-layer pruning on conv2_1, where we highlight with

orange dotted boxes that the channel input feature maps of the conv2_2 will be reduced after a

part of conv2_1 channels are pruned. Note also that single-layer experiments verify the

sensitivity and applicability of our channel pruning method on the SegNet model.

3.2 A Post-pruning Strategy of the SegNet

Decision trees usually use pruning redundant information to mitigate the over-fitting problem,

which has been proved to be an efficient and effective tool. The major challenge in SegNet

training is over-fitting. Considering that the over-fitting problem of both SegNet and decision

tree are essentially caused by redundant information, we apply the post-pruning method on

SegNet to select pruned channels. Thanks to the simplicity and effectiveness of the post-

pruning method, we not only decrease the complexity of the model to compress and

143

accelerate the model, but also prevent the model from over-fitting, resulting in the

improvement of the generalization ability and segmentation accuracy of the model.

The key issue of the post-pruning strategy used in decision tree is to minimize a loss function.

When this strategy is applied on the channel pruning of DCNNs, the pruned deep model is

determined by minimizing the loss function of convolutional filters layer by layer. Formally,

given a sequence of each layer for DCNN channels, i.e., , 1, ,ic i n  , the task of DCNN

pruning is to generate directive sequence, , 1, ,i i n   , where {0,1}i  denotes whether the

i-th channel of the convolutional layer is pruned.

Our goal is to minimize the loss of the feature maps of the current layer and those of the next

layer after pruning. We set  as the pruning channel selection vector and define the loss

function for the first layer channel pruning of the model as follows:

() () | |,i i iC C     

where ()iC  is the prediction error of the i-th convolutional layer of the model on the training

data, which is the sum of the prediction errors of all channels;  is the regularization

parameter that is used to balance the accuracy and complexity of the SegNet. The larger the

 , the greater the extent of network compression and the more pruning, and vice versa.

The pruning channel selection strategy depends on the minimization of the loss function

()iC  of the pruning process. In practice, minimizing this loss function quickly is a

challenging task. In [11], an alternative way to solve this problem is to transform the problem

into a two-steps iterative problem, which firstly fixes W and solves  for channel selection,

and secondly fixes  and solves W to minimize the loss function. But in practical

applications, the two-steps iteration is time-consuming. Considering further reduction of the

computational cost as well as improvement of the global segmentation accuracy of the pruned

SegNet, instead of iterative computation, our way to solve this problem is to exploit LASSO

regression to compute  layer by layer, and perform a pruning and retraining once strategy to

update W. LASSO is more easily to obtain a higher sparse solution, which is widely used for

model selection [20, 21].

2
' '

1 0
1

() arg min . . ,
c

i i i
i F

C Y Y s t c 
    



   

144

where ' T
i i iY X W . Y is the feature maps of the pre-trained model of the next layer of the

pruning layer, 'Y is the feature maps of the next layer after channel pruning. , 1, ,iX i n  is

a matrix sliced from i-th channel of input volumes X . iW are convolutional filter weights

sliced from i-th channel of W . Notice that, if 0i  , iX will be no longer useful, which

could be pruned from feature maps. iW can also be removed.
F

 is Frobenius norm, 'c is the

number of channels to be retained in the current layer, and its value is determined during

single-layer pruning.

After the channel pruning being completed, we use a pruning and retraining once strategy to

prune away the redundancy of the network and improve the global accuracy. We retrain the

model to update weights for a short period of time, which is less than the original training

time. In the following experiments, the results show that the discriminative performance of

the SegNet model by using retraining for updating weights has been significantly improved.

4. Experiments

In this section, we evaluate the proposed approach for the SegNet [2] on the CamVid [13] and

EyeCan datasets. Our method is implemented in MATLAB and executed on a desktop with

an Intel Core E5-2643 v4 @ 3.4 GHz and 256 GB RAM.

To determine the range of pruning channels, we first perform a single-layer sensitivity

experiment. According to the guidance of the proposed channel selection strategy and single-

layer experimental results, we prune convolutional filters layer by layer. Finally, we retrain

the pruned SegNet model to minimize the segmentation error and update the convolutional

layer parameters to improve the segmentation accuracy. Moreover, we conduct comparative

experiments with other pruned methods on the CamVid and EyeCan datasets. Experimental

results clearly show the benefits of the channel pruning strategy by the post-pruning method

and verify that the segmentation accuracy and generalization ability of the accelerated SegNet

model have been improved by our method.

4.1 Datasets

To evaluate the performance of the accelerated SegNet model, we employ the CamVid road

scene segmentation dataset [13] which contains 701 natural images and correspondingly

labelled images with 960*720 pixels, and the EyeCan footpath scene dataset which contains

145

112 natural and corresponding labelled images with 540*960 pixels. The former dataset is

mainly used to test semantic segmentation performance of the model in the field of

autonomous pilot. In addition, guiding the blind is an important application in the field of

scene semantic segmentation, while there is currently no public dataset for the outer scenes of

blind people in our knowledge. Therefore, we constructed the EyeCan dataset to test the

semantic segmentation performance of the model in the field of blind footpath scenes. We use

handheld devices to capture footpath scene images, including crosswalks, highways, and

green belts at three time periods in the morning, noon and afternoon, respectively. In order to

reflect the completeness of the EyeCan dataset, the dataset contains abnormal weathers such

as backlight and rainy. The pixel annotation of the dataset is labelled by the Image Labeler

Module of MATLAB. Figure 3 shows several typical images of CamVid dataset and EyeCan

dataset.

Figure 3: Experimental datasets. The top row shows images from CamVid, and the bottom row

shows images from EyeCan.

Figure 4: Single-layer sensitive results on different datasets.

4.2 Implementation Details

We make a unified processing of datasets avoid the negative impact of different initializations

on the accuracy of experiments. Each input image is first resized to 360*480. In order to

prevent the segmentation accuracy decreasing owing to unbalanced data classes, we use class

weights to balance the number of pixels in each class in the dataset. To enrich datasets, we

146

use data argument by using random reflection of left/right directions and translation of +/-10

pixels. In training process, we empirically set learning rate to 0.001 and batchsize to 4, which

usually works well. Moreover, SegNet is initialized with VGG-16 weights. The optimization

algorithm used for training is stochastic gradient descent with 0.9 momentum. We fix these

parameters in the following experiments.

4.3 Single-layer Sensitivity Analysis

We first conduct a single-layer experiment to evaluate the sensitivity of each layer of the

SegNet, which is helpful for comprehensive understanding the model robustness to exactly

prune channel. Then, we use single-layer sensitivity and experimental verification to roughly

determine the range of the number of pruning channels in each layer.

We prune each layer of the SegNet on the CamVid dataset and the EyeCan dataset, and use

the same filters pruned away ratio for all layers in the same stage. As shown in Figure 4, for

each sensitive pruning layers (conv3_3, con4_2, conv2_2 and conv5_1) of the EyeCan

dataset, we can prune the ratio of 20%-30% without losing accuracy. Specially, the sensitivity

of each layer is approximately similar in CamVid dataset, but the convolutional layer with

512 channels is more sensitive. We determine the sensitivity of the pruning channel based on

the single-layer pruning experiment, and set the pruning complexity empirically based on the

sensitivity and a large number of test results. Tables 1 and 2 show the parameter settings for

each layer of SegNet, including the size of the convolutional layer, the number of channels,

and the pruning ratio. It is worth noting that, due to higher pruning sensitivity, we indispose

the first convolutional layer in the SegNet network.

Table 1: Parameter settings of SegNet pruned model on CamVid.

Prunable
layer

Convolutional
Layer size

Channel
numbers Filters pruned away

Conv1_2 3*3*64 64 80%

Conv2_1 3*3*64 128 80%

Conv2_2 3*3*128 128 80%

Conv3_1 3*3*128 256 80%

Conv3_2 3*3*256 256 80%

Conv3_3 3*3*256 256 80%

Conv4_1 3*3*256 512 75%

Conv4_2 3*3*512 512 75%

147

Conv4_3 3*3*512 512 75%

Conv5_1 3*3*512 512 75%

Conv5_2 3*3*512 512 75%

Conv5_3 3*3*512 512 75%

Table 2: Parameter settings of SegNet pruned model on EyeCan.

Prunable
layer

Convolutional
Layer size

Channel
numbers Filters pruned away

Conv1_2 3*3*64 64 80%

Conv2_1 3*3*64 128 80%

Conv2_2 3*3*128 128 25%

Conv3_1 3*3*128 256 80%

Conv3_2 3*3*256 256 80%

Conv3_3 3*3*256 256 25%

Conv4_1 3*3*256 512 60%

Conv4_2 3*3*512 512 25%

Conv4_3 3*3*512 512 60%

Conv5_1 3*3*512 512 25%

Conv5_2 3*3*512 512 60%

Conv5_3 3*3*512 512 60%

4.4 Pruning Performance Analysis

According to the range of pruning channel numbers determined by sensitivity experiment and

post-pruning method, we prune the SegNet model layer by layer. After pruning the SegNet

with different pruning rates, we obtain a new model with a few channels. The remaining

parameters in the pruned convolutional layer and the unaffected layer are copied to the new

model. Note also that if a channel is cut off, the weight of the subsequent batch normalization

layer is also removed. Then, we improve the segmentation accuracy of the SegNet model by

retraining the pruned model to update weights of convolutional layers and reconstruct

parameters of batch normalization layers. In the retraining process, we adopt the same pre-

processing methods and hyperparameter values as the SegNet pre-training model. Finally, we

obtain a SegNet compression model based on the post-pruning method.

Figure 5a shows the complete pruning experiment results on CamVid that the convolutional

layer with 512 channels (conv5_1, conv5_3, conv5_2) are sensitive with pruning and the first

148

three layers are more suitable for pruning. The accuracy of the model drops quickly when we

prune more strongly with the all layers except the first three layers. The reason may be that

the significant information loss from previous layers hurts the accuracy. Figure 5b shows that

through retraining, almost 90% of the convolutional layer channels can be safely removed.

Similar experiments were performed on the EyeCan dataset, and the results are shown in

Figure 6a. Similar observations are also found for the EyeCan dataset. Without retraining, the

first two convolutional layers may prune easily, which can be pruned by 25% without loss of

accuracy. Figure 6b demonstrates that through retraining, almost 90% of the channels of these

layers can be safely removed, so retraining the network may compensate the loss of accuracy

caused by pruning.

Figure 5: Pruning SegNet filters with post-pruning method on CamVid.

Figure 6: Pruning SegNet filters with post-pruning method on EyeCan.

4.5 Comparison with Fisrt k and Max Response Methods

In the following experiments, we compare the key pruning channel selection strategy of post-

pruning with max response and frist k pruning methods. First k directly selects the first k

feature maps. Max response selects channels based on absolute sum of corresponding weights

filter [19]. In order to make a fair comparison, all methods are pruned using the same SegNet

model on the same computer.

149

As expected, the accuracy decreases as filters pruned ratio increases. As shown in Figure 7,

our method is consistently better than other approaches in different convolutional layers under

different filters pruned ratio. Figure 8 also demonstrates that our method has higher

segmentation accuracy at the footpath edge. Figures 7 and 8 show that sometimes max

response is even worse than first k. We argue that filters in our method are regularized and

converge to a smoother and more natural pattern. The maximum response ignores the

correlation between different filters that is why max response does not work better than first k.

Figure 7: Single-layer sensitive analysis results of different pruning methods on the CamVid dataset

(without retraining). To verify the importance of channel selection, we compare with two baselines

such as first k and max response methods.

Figure 8: Semantic segmentation results of different SegNet variants. From top rows to bottom rows:

SegNet baseline, Pruned SegNet by the first k method, Pruned Segnet by max response, Pruned

SegNet by the proposed post-pruning.

150

Table 3: Performance of accelerated SegNet on the CamVid dataset.

Pruning ratio Accuracy CPU(s) Acceleration
ratio

0% 92.565% 44.495 -

30% 91.287% 41.465 6.8%

30% 90.544% 39.765 10.63%

50% 89.469% 39.683 11.18%

70% 87.758% 39. 519 10.81%

5. Conclusion

Channel pruning is a commonly-used method for compressing DCNNs which could

structurally sparsify network models. Previous works mainly focused on reducing model size

and faster training, but paid little attention to the improvement of model generalization ability

and segmentation accuracy. In addition, these works have caused a slightly performance

degradation. We propose a post-pruning model acceleration method, which achieves a

significant speed improvement with almost no performance loss. However, due to SegNet

being a more compact and less redundancy, it is more challenging to prune a large amount of

filters of the SegNet model. In spite of this, our method can still obtain a 11.18% acceleration

with 89.469% accuracy in Table 3, which proves the feasibility of post-pruning method for

accelerating tasks.

Our method is not incompatible with other methods. We demonstrate competitive acceleration

results on CamVid and EyeCan datasets. Therefore, SegNet has the ability to handle high-

precision real-time semantic segmentation tasks in terms of speed and accuracy. In the future,

we plan to further extend our method to accelerate other DCNNs.

Data Availability

The data used to support the findings of this study are available from the author upon request.

Funding Statement

This research was funded by National Natural Science Foundation of China (Grant No.

61472220), the Science and Technology Innovation Program for Distinguished Young

151

Scholars of Shandong Province Higher Education Institutions (Grant No. 2019KJN045), and

the Humanities and Social Sciences in Universities of Shandong Province (Grant No.

J16WJ04).

References

[1] J. Long, E. Shelhamer, T. Darrell, “Fully convolutional networks for semantic

segmentation,” In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3431–3440, 2015.

[2] V. Badrinarayanan, A. Kendall, R. Cipolla, “Segnet: A deep convolutional encoder-

decoder architecture for image segmentation,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[3] O. Ronneberger, P. Fischer, T. Brox, “U-Net: Convolutional networks for biomedical

image segmentation,” In Proceedings of International Conference on Medical Image

Computing and Computer-Assisted Intervention, pp. 234–241, 2015.

[4] L.-C. Chen, Y. Zhu, G. Papandreou, et al., “Encoder-decoder with atrous separable

convolution for semantic image segmentation,” In Proceedings of the European

Conference on Computer Vision, pp. 801–818, 2018.

[5] G. Lin, A. Milan, C. Shen, “Refinenet: Multi-path refinement networks for high-

resolution semantic segmentation,” In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1925–1934, 2017.

[6] S. Anwar, K. Hwang, W. Sung, “Structured pruning of deep convolutional neural

networks,” ACM Journal on Emerging Technologies in Computing Systems, vol. 13, no.

3, pp. 1–18, 2017.

[7] M. Jaderberg, A. Vedaldi, A. Zisserman, “Speeding up convolutional neural networks

with low rank expansions,” In Proceedings of the British Machine Vision Conference, pp.

1–12, 2014.

[8] S. Han, J. Pool, J. Tran, et al., “Learning both weights and connections for efficient

neural network,” In Advances in Neural Information Processing Systems, pp. 1135–1143,

2015.

[9] W. Wen, C. Wu, Y. Wang, et al., “Learning structured sparsity in deep neural networks,”

In Advances in Neural Information Processing Systems, pp. 2074–2082, 2016.

[10] J.M. Alvarez, M. Salzmann, “Learning the number of neurons in deep networks,” In

Advances in Neural Information Processing Systems, pp. 2270–2278, 2016.

152

[11] Y. He, X. Zhang, J. Sun, “Channel pruning for accelerating very deep neural networks,”

In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–

1397, 2017.

[12] Z. Huang, N. Wang, “Data-driven sparse structure selection for deep neural networks,” In

Proceedings of the European Conference on Computer Vision, pp. 304–320, 2018.

[13] G.J. Brostow, J. Shotton, J. Fauqueur, “Segmentation and recognition using structure

from motion point clouds,” In Proceedings of the European Conference on Computer

Vision, pp. 44–57, 2008.

[14] M. Denil, B. Shakibi, L. Dinh, “Predicting parameters in deep learning,” In Advances in

Neural Information Processing Systems, pp. 2148–2156, 2013.

[15] E.L. Denton, W. Zaremba, J. Bruna, “Exploiting linear structure within convolutional

networks for efficient evaluation,” In Advances in Neural Information Processing

Systems, pp. 1269–1277, 2014.

[16] V. Lebedev, Y. Ganin, M. Rakhuba, “Speeding-up convolutional neural networks using

fine-tuned cp-decomposition,” In Proceedings of the International Conference on

Learning Representations, pp. 1–11, 2015.

[17] X. Zhang, J. Zou, X. Ming, “Efficient and accurate approximations of nonlinear

convolutional networks,” In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1984–1992, 2015.

[18] L. Breiman, J. Friedman, C.J. Stone, Olshen, R.A. CART: Classification and Regression

Trees, Sprinter, 1984.

[19] H. Li, A. Kadav, I. Durdanovic, et al., “Pruning filters for efficient convnets,” In

Proceedings of the International Conference on Learning Representations, pp. 1–11, 2016.

[20] S. Anwar, W. Sung, “Compact deep convolutional neural networks with coarse pruning,”

In Proceedings of the International Conference on Learning Representations, pp. 1–10,

2016.

[21] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal

Statistical Society: Series , vol. 58, no. 1, pp. 267–288, 1996.

