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Abstract

We consider a multi-server vacation queueing system that operates in the modified multiple

vacation policy related to the number of busy servers. The condition for the transition to

vacation mode at the time of the release of the server is the lack of customers in the queue and

the implementation of one of the restrictions on the number of servers currently in use by

customers ( Uc -condition): ,Uc m where {1,..., }m c and c is the number of servers. When

the server returns from vacation it observes the following rule. If there is at least one customer

in the queue, the server commences service and serves exhaustively before taking another

vacation. If the server finds that there is no queue and the Uc -condition is satisfied, then it takes

another vacation. Using GPSS World simulation models, we studied the dependencies of the

system performance measures on the following parameters: the load factor, coefficient of

variation of the inter-arrival times, value of Uc , duration of vacations, and number of servers.

We tested the simulation models by comparing the results with the known ones obtained by an

analytical method. The value of the simulation time, which makes it possible to obtain results
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corresponding to the stationary process, is determined. The results for systems with and without

vacations are compared.

Keywords: queueing system, vacations, modified multiple vacation policy, simulation model,
GPSS World

1. Introduction

A vacation queueing system is one in which a server may become unavailable for a random

period of time from a primary service center. The time away from the primary service center

is called a vacation, and customers who arrive while the server is on vacation will have to

wait until he returns from vacation. A vacation can be the result of many factors. Dynamically

developing the branch of wireless communication (Wi-Fi, LTE, sensor networks, etc.) forces

the search for solutions that, in addition to modeling the packet processing itself, ensure the

implementation of tasks resulting from the need for energy saving. In the field of modeling

the energy-saving mode in wireless network nodes, queueing systems with various types of

mechanisms of the periodic suspension of customer processing are used.

In some cases, the vacation can be the result of a server breakdown, which means that the

system must be repaired and brought back to service. It can also be a deliberate action taken

to utilize the server in a secondary service center when there are no customers present at the

primary service center. Thus, server vacations are useful for those systems in which the

server’s idle time is utilized for other purposes, and this makes the queueing model to be

applicable to a variety of real-world stochastic service systems.

There are different types of vacation queueing systems. In the single vacation policy, the

server takes a vacation of a random duration when the queue is empty. At the end of the

vacation, the server returns to the queueing system. If there is at least one customer waiting

when the server returns from vacation, the server performs one of the following actions

depending on the service policy:

a) Under the exhaustive service policy, the server will serve all waiting customers as well as

those that arrive while he is still serving at the station. He takes another vacation when the

queue becomes empty.
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b) Under the gated service policy, the server will serve only those customers that he finds at

the queue upon his return from vacation. At the end of their service, the server will commence

another vacation and any customers that arrive while the server is already serving at the

station will be served when the server returns from the vacation.

c) Under the limited service policy, the server will serve only a predefined maximum number

of customers and then will commence another vacation. The single-service policy in which

exactly one customer is served is a special type of this policy.

If the queue is empty on the server’s return, the server waits to complete a busy period using

one of the above service policies before taking another vacation.

In the multiple vacation policy, if the server returns from a vacation and finds the queue

empty, he immediately commences another vacation. If there is at least one waiting customer,

then he will commence service according to the prevailing service policy.

Queueing systems with server vacations have attracted the attention of many researchers since

the idea was first discussed in the paper of Levy and Yechiali [1]. One can find a

comprehensive review of many important analytical results for different vacation queueing

models, for example, in [2-4].

Among many solutions, it is worth mentioning the N-policy threshold-type discipline,

originally proposed in [5], in which the processing restarts after an idle period simultaneously

with the Nth arrival, and the T-policy, introduced in [6], in which the server is being activated

exactly T time units after the last busy period. Moreover, in a fundamental paper [7], single

and multiple vacation policies were proposed in which single or repeated independent

vacations are taken until at least one customer present in the buffer is detected.

In the article, we consider the queueing model with multiple vacation periods launched after

the completion of each busy period of the system. Queueing systems of this type can be used

in the practical modeling of the functioning of, for example, computer and telecommunication

network nodes (in particular wireless, e.g., based on Wi-Fi or LTE standards), in which an

energy saving mechanism is implemented based on the cyclical checking the state of queue of

packets waiting for processing). A multiple vacation period may also be used to perform some

other operations for the service station (such as e.g., maintenance, software update, etc.). As

one can observe, the literature on this type of model is extensive and constantly growing.

However, the analytical results relate exclusively to theM/G/1-type queue or M/M/c queue.
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We consider a multi-server vacation queueing system that operates in the modified multiple

vacation policy, which we agree to call Uc -policy. The condition for the transition to vacation

mode at the time of the release of the server is the lack of customers in the queue (Q=0) and

the implementation of one of the restrictions on the number of servers currently in use by

customers ( Uc -condition): ,Uc m where {1,..., },m c and c is the number of servers. Since

at this point in time Q=0, then ,Uc n where n is the number of customers in the system.

When the server returns from vacation it observes the following rule. If there is at least one

customer in the queue, the server commences service and serves exhaustively before taking

another vacation. If the server finds that there is no queue and the Uc -condition is satisfied,

then it takes another vacation. This modification of the standard multiple vacation policy

allows improving system performance measures and at the same time takes advantage of the

use of vacations.

One of the methods for studying queuing systems is the simulation method, when the model

simulates the operation of a real system, that is, the model reproduces the process of

functioning of a real system in time. In many cases, simulation becomes the most effective

and often practically the only available method for studying systems. For example, an

efficient analysis of a G/G/c type queuing system by analytical methods is impossible, while

such an analysis using simulation methods is not particularly difficult. In this paper, we use

the GPSS World simulation system [8, 9].

GPSS (General-Purpose Simulation System) is a general process-oriented simulation software

environment. GPSSWorld is a Microsoft Windows application designed to run on various Windows

operating systems.

The main contributions of this paper are as follows.

1) We propose a modification of the multiple vacation policy ( Uc -policy), which allows more

flexible use of vacations, taking into account the state of the system at the time of the

transition of each server to the vacations mode. Analytical results exist only for the M/M/c

system in the case of the standard multiple vacation policy when Uc -condition has the form

Uc c [10].

2) We construct the GPSS World simulation model of this multiple vacation Uc -policy for the

G/G/c queueing system, which allows us to study the dependencies of the system performance

measures on the following parameters: the load factor, coefficient of variation of inter-arrival
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times, value of Uc , duration of vacations, number of servers, and so on. Using the constructed

simulation models, we have the opportunity to compare the results for systems with and

without vacations.

3) Using the constructed simulation models, we have the opportunity to obtain not only the

average values of the system performance measures but also the distributions of all

performance measures and with the help of graphic visualization to trace the behavior of these

measures over time.

2. SimulationModels

2.1. Vacation System with Uc -Policy

We consider a G/G/c queueing system in which both service times and the inter-arrival times

have any given distributions. A random variable X, the time to serve a customer, has a general

distribution with a cumulative distribution function (CDF) ( )XF x , and ( )YF x is CDF of inter-

arrival time Y. A random variable Z, the duration of a vacation, is also assumed to have a

general distribution with CDF ( ).ZF x We denote as ( ), ( ),E X E Y and ( )E Z the mean of the

random variables , ,X Y and ,Z respectively. We assume that the service is organized

according to the natural FIFO discipline. The considered queueing system is governed by the

multiple vacation policy with Uc -condition. This is an additional condition for the server to

switch to the vacations mode (or continue this mode) at the moment of its release (or the end

of the previous vacation) when the queue is empty.

Figures 1 and 2 show a corresponding GPSS simulation model in the case when 2,c m 

the random variables X and Y have the uniform and gamma distributions, respectively, and

Z, the duration of a vacation is constant, 5.Z  In this model, we assume that ( ) 1,E X  the

random variable X is uniformly distributed on the interval [0.7, 1.3] , the parameters of the

gamma distribution of the random variable Y are as follows: 4 / 9, 45 / 28.  
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Figure 1. GPSS simulation model for the G/G/2 system with multiple vacation Uc -policy (Part 1)

Figure 2. GPSS simulation model for the G/G/2 system with multiple vacation Uc -policy (Part 2)
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Let us denote for the random variable Y the probability density function, variance and

coefficient of variation as ( ), ( ),Yf t D Y and ,V respectively, then for the gamma distribution,

we have

1
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The simulation model is organized into three code groups, composed of a sequence of blocks

and called block segments. Block segments generally start with a GENERATE block that

inserts transactions into the simulation model and ends with a TERMINATE block that

removes transactions from the simulation model. Such a block segment specifies a process,

i.e., a life cycle, for transactions.

The model begins with the setting of the parameters and tables of distributions of those

random variables that we plan to obtain as a result of the simulation. We use tables to obtain

distributions of the number of customers in the system, the number of servers in vacation

mode, waiting times in the queue, and vacation durations for each server. The first segment is

designed to obtain tables of the distributions of the number of customers in the system and the

number of servers in vacation mode. The second segment forms the basis of the model and is

designed to simulate the process of arrival and service of customers. The third segment sets a

simulation time, saves a value of the average duration of vacations over two servers, and stops

the simulation process.

The main segment of the model consists of two sequentially located Facility Entities, each of

which specifies the distribution of its service time in the corresponding ADVANCE block.

The TRANSFER ALL block sequentially checks the possibility for an active transaction to

enter each block located between labels SERV1 and SERV2 at every nineteenth below

location. Thus, the possibility to enter each of the blocks SEIZE 1 and SEIZE 2, is tested. As

a result, the customer enters the first free server. The difference between the numbers of the

successive located SEIZE blocks is equal to 19. We can easily increase the number of

sequentially located Facility Entities in accordance with the number of system servers. The

combination of blocks SEIZE and RELEASE provides the operation of each Facility Entity.

We use the FUNAVAIL and FAVAIL blocks to model the vacations of each server. In order

to obtain statistical data associated with vacations, we introduce additional Facility Entities
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for each server using double-numbered blocks SEIZE and RELEASE. QUEUE and DEPART

blocks are used to update the statistics associated with a queue. We use TEST blocks to

organize a modified vacation policy related to the number of busy servers at the time the

vacation mode is enabled. We find the duration of the vacations for each server using MARK

and TABULATE blocks.

We can easily change in the model shown in Figures 1 and 2, not only the number of servers

but also the type of distributions of random variables X, Y, and Z, which are set in blocks

GENERATE and ADVANCE. We can also use different distributions of the random variables

Y and Z for each server.

2.2. System without Vacations

We can obtain a simulation model for the system without vacations from the previous model

if we substitute 0m  (em EQU 0) in it. To reduce the calculation time, it is advisable to use

the model shown in Figure 3.

In this model, a STORAGE command defines a Storage Entity named Sys with a total

capacity of 2 units. By changing the capacity, we can set the desired value for the number of

servers. Thus, we can define a multi-server queueing system, the functioning of which is

provided by the ENTER and LEAVE blocks.

Figure 3. GPSS simulation model for the G/G/2 system without vacations
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2.3. Checking the Simulation Models and Choice the Simulation Time

Let us use analytical results for the M/M/c system in the case of the standard multiple vacation

policy [10] to test the constructed simulation models and to choose the optimal value of the

simulation time. We also use well-known solutions for the M/M/c system without vacations.

The M/M/c system is a multi-server model with exponential inter-arrival times and service

times. The duration of a vacation is also assumed in [10] to have the exponential distribution

with mean ( ).E Z The equality ( ) 0E Z  means that we are considering a system without

vacations.

We denote by  ( ) ( )N t E n t a value of the average number of customers in the system in

time ,t then ( )N N  denotes a stationary value of this indicator. We assume that the

condition 1  is satisfied, which ensures the existence of a stationary process of the number

of customers in the system. Here  ( ) / ( )E X cE Y  is the load factor of the system.

Table 1 shows the comparison of the average number of customers in the M/M/c system

obtained using simulation  5(10 )N and analytical models ( )N for cases 5c  and 10,c 

for various values of  and ( ).E Z The results are obtained for the simulation time 5
mod 10 .t 

This time value seems to be optimal for further calculations from the point of view of the

achieved accuracy of the results and the short time of model implementation.

We evaluate the accuracy of the results using the relative error calculated by the formula

 5| (10 ) | 100%.N N N    According to Table 1, the relative error, , does not exceed

4.07% and 1.44% for cases when 5c  and 10,c  respectively.

Using the GPSS World tools, we are able to verify that the value of ( )N t approaches a

stationary value N as time increases. Figure 4 shows this for the case when 10, 0.6,c  

and ( ) 0.2E Z  on the time interval [0, 1000].

The GPSS World uses random number generators to sample random numbers for

GENERATE and ADVANCE blocks. We can select which random number generator number

is to be used as the source of the random number. The results obtained for different values of

the random number generator may differ slightly from each other. In this work, we use the

number of the random number generator, which is equal to 1.
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Table 1. Comparison of the average number of customers in theM/M/c system obtained using

simulation and analytical models

 ( )E Z
5c  10c 

5(10 )N N , % 5(10 )N N , %

0.2 0 0.998 1.001 0.30 2.000 2.000 0.00

0.6 0 3.350 3.354 0.13 6.151 6.152 0.02

0.9 0 11.220 11.362 1.25 15.235 15.019 1.44

0.2 0.2 1.052 1.054 0.19 2.050 2.052 0.09

0.6 0.2 3.616 3.628 0.33 6.461 6.479 0.28

0.9 0.2 11.392 11.875 4.07 16.056 15.768 0.70

0.2 1 1.248 1.250 0.16 2.256 2.250 0.27

0.6 1 4.484 4.500 0.36 7.496 7.500 0.36

0.9 1 13.276 13.500 1.62 18.117 18.000 0.65

0.2 2 1.471 1.450 1.45 2.481 2.488 0.28

0.6 2 5.434 5.450 0.29 8.559 8.598 0.45

0.9 2 15.116 15.314 1.29 20.686 20.417 1.32

Figure 4. The approach of ( )N t to a stationary value N in the case when 10, 0.6,c   and

( ) 0.2E Z 
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3. Study of theMultiple Vacation Policy

3.1. Basic Designations

We consider the case when the random variables X and Y have the uniform and gamma

distributions, respectively, and Z, the duration of a vacation, is constant, therefore ( ) .E Z Z

We assume that ( ) 1,E X  and the random variable X is uniformly distributed on the interval

[0.7, 1.3] . Let us use the notation ,N W and kZ for stationary values of the average number

of customers in the system, average waiting time in the queue, and average duration of

multiple vacations for the k th server, respectively. Then

av
1

1 c

k
k

Z Z
c 

 

is the average duration of multiple vacations for the system as a whole. We denote by kT the

total time spent by the k th server in the vacation mode on the time interval mod[0, ],t then

1mod

1 c

U k
k

T T
c t 

 

is the average relative time spent by the system server in the vacation mode. Let Vc denote the

number of servers in vacation mode. We use the same simulation time 5
mod 10t  in all

calculations.

3.2. Dependencies of the System Performance Measures on Z for the Vacation Uc -Policy

Let us consider the case when 5, 1.5,c V  and 0.7.  Figures 5−7 show dependencies

of values of av, ,W Z and UT , respectively, on Z, the duration of a vacation, for various m in

the Uc -condition .Uc m The graphs show that W and avZ are increasing approximately

linear functions of Z. We have 1UT   for the case of condition Uc c (see the line

0.3UT  in Figure 7) and UT as an increasing function of Z for all other values of m. The

values of av, ,W Z and UT increase together with m for a fixed value of Z. If 0,Z  then we

have the value of W corresponding to the system without vacations.
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Figure 5. W as a function of Z in the case when 5, 1.5,c V  and 0.7 

Figure 6. avZ as a function of Z in the case when 5, 1.5,c V  and 0.7 

Figure 7. UT as a function of Z in the case when 5, 1.5,c V  and 0.7 



74

3.3. Dependencies of the System Performance Measures on ρ for the Vacation Uc -Policy

Let us consider the case when 5, 1.5,c V  and 5.Z  Figures 8−11 show dependencies of

values of av, , ,UW Z T and { 0},P Q  respectively, on , the load factor, for various m in the

Uc -condition .Uc m Here { 0}P Q  is the statistical probability of the absence of a queue at

the moment of arrival of a customer. The dependencies for W and { 0}P Q  on  are also

considered for the system without vacations.

Figure 8. W as a function of ρ in the case when 5, 1.5,c V  and 5Z 

Figure 9. avZ as a function of ρ in the case when 5, 1.5,c V  and 5Z 
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Figure 10. UT as a function of ρ in the case when 5, 1.5,c V  and 5Z 

Figure 11. { 0}P Q  as a function of ρ in the case when 5, 1.5,c V  and 5Z 

The graphs show that UT and { 0}P Q  are approximately linear functions of . In the case

of condition Uc c (when the standard multiple vacation policy is enforced), only the first

arrival to each server finds an empty queue, so the value of { 0}P Q  is practically zero. The

average waiting time, ,W is increasing function of , and other dependencies are decreasing

functions. The values of avZ change slightly when the Uc -condition changes for a fixed value

of . The values of W and UT increase together with m, and the value of { 0}P Q  decreases

as m increases for a fixed value of . The values of W and { 0},P Q  when m decreases,

approach the corresponding values for the system without vacations.

3.4. Dependencies of the System Performance Measures on V for the Vacation Uc -Policy

Let us consider the case when 5, 0.7,c   and 5.Z  Figures 12−14 show dependencies

of values of , ,UW T and { 0},P Q  respectively, on ,V the coefficient of variation of inter-
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arrival time, for various m in the Uc -condition. The dependencies of W and { 0}P Q  on V

are also considered for the system without vacations.

Figure 12. W as a function of V in the case when 5, 0.7,c   and 5Z 

Figure 13. UT as a function of V in the case when 5, 0.7,c   and 5Z 

The graphs show that W is increasing approximately linear function of .V We have

1UT   for the case of condition Uc c (see the dashed line in Figure 13) and UT as an

increasing function of V for , 1, 2.Uc m m  For other values of m, the values of UT almost

do not depend on V. In the case of condition ,Uc c the value of { 0}P Q  is practically zero.

Probability { 0}P Q  decreases as a function of V and as a function of m for a fixed value of

V, taking the largest value for the system without vacations. The values of W and UT increase

together with m for a fixed value of V. The smallest value of W is reached for the system

without vacations.
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Figure 14. { 0}P Q  as a function of V in the case when 5, 0.7,c   and 5Z 

3.5. Dependencies of the System Performance Measures on Z for Various Values of V

Let us consider the case when 5, 0.7,c   and .Uc c Figures 15 and 16 show

dependencies of values of N and av ,Z respectively, on Z for various .V The graphs show

that N and avZ are increasing approximately linear functions of .Z The values of N and avZ

increase together with V for a fixed value of .Z

Figure 15. N as a function of Z in the case when 5, 0.7,c   and Uc c
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Figure 16. avZ as a function of Z in the case when 5, 0.7,c   and Uc c

3.6. Dependencies of the System Performance Measures on ρ for Various Values of V

Let us consider the case when 5, 5,c Z  and .Uc c Figures 17−19 show dependencies of

values of , ,N W and av ,Z respectively, on  for various .V The graphs show that N and W

are increasing functions of . At the same time, avZ decreases as a function of . For values

of 1,V  the value of W is almost independent of . The values of N and W increase

together with V for a fixed value of . The values of avZ are almost independent of .V

Figure 17. N as a function of  in the case when 5, 5,c Z  and Uc c
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Figure 18. W as a function of  in the case when 5, 5,c Z  and Uc c

Figure 19. avZ as a function of  in the case when 5, 5,c Z  and Uc c

3.7. Dependencies of the System Performance Measures on V for Various Values of c

Let us consider the case when 0.7, 5,Z   and .Uc c Figures 20−22 show dependencies

of values of , ,N W and av ,Z respectively, on V for various .c Dependencies of { 0}P Q  on

V for various c are shown in Figure 23. The graphs show that , ,N W and avZ are increasing

functions of .V For the dependence of avZ on ,V this statement applies only to the single-

server system, but for other values of c , avZ is almost independent of .V
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Figure 20. N as a function of V in the case when 0.7  and 5Z 

Figure 21. W as a function of V in the case when 0.7  and 5Z 

Figure 22. avZ as a function of V in the case when 0.7, 5,Z   and Uc c
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Figure 23. { 0}P Q  as a function of V for the system without vacation, when 0.7 

For the system without vacations, the dependencies of { 0}P Q  on V are decreasing

functions. The values of N and { 0}P Q  increase as the number of servers increases, while

the value of W decreases. It is quite natural that for the system without vacations, the values

of N and W are smaller than the corresponding values for the vacation system.

3.8. Dependencies of the System Performance Measures on ρ for Various Values of c

Let us consider the case when 1.5, 5,V Z  and .Uc c Figures 24 and 25 show

dependencies of values of N and ,W respectively, on  for various .c The same

dependencies are also considered for the system without vacations. The graphs show that N

and W are increasing functions of , but for the multi-server systems, the values of W

increase only for values of  approaching 1.

Figure 24. N as a function of  in the case when 1.5V  and 5Z 
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Figure 25. W as a function of  in the case when 1.5V  and 5Z 

The value of N increases as the number of servers increases, while the value of W decreases.

It is quite natural that for the system without vacations, the values of N and W are smaller

than the corresponding values for the vacation system.

3.9. Examples of Obtaining Distributions of the System Performance Measures

We can get the distributions of those random variables for which tables are given in a

simulation model. GPSS World tools make it possible to obtain graphic representations of

distribution tables in the form of histograms and use graphs to track the dynamics of changes

in random variables over time. The constructed simulation model contains tables to obtain

distributions of ,n the number of customers in the system, ,Vc the number of servers in

vacation mode, ,W waiting times in the queue, and ( 1,..., ),kT k c vacation durations for

each server.

Let us consider the case when 5c  and 5.Z  Figures 26−29 show changing values of Vc

for four different datasets: 1) 0.5, 0.7, 1;UV c   2) 1.5, 0.7, 1;UV c  

3) 0.5, 0.7, 5;UV c   4) 0.5, 0.3, 1,UV c   respectively. Comparing the graphs in

Figures 26 and 27, we conclude that an increase in ,V the coefficient of variation, with the

other parameters being equal, leads to an increase in the duration, frequency of vacations, and

maximum values of .Vc An increase in the value of m in condition Uc m or a decrease in

, the system load factor, lead to the same result (here it is necessary to compare Figures 26

and 28, and Figures 26 and 29, respectively).
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Figure 26. Changing Vc on the time interval [0, 750] in the case when 0.5, 0.7,V   and 1Uc 

Figure 27. Changing Vc on the time interval [0, 750] in the case when 1.5, 0.7,V   and 1Uc 

Figure 28. Changing Vc on the time interval [0, 750] in the case when 0.5, 0.7,V   and 5Uc 
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Figure 29. Changing Vc on the time interval [0, 750] in the case when 0.5, 0.3,V   and 1Uc 

The dependencies presented in the graphs are consistent with the histograms of the

distributions of the random variables , , ,Vn c W and ( 1,..., )kT k c shown in Figures 30−33.

Figure 30. Distributions of n and Vc in the case when 0.5, 0.7,V   and 1Uc 
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Figure 31. Distributions of W and ( 1, ...5)kT k  in the case when 0.5, 0.7,V   and 1Uc 

Figure 32. Distribution of n in the case when 1.5, 0.7,V   and 1Uc 
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Figure 33. Distributions of , ,Vc W and ( 1, ...5)kT k  in the case when 1.5, 0.7,V   and 1Uc 
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4. Conclusion

A simulation model is constructed that allows describing the stochastic process of the

functioning of a vacation queuing system. A modification of the multiple vacation policy ( Uc -

policy) proposed by us allows more flexible use of vacations, taking into account the number

of servers in use by customers at the time each server switches to vacation mode. The

application of the Uc -policy helps to reduce the degradation in system performance compared

to the system without vacations. The constructed simulation model gives us the fundamental

opportunity to predict the impact of each of the input parameters on the system performance

measures for the G/G/c system with arbitrary inter-arrival times and service times

distributions. Calculations showed good convergence of our simulation results with the results

of the analytical model for the M/M/c system, which exists only in the case of the standard

multiple vacation policy.

The obtained results for the G/G/c system showed a significant dependence of the system

performance measures on the value of the coefficient of variation of the inter-arrival times

distribution. This dependence increases even more if we take into account the possibility of

changing the coefficients of variation of service times and the duration of vacations.

Therefore, it is difficult to say about the practical application of the results of analytical

models, which were obtained only for theM/G/1 and M/M/c systems.
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