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Abstract 

Structural-parametric models, parametric structural schematic diagrams, transfer functions of 

electromagnetoelastic actuators for nano- and micromanipulators are obtained. Effects of 

geometric and physical parameters of electromagnetoelastic actuators and external load on its 

dynamic characteristics are determined. For calculations mechatronic systems with 

piezoactuators of nano- and micromanipulators the parametric structural schematic diagrams 

and the transfer functions of piezoactuators are obtained. A generalized parametric structural 

schematic diagram of the electromagnetoelastic actuator is constructed. 
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1. Introduction and statement of problem 

Electromechanical actuators for nano- and micromanipulators operate within working loads 

providing elastic deformations of actuators. Piezoactuator - piezomechanical device intended 

for actuation of mechanisms, systems or management based on the piezoelectric effect, 

converts electrical signals into mechanical movement or force. The application of 

electromechanical actuators based on electromagnetoelasticity (piezoelectric, piezomagnetic, 

electrostriction, and magnetostriction effects) is promising in nanotechnology, nanobiology, 

power engineering, microelectronics, astronomy for large compound telescopes, antennas 

satellite telescopes and adaptive optics equipment for precision matching, compensation of 

temperature and gravitation deformations, and atmospheric turbulence via wave front 

correction [1 − 4]. 

In the present paper is solving the problem of building the structural parametric model of the 

electromagnetoelastic actuator in contrast its electrical equivalent circuit [5 − 7]. By solving 

the wave equation with allowance methods of mathematical physics for the corresponding 

equation of electromagnetoelasticity, the boundary conditions on loaded working surfaces of a 

electromagnetoelastic actuator, and the strains along the coordinate axes, it is possible to 

construct a structural parametric model of the actuator. The transfer functions and the 

parametric structure schemes of the piezoactuators are obtained from a set of equations 

describing the corresponding structural parametric models of the piezoelectric actuators for 

nano- and micromanipulators of the mechatronic systems [8 − 21]. 

The piezoactuator of nanometric movements operates based on the inverse piezoeffect, in which 

the motion is achieved due to deformation of the piezoelement when an external electric voltage 

is applied to it. Piezoactuators for drives of nano- and micrometric movements provide a 

movement range from several nanometers to tens of microns, a sensitivity of up to 10 nm/V, a 

loading capacity of up to 1000 N, the power at the output shaft of up to 100 W, and a 

ransmission band of up to 1000 Hz [22]. 

The investigation of static and dynamic characteristics of a piezoactuator for nano- and 

micromanipulators as the control object is necessary for calculation the piezodrive for control 

systems of nano- and micrometric movements. At the nano- and microlevels, piezoactuators are 

used in linear nano- and microdrives and micropumps. Piezoactuators are used in the majority 

of nanomanipulators for scanning tunneling microscopes (STMs), scanning force microscopes 

(SFMs), and atomic force microscopes (AFMs). Nanorobotic manipulators with nano- and 
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microdisplacements with piezoactuators based are a key component in nano- and 

microdisplacement  nanorobotic systems [23 − 28]. 

 

2.Structural-parametric models and transfer functions of 

electromagnetoelastic actuators 

Deformation of the piezoactuator corresponds to its stressed state. If the mechanical stress T is 

created in the piezoelectric element, the deformation S  is formed in it. There are six stress 

components 1T , 2T , 3T , 4T , 5T , 6T , the components 1T  - 3T  are related to extension-

compression stresses, 4T  - 6T  to shear stresses. 

The matrix state equations [7] connecting the electric and elastic variables for polarized 

ceramics have the form 

EεdTD
T ,                                                               (1) 

EdTsS
tE  .                                                                (2) 

Here, the first equation describes the direct piezoelectric effect, and the second - the inverse 

piezoelectric effect; S  is the column matrix of relative deformations; T  is the column matrix 

of mechanical stresses; E  is the column matrix of electric field strength along the coordinate 

axes; D  is the column matrix of electric induction along the coordinate axes; E
s  is the elastic 

compliance matrix for constE ; and t
d  is the the transposed matrix of the piezoelectric 

modules. 

In polarized ceramics PZT there are five independent components Es11 , Es12 , Es13 , Es33 , Es55  in the 

elastic compliance matrix, three independent components 33d , 31d , 15d  in the transposed 

matrix of the piezoelectric modules and three independent components T

11 , T

22 , T

33  in the 

matrix of dielectric constants. 

The equation of electromagnetoelasticity of the actuator [7] has the form  

  HE

im

E

mim

H

mij

HE

iji HdEdTsS ,,,,, ,                                               (3) 

where iS  is the relative deformation along the axis i, E is the electric field strength, H is the 

magnetic field strength,   is the temperature, ,,HE

ijs  is the elastic compliance for constE , 

constH , const , jT  is the mechanical stress along the axis j, ,H

mid  is the piezomodule, i.e., 
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the partial derivative of the relative deformation with respect to the electric field strength for 

constant magnetic field strength and temperature, i.e., for constH , const , mE  is the 

electric field strength along the axis m, ,E

mid  is the magnetostriction coefficient, mH  is the 

magnetic field strength along the axis m, HE

i

,  is the coefficient of thermal expansion,   is 

deviation  of  the  temperature     from  the  value  const ,  i = 1, 2, … , 6,  j = 1, 2, … , 6, 

m = 1, 2, 3. 

When the electric and magnetic fields act on the electromagnetoelastic actuator separately, we 

have the equations [7] 

as the equation of inverse piezoelectric effect: 

3333333 TsEdS E  for the longitudinal deformation when the electric field along axis 3 causes 

deformation along axis 3, 

1113311 TsEdS E  for the transverse deformation when the electric field along axis 3  causes  

deformation along axis 1, 

5551155 TsEdS E  for the shift deformation when the electric field along axis 1 causes 

deformation in the plane perpendicular to this axis, 

as the equation of magnetostriction: 

3333333 TsHdS H  for the longitudinal deformation when the magnetic field along axis 3 causes 

deformation along axis 3, 

1113311 TsHdS H for the transverse deformation when the magnetic field along axis 3 causes 

deformation along axis 1, 

5551155 TsHdS H  for the shift deformation when the magnetic field along axis 1 causes 

deformation in the plane perpendicular to this axis. 

Let us consider the longitudinal piezoeffect in a piezoactuator shown in Figure 1, which 

represents a piezoplate of thickness   with the electrodes deposited on its faces perpendicular 

to axis 3, the area of which is equal to 0S . 
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Figure 1. Piezoactuator for the longitudinal piezoeffect 

The equation of the inverse the longitudinal piezoelectric effect [7, 9] has the following form: 

),()( 3333333 txTstEdS E ,                                                     (4) 

here, xtxS  ),(3  is the relative displacement of the cross section of the piezoactuator along 

axis 3, 33d  is the piezoelectric modulus for the longitudinal piezoelectric effect,      tUtE3  

is the electric field strength,  tU  is the voltage between the electrodes of actuator,   is the 

thickness, Es33  is the elastic compliance along axis 3, and 3T  is the mechanical stress along axis 

3. The equation of equilibrium for the forces acting on the piezoactuator 

 
2

2

03

,

t

tx
MFST




 ,                                                           (5) 

where F is the external force applied to the piezoactuator, 0S  is the cross section area and M is 

the displaced mass. 

For constructing a structural parametric model of the voltage-controlled piezoactuator, let us 

solve simultaneously the wave equation, the equation of the inverse longitudinal piezoelectric 

effect, and the equation of forces acting on the faces of the piezoactuator. Calculations of the 

piezoactuators are performed using a wave equation [2, 7] describing the wave propagation in 

a long line with damping but without distortions, which can be written as 
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ct

tx

с EE 












,                                  (6) 

where ),( tx  is the displacement of the section of the piezoelectric plate, x is the coordinate, t 

is time, Ec  is the sound speed for constE ,   is the damping coefficient that takes into 

account the attenuation of oscillations caused by the energy dissipation due to thermal losses 

during the wave propagation. Using the Laplace transform, we can reduce the original 

problem for the partial differential hyperbolic equation of type (5) to a simpler problem for 

the linear ordinary differential equation [8, 9] with the parameter of the Laplace operator p. 

Applying the Laplace transform to the wave equation (6)  
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and setting the zero initial conditions, 
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As a result, we obtain the linear ordinary second-order differential equation with the parameter 

p written as 

0),(
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c
p

cdx

pxd
EE

,                                      (8) 

with its solution being the function 

  xx BeCepx ),( ,                                                       (9) 

where  px,  is the Laplace transform of the displacement of the section of the piezoelectric 

actuator,  Ecp  is the propagation coefficient. C and B are constant coefficients 

determining from the boundary conditions as 

)(),0( 1 pp   for 0x                                                     (10) 

)(),( 2 pp   for x  

Then, the constant coefficients 

      sh221eC ,         sh221eB .                                 (11) 

Then, the solution (9) of the linear ordinary second-order differential equation can be written as 

            shshsh),( 21 xpxppx .                                 (12) 

The equations for the forces operating on the faces of the piezoelectric actuator plate are as 

follows:  

)()(),0( 1

2

1103 ppMpFSpT         for   0x ,                                   (13) 

)()(),( 1

2

2203 ppMpFSpT      for   x , 

where  pT ,03  and  pT ,3   are determined from the equation of the inverse piezoelectric effect. 

For 0x  and x , we obtain the following set of equations for determining stresses in the 

piezoactuator: 
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Equations (13) yield the following set of equations for the structural parametric model of the 

piezoactuator: 

            )()(chsh)(1)(1)( 21333331

2

11 pppEdpFpMp E  ,            (15) 

            )()(chsh)(1)(1)( 12333332

2

22 pppEdpFpMp E  , 

where 03333 SsEE  . Figure 2 shows the parametric structure scheme of a voltage-controlled 

piezoactuator corresponding to (15) supplemented with an external circuit equation 

)1()()( 00  pRCpUpU , where )(0 pU  is the supply voltage, R is the resistance of the external 

circuit and 0C  is the static capacitance of the piezoactuator. 

 

 

 

Figure 2. Parametric structural schematic diagram of a voltage-controlled piezoactuator for 

longitudinal piezoeffect 
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The equation of the inverse shift piezoelectric effect [7, 9] for piezoactuator Figure 3 has the 

following form: 

),()( 5551155 txTstEdS E ,                                                     (16)  

here, xtxS  ),(5  is the relative displacement of the cross section of the piezoactuator along 

axis 5, 55d  is the piezoelectric modulus for the shift piezoelectric effect,      tUtE1  is the 

electric field strength along axis 1,  tU  is the voltage between the electrodes of actuator,   is 

the thickness, Es55  is the elastic compliance along axis 5, and 5T  is the mechanical stress along 

axis 5. 

 

 

 

Figure 3. Piezoactuator for the shift piezoeffect 

 

 

For piezoactuator of the shift piezoelectric effect Figure 3 we obtain the following set of 

equations describing the structural parametric model and parametric structural schematic 

diagram of piezoactuator Figure 4 

  
         )(

1
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1
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                                                                                              (17) 
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, 

where 05555 SsEE  . 
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Figure 4. Parametric structural schematic diagram of a voltage-controlled piezoactuator for shift 

piezoeffect 

Taking into account generalized electromagnetoelasticity equation (3), we obtain the following 

system of equations describing the generalized structural-parametric model of the 

electromagnetoelastic actuator for nano- and micromanipulators: 

            )()(chsh)(1)(1)( 211

2

11 ppllppFpMp mmiij   ,              (18) 

            )()(chsh)(1)(1)( 122

2

22 ppllppFpMp mmiij   , 
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  , parameters   of the control for the electromagnetoelastic actuator: E for voltage 

control, D for current control, H for magnetic field strength control. Figure 5 shows the 

generalized parametric block diagram of the electromagnetoelastic actuator corresponding to 

the set of equations (18). 

Generalized structural-parametric model (18) of the electromagnetoelastic actuator after 

algebraic transformations provides the transfer functions of the electromagnetoelastic actuator 

for nano- and micromanipulators in the form of the ratio of the Laplace transform of the 

displacement of the transducer face and the Laplace transform of the corresponding force at 

zero initial conditions.  
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The joint solution of equations (18) for the Laplace transforms of displacements of two faces of 

the electromagnetoelastic actuator yields 

  )()()()()()( 213112111 pFpWpFpWppWp m  ,                                   (19) 

  )()()()()()( 223122212 pFpWpFpWppWp m  . 

 

Figure 5. Generalized parametric structural schematic diagram of the electromagnetoelastic actuator 

The generalized transfer functions of the electromagnetoelastic actuator are  

      
ijijmim AlpMpppW 2th)( 2

2111   ,   0Ssijij

  , 

               ,21thth 222

21

3

21

42

21   cppclMMplcMMpMMA ijijijij  

      
ijijmim AlpMpppW 2th)( 2

1221   , 

      
ij

ijij AlpMpFppW   th)( 2
21112 , 

          
ijij AlpFppWpFppW   sh)()( 12222113 , 

      
ijijij AlpMpFppW   th)( 2

12223 . 

We obtain from equations (19) the generalized matrix equaion for the electromagnetoelastic 

actuator in the matrix form for nano- and micromanipulators 
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Let us find the displacement of the faces the electromagnetoelastic actuator in a stationary 

regime for   )(10 tt mm  ,   0)(21  tFtF  and inertial load. The static displacement [24 − 26] of 

the faces the electromagnetoelastic actuator  1  and  2  can be written in the following 

form: 

         mMMmMlpppWt mmim
pt






2120011

0

0
11 2limlim ,                    (21) 

         mMMmMlpppWt mmim
pt






2110021

0

0
22 2limlim ,                   (22) 

      02121 )(lim)( mmi
t

ltt 


,                                               (23) 

where m  is the mass of the electromagnetoelastic actuator, 21, MM  are the load masses. 

Let us consider a numerical example of the calculation of static characteristics of the 

piezoactuator from piezoceramics PZT under the longitudinal piezoelectric effect at 1Mm   

and 2Mm  . For 10

33 104 d m/V, 250U V, 101 M kg and 402 M kg we obtain the static 

displacement of the faces of the piezoactuator   801  nm,   202  nm,   100)( 21  nm. 

The static displacement the faces of the piezoactuator for the transverse piezoelectric effect and 

inertial load at   )(10 tUtU  ,      tUtEtE 1)(1 0303   and   0)(21  tFtF  can be written in the 

following form: 

           mMMmMUhdpUppWt
pt






212031011

0

0
11 2)(limlim ,                 (24) 

           mMMmMUhdpUppWt
pt






211031021

0

0
22 2)(limlim ,                (25) 

        0312121 )(lim)( Uhdtt
t




.                                          (26) 

The static displacement of the faces of the piezoactuator for the transverse piezoelectric effect 

and inertial load at 1Mm   and 2Mm   

         212031011

0

0
11 )(limlim MMMUhdpUppWt

pt





,                              (27) 
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         211031021

0

0
22 )(limlim MMMUhdpUppWt

pt





.                            (28) 

Let us consider a numerical example of the calculation of static characteristics of the 

piezoactuator from piezoceramics PZT under the transverse piezoelectric effect at 1Mm   

and 2Mm  . For 10

31 105.2 d m/V, 2104 h m, 3102  m, 400U V, 101 M kg and 

402 M kg we obtain the static displacement of the faces of the piezoelectric actuator 

  16001  nm,   4002  nm,   2)( 21  μm. 

Let us consider the description of the piezoactuator for the longitudinal piezoelectric effect for 

one rigidly fixed face of the transducer at 1M , therefore, we obtain from equation (20) the 

transfer functions of the piezoactuator for the longitudinal piezoelectric effect [12 − 17] in the 

following form: 

       cth)( 2

332333221 pMdpEppW E ,                                (29) 

If 1M  and 02 M , an expression for the transfer function of unloaded piezoactuator under 

the longitudinal piezoelectric effect has the form 

     ]cth[)( 333221  dpEppW .                                         (30) 

Now, using equation (30), we write the expression for the transfer function of unloaded 

piezoactuator under the transverse piezoelectric effect at 1M  and 02 M  

     ]cth[)( 313221  hdpEppW .                                         (31) 

We write the resonance condition   0ctg  Ech . 

This means that the piezoactuator is a quarter-wave vibrator with the resonance frequency 

  .4  hcf E

r   

The transfer function of an unloaded piezoactuator under the transversal piezoeffect with 

voltage control, when 1M  and 02 M , has the form 

             hhhdpEppUppW cth][)( 313222 .                        (32) 

Accordingly, its frequency transfer function is described by the relation 

            EE cjhcjhhdjUjjW th)( 3122 .                  (33) 

Let us consider the static responses of the piezoactuator under the longitudinal piezoeffects. Let 

us determine the value of the The static displacement of the face of the piezoactuator  2  in 
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the static regime for   )(10 tUtU   and 0)(2 tF  or   )(102 tFtF   and   0tU . 

Accordingly, the static displacement  2  of the piezoactuator under the longitudinal 

piezoeffect in the form 

          033033

0

002
0

22 thlimlimlim UdUdpUppWt
ppt






,                            (34) 

          0033

2

0

2

0

0023
0

2 thlimlim SFscmFpFppW EE

pp






.                          (35) 

Let us consider a numerical example of the calculation of static characteristics of the 

piezoactuator under the longitudinal piezoeffects. For 10
33 104 d m/V, 300U V, we obtain 

  1202  nm. For 4106  m, 11
33 105.3 Es m

2
/N, 10000 F N, 4

0 1075.1 S m
2
, we obtain 

  1202  nm. The experimental and calculated values for the piezoactuator are in agreement 

to an accuracy of 5%. 

Let us consider the operation at low frequencies for the piezoactuator with one face rigidly fixed 

so that 1M  and 2Mm  . Representing )(21 pW  and )(23 pW  as 

       cth)( 2

332333221 pMdpEppW E ,                                   (36) 

       cth)( 2

332332223 pMpFppW EE .                                 (37) 

Using the approximation of the hyperbolic cotangent by two terms of the power series in 

transfer functions (36) and (37), at 2Mm   we obtain the following expressions the transfer 

functions in the frequency range of  Ec01,00  

     12)( 22

333221  pTpTdpEppW ttt ,                                        (38) 

       12)( 22

0332223  pTpTSspFppW ttt

E ,                                   (39) 

  EE

t CMmMcT 3322  ,     23 Mmt  ,       EEE sSC 3333033 1 . 

where tT  is the time constant and t  is the damping coefficient, EC33  - is the is rigidity of the 

piezoactuator under the longitudinal piezoeffect.  

In the static mode of operation the piezoactuator for mechatronic systems and elastic load we 

obtain the equation the following form 

E

em CC 332

2

1

1







,                                                        (40) 
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where 2  is the displacement of the piezoactuator in the case of the elastic load, 0332 Udm   is 

the maximum displacement of the piezoactuator, eC  is the load rigidity. 

Equations (38, 40) yield the transfer function of the piezoelectric actuator with a fixed end and 

elastic inertial load in the following form 

  121)(

)(
)(

22
33

332
2







pTpTCC

d

pU

p
pW

ttt
E

e

,                                (41) 

where the time constant tT  and the damping coefficient t  are determined by the formulas 

 E

et CCMT 332  ,  




  E

e

EE

t CCMcC 3333

2 3 . 

Let us consider the operation at low frequencies for the piezoelectric actuator with one face 

rigidly fixed so that 1M  and 2Mm   for 402 M kg, 6
33 109 C N/m, 610eC N/m we obtain 

3102 tT c. 

 

3. Results and Discussions 

Taking into account equation of generalized electromagnetoelasticity (piezoelectric, 

piezomagnetic, electrostriction, and magnetostriction effects) and decision wave equation we 

obtain a generalized parametric structural schematic diagram of electromagnetoelastic actuator 

Figure 5 for nano- and micromanipulators. The results of constructing a generalized structural-

parametric model and parametric structural schematic diagram of electromagnetoelastic 

actuator [2-4] for the longitudinal, transverse and shift deformations are shown in Figure 5. 

Parametric structural schematic diagrams piezoactuators for longitudinal piezoeffect Figure 2, 

for transverse piezoeffect and for shift piezoeffect Figure 4 converts to generalized parametric 

structural schematic diagram of the electromagnetoelastic actuator Figure 5 with the 

replacement of the parameters 

133 ,, EEEm  ; 153133 ,, dddmi  ; EEE

ij ssss 551133 ,, ; bhl ,, . 

Generalized structural-parametric model and generalized parametric structural schematic 

diagram of the electromagnetoelastic actuator after algebraic transformations provides the 

transfer functions of the electromagnetoelastic actuator for nano- and micromanipulators [9-26]. 

The piezoactuator with the transverse piezoelectric effect compared to the piezoactuator for the 

longitudinal piezoelectric effect provides a greater range of static displacement and less working 
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force. The magnetostriction actuators provides a greater range of static working forces [24-26]. 

Using the solutions of the wave equation of the electromagnetoelastic actuator and taking into 

account the features of the deformations along the coordinate axes, it is possible to construct the 

generalized structural-parametric model, generalized parametric structural schematic diagram 

and the transfer functions of the electromagnetoelastic actuator for nano- and 

micromanipulators. 

 

4. Conclusions 

Thus, using the obtained solutions of the wave equation and taking into account the features 

of the deformations along the coordinate axes, it is possible to construct the generalized 

structural-parametric model and parametric structural schematic diagram of the 

electromagnetoelastic actuator for nano- and micromanipulators and to describe its dynamic 

and static properties with allowance for the physical properties, the external load during its 

operation as a part of the the mechatronic system. 

The transfer functions and the parametric structural schematic diagrams of the piezoactuators 

for the transverse, longitudinal and shift piezoelectric effects are obtained from structural 

parametric models of the piezoactuators for nano- and micromanipulators of the mechatronic 

systems. 
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