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Abstract  

There is solved numerically the conjugate problem of the oscillations of the axisymmetric 

ellipsoids, fixed at the end of the elastic spring, in the space, filled with the incompressible 

and viscous fluid. There is used the non-grid method of the viscous vortex domains. There are 

shown the boundaries of usefulness for the simplified formulas for the calculation of the non-

stationary drag force, taking into account the main stationary component, the influence of the 

attached mass and the influence of the history of the body motion. It is found that these 

formulas are more appropriate when the Reynolds numbers are of the order of 10
2
 and the 

axisymmetric ellipsoids are more elongated. 
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1. Introduction 

To investigate the connection of the body motion characteristics (such as speed and 

acceleration) and other parameters, describing the body and the environment, with the hydro-
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aerodynamics loads there is useful to consider the model problem of the free oscillations of 

the fixed on an elastic spring solid bodies decaying under the influence of external viscous 

medium. Such systems with dissipative properties are theoretically studied in [1, 2]. In the 

experimental work [3] the medium viscosity has been varied by dissolving of the glycerin (as 

a more viscous liquid) into water as a less viscous fluid. In particular, the dependence of the 

damping rate of the ball’s oscillations in the viscous fluid on the glycerol concentration in the 

solution has been studied. It is shown that due to the accounting effect of the attached weight 

to drag in some cases, it is possible to reproduce analytically the dependence of the drag force 

versus time. 

In the present paper there is performed the numerical simulation based on the gridless viscous 

vortex domains method [4-6] of the one-dimensional oscillations of the solid sphere or 

spheroid (which is the axisymmetric ellipsoid) with a predetermined density fixed on the end 

of the linear elastic spring in an infinite space filled with an incompressible viscous medium 

(see. Fig. 1). In contrast to the work [7], the law of motion of the body in the present work is 

not defined, and there is solved the conjugate problem of hydrodynamics and dynamics. We 

give a comparison of the integrated results of the numerical simulations at different 

elongations of the ellipsoid with the results of resistance calculation based on simplified 

formulas, such as the formula with taking into account the attached mass and the formula, 

taking into account the hereditary Basse force both simultaneously with the attached mass. 

 

2. Formulation of the problem 

 

Fig. 1. Connection diagram of a spheroid  

with an elastic spring 
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One-dimensional fluctuations of the solid spheroid (axisymmetric ellipsoid) with a given 

constant density 
body  on linear elastic spring are considered, Fig. 1. One end of the spring is 

fixed and the other is attached to the spheroid. Initially, the spring is stretched (initial 

elongation is equal to Δx), and the surrounding spheroid viscous incompressible fluid is at rest 

in the infinite space. The conjugate joint task of finding two scalar functions 

( ), ( , , )mx t t x y , satisfying the system (1), is solved numerically. 
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The boundary conditions on the adhesion of the body surface corresponding to the system (1) 

have a kind of connection between ,mx . The velocity field in the liquid is recovered from 

the vorticity field using the Biot-Savart formula [6]. Conjugate system (1) admits a degenerate 

case of the body of zero mass m = 0, without reducing the order of the dynamic equation, 

which is considered in this paper. In the case where a uniform density of ellipsoid or rigid 

ellipsoidal shell corresponding to zero density moves under the force of a linear elastic spring, 

the outer (non-hydrodynamic) force Fext
 can be represented as : 

0


 F eext x

x
k

L
. Here, the 

dimensionless stiffness of the spring 
0 2

4


k
k

LU 
,x  - the current deviation coordinate of the 

center of the spheroid from the origin. Accordingly, the characteristic Reynolds number 

Re 
UL


. The main dimensional scale has been adopted as , ,L U  , where L - linear 

dimension of the body (as L  we choose the transverse radius of the spheroid); U - the 

characteristic velocity of the body relative to the medium at rest at infinity;  - density of the 

medium. 
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3. The method of numerical solution 

There is used the gridless Lagrangian method [4-6] for solving the unsteady Navier-Stokes 

equations - the method of viscous vortex domains (VVD). The space with nonzero vorticity is 

modeled by a set of small regions (vortex domains), moving relative to the fluid with the 

diffusion velocity. At each of the time step from the control intervals partitioning the body 

surface, new domains go off, modeling the flow vorticity. Circulation of each domain D 

remains constant. At each checkpoint of the domain R there is  calculated the convective fluid 

velocity V and the diffusion velocity of a given domain with respect to the environment. 

 

4. The results of calculations 

As a result of calculations by this numerical method of the vortex domains at 2(a) Re = 40; 

2(b) Re = 120; 2(c) Re = 300; 2(d) Re = 1200 there were obtained the dependences of the 

speed and hydrodynamic forces on the dimensionless time. These functions were calculated 

on the basis of the modeling of evolution of velocity and the pressure fields. The fig. 2 shows 

the variation of the instantaneous values of the velocity (Vx) for the ball and the fig. 3 – for the 

elongated axisymmetric ellipsoid in the process of the fluctuations of the body which is fixed 

at the end of the linear elastic spring with a given spring stiffness equal to 1, for a given 

density of a body equal to 0, and for a given initial deviation of the coordinate equal to 10 

dimensionless units. At the same pictures there are presented the similar dependences on the 

time of the dimensionless drag force (Fx), as well as various components of this force when it 

calculated on the basis of simplified formulas (Fxs - stationary component, FXA - the force 

taking into account the attached mass, FXB - the force taking into account both the attached 

weight, and hereditary Basse force). From a comparison of Fig. 2(d) and Fig. 3(a), (b) it is 

clear that with increasing degree of elongation of spheroid from 1.0 (the ball case) to 1.2 there 

can be seen the improving of the quality of the approximation of the drag force dependence on 

the dimensionless time by taking into account the impact of the attached mass and hereditary 

Basse force, because with lengthening of the body the influence of the non-stationary vortices 

(see the figures 4, 5 and 6, showing the vortex pictures for the different values of the lengths 

of the body, from these pictures it can be seen that the density of the vorticity near the surface 

of the body is becoming lower since the relative length of this body becomes greater) on the 

varying with time calculated drag force (Fig. 2(c) and 2(d)) decreases. The curves at the Fig. 
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2(a) and 2(b) show that  taking into account additionally the hereditary Basse force (curve FXB) 

gives a slight refinement of the approximation in comparison with the formula taking into 

account only the attached mass (FXA). From Fig. 2(b) and 2(d) it can be seen that with an 

increase of viscosity with a factor of 10 (Fig. 2(b)) the fluctuations of the ball are stabilized 

and the resistance force is more precise approximated by taking into account the attached 

mass (FXA) and simultaneously the attached mass and the Basse force (curve FXB). 

The work was supported by the Federal Target Program of the Ministry of Education and 

Science of the Russian Federation (agreement 14.576.21.0079, RFMEFI57614X0079 project) 

and RFBR (grant № 14-08-01130, grant № 15-01-99623 and grant № 17-08-01525). 

 

 

(a) 

(b) 
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Fig. 2. Time dependences of the dimensionless speed (the Vx) and the dimensionless drag force (Fx) 

for the ball:  

(a) Re = 40; (b) Re = 120; (c) Re = 300; (d) Re = 1200 

 

 

 

(c) 

(d) 
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Fig. 3. Time dependences of speed (the Vx) and the dimensionless drag force (Fx) 

for the spheroids with the elongations 1.1 (a) and 1.2 (b) 

at  Re = 1200 

(a) 

(b) 
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Fig. 4. Instantaneous picture of distribution of the viscous vortex domain for the spheroid with the 

elongation 1.0, oscillating at the elastic spring in the viscous and incompressible fluid with Re = 1200 

at the time moment  

t = 7.5398 

 

Fig. 5. Instantaneous picture of distribution of the viscous vortex domain for the spheroid with the 

elongation 1.1, oscillating at the elastic spring in the viscous and incompressible fluid with Re = 1200 

at the time moment  

t = 7.5398 
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Fig. 6. Instantaneous picture of distribution of the viscous vortex domain for the spheroid with the 

elongation 1.2, oscillating at the elastic spring in the viscous and incompressible fluid with Re = 1200 

at the time moment  

t = 7.5398 

 

5. Conclusions 

These calculations performed on the basis of the method of the viscous vortex domains with 

the aim of modeling of the free fluctuations of the body with the zero mass shows the 

boundaries of usefulness of the simplified formulas for the calculation of the non-stationary 

drag force, taking into account the main stationary component, the influence of the attached 

mass and the influence of the history of the body movement. We can make the conclusion that 

these formulas are more effective when the Reynolds numbers are of the order of 10
2
 and the 

axisymmetric ellipsoids are more elongated. For the ball the obtained results of the 

approximation are more precise when the Reynolds number is equal to 120. For the Reynolds 

numbers 40 and 300 the mistakes of the approximation are more significant. 
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