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Abstract

The Navier-Stokes equation is generally considered the ultimate mathematical expression for the dictates of the

Laws of Nature which pertain to transport phenomena in the field of fluid dynamics. It is written and typically

discussed, however, in the form and jargon of advanced mathematics. This makes it very difficult for any

nonmathematician to understand, and this, in part, is why it remains unsolved for most applications. The essence of

the equation, however, has nothing to do with mathematics and everything to do with the underlying physics

surrounding the fluid transport mechanisms involved in any given fluid flow embodiment. Accordingly, it is the non-

mathematical “solution equivalent” of the N-S equation that is important to the practitioner of fluid dynamics. In the

case of HPLC (High Pressure Liquid Chromatography), for instance, this means the physics underlying fluid flow

through conduits packed with partially porous solid particles. Recently, 2019, a new fluid flow model (QFFM) was

published which contains, embedded in its framework, the “solution equivalent” for the N-S equation in

chromatographic columns. This novel fluid flow model teaches that an empty HPLC column is a special case of the

same column packed with solid particles. In fact, one is the mirror image of the other. The difference between the

two is defined by the choice of independent variables. Thus, by setting the value of three independent variables in

the QFFM, the complexity of the advanced mathematics in the Navier-Stokes equation can be avoided. If one

considers “matter” and “anti-matter” to be the mirror image of one another, however, one can easily rationalize the

rules of engagement which underlie this phenomenon in the context of the Navier-Stokes equation. In this paper we

will explain how the QFFM rationalizes the fundamental issues of the Navier-Stokes equation, providing the
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“solution equivalent”, in the jargon of classical mechanics, as opposed to that of advanced mathematics, for fluid

flow through HPLC columns.

KeyWords: Conduit Porosity; Hypothetical Q particles; Particle porosity: Packed beds; Column Permeability.

Highlights

 An empty conduit is a special case of a packed conduit containing particles with a solid skeleton

 The one is the mirror image of the other

 The difference between the two flow embodiments is defined by the choice of independent variables

 Packed conduits and empty conduits are seamlessly accommodated in the QFFM framework

 The QFFM is certifiable over the entire fluid flow regime from creeping flow to fully developed turbulence

1. Introduction

Let us begin at the beginning. Most practitioners will say that the first real attempt to characterize the flow of fluids

through closed conduits was made by Poiseuille circa 1846[1], in the case of empty conduits, and by Henry Darcy in

1856 [2], in the case of conduits packed with solid obstacles. The former’s work led to what is known today as

Poiseuille’s Law [3] and the latter’s work to what is known as Darcy’s Law [4]. Both these Laws teach that there is a

linear relationship between fluid flow rate and the pressure drop across a given conduit. As time progressed,

however, it became obvious that both these Laws had limitations, and in the intervening 170 years approximately,

much effort has been devoted to ascertaining the underlying reasons [5-12].Unfortunately, among practitioners, even

to this day, there is much controversy regarding the parameters which constitute the pressure/flow relationship [13].

Darcy’s original methodology used screened river sand packed into large pipes, through which he pumped water,

and recorded the pressure drop across the packed pipe for each measurement of flow rate of the water [14]. It would

be logical to conclude, therefore, that the precise nature of the sand particles, and the manner in which they were

forced together inside the packed conduit, should be fertile ground for experimentation in any efforts to better

understand the pressure/flow relationship in packed conduits [15].Throughout the middle to end of the 20th century,

Blake, Kozeny, Carman, Bird Stewart and Lightfoot, Giddings, Halasz and Guiochon are just some of the more

prominent scientists who devoted considerable effort to the elucidation of a fluid flow model capable of describing

accurately the elements underlying this linear pressure/flow relationship, i.e., that portion of the fluid flow regime

where viscous contributions to pressure drop dominate over kinetic contributions [16-22]. Unfortunately, however,

their efforts did not culminate in a consensus of opinion and we are left today with the glaring contradictions

regarding the value of the constant in the Kozeny/Carman equation, which is generally accepted as the most popular

equation to describe the pressure/flow relationship in packed conduits, when the dominant contributions are derived
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from viscous sources [23,24]. Giddings circa 1965, for instance, teaches that this value is 270 [25], Lightfoot circa

1960 teaches that its’ value is 150 [19], while Halasz and his disciples claim that its value is 180 [26, 27], which is

the value derived originally by Carman in 1937 [28]. Furthermore, the concept of conduit external porosity has been

misapplied mostly in the engineering disciplines [29]. To make matters even worse, with the advent of the use of

porous particles in applications like chromatographic separations, where solute molecules are separated based upon

their ability to penetrate the pore network internal to the particles in a packed conduit, yet other elements of

confusion have found their way into the controversy. Particle porosity, which is a variable that is independent of the

packed conduit, has been invariably conflated with conduit internal porosity, and “mobile phase velocity”, which is

not a fluid velocity of any kind, has been conflated with the fluid velocity in many chromatographic journal

publications [30, 31]. In the realm of the flow regime where kinetic contributions begin to manifest, Sabri Ergun

circa 1950, in combination with others, most notably Orning, produced an equation which uses the sum of two

distinct terms to capture both viscous and kinetic contributions [32]. This was a significant step forward in

understanding how the pressure/flow relationship changes as the fluid accelerates into the region where kinetic

contribution trump viscous contributions. Sadly, however, in 1952 this development morphed into, one step forward

and two steps backwards, when Ergun assigned values of 150 and 1.75 for the constants in the viscous and kinetic

terms in his now famous “Ergun equation” [33]. Throughout the intervening years, these values have been shown to

be un-certifiable and, consequently, have added fuel to the fire of the ever-expanding controversy which litters this

field of study to this very day [34].

While experimentation on packed conduits were in progress in the middle of the 20th century by the investigators

mentioned above, other investigators, in parallel, were focused on the exact same objective with respect to the flow

in empty conduits [35]. The efforts of Sir Osborn Reynolds, in particular, stand out, reaching back to 1883 [36].

Johan Nikuradze, for instance, is another most respected name when it comes to the fundamental experiments

underlying the impact of inner wall roughness on the fluid flow profile in empty conduits. Actually, he carried out

two seminal sets of experiments, circa 1933, one deals with smooth walled conduits and one deals with inner wall

roughened conduits [37, 38]. Furthermore, since he was a student of Prandtl, their contributions are linked within a

theory put forward by the latter, which forms the basis of their concept of the fluid boundary layer, a fluidic

phenomenon that forms adjacent to a solid boundary due to viscosity, and which theory has been recognized as the

father of wing flight fluid dynamics [39]. Fluid flow in empty conduits is extremely important in many engineering

applications, so it is perhaps understandable that an engineer, Lewis Moody, circa 1944, building on the work of

Nikuradze and others, produced the now famous “Moody diagram” which has been used as a popular “look up”

chart by the engineering discipline for fluid flow designs which require knowledge of fluid flow in the region where

kinetic contributions dominate [40]. The diagram is based upon the concept of “friction factor” which is a man-made

entity, however, being as it is a mathematical construct and, thus, unfortunately, suffers from the defects of its

qualities [41]. It has, in addition, been updated from time to time since its original creation [42]. In more modern

times, the Princeton Super Pipe has gained in popularity with respect to the theory of fluid dynamics in smooth pipes

and has been credited with an update to the conventional concept of the "Law of the Wall” [43].
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It is apparent from the brief history of the development of fluid flow theory outlined above, that empty and packed

conduits formed separate and distinct categories of investigative effort involving fluid flow theory throughout

the past 150 plus years. While some attempts were made to produce a unified fluid flow model which would

seamlessly embrace both types of fluid flow embodiments throughout that period, none were successful, at least up

until now [44]. With the advent of the Quinn Fluid Flow Model (QFFM) published in 2019, this is no longer the

case [45]. Accordingly, this paper is dedicated to elucidating a unified methodology for both packed and empty

conduits, which a typical practitioner can take advantage of, whether that practitioner is an engineer,

chromatographer or aerospace enthusiast.

2. Fundamentals of the Q Fluid Flow Model (QFFM)

2.1 Particle

Let us define an obstacle to be placed within a packed conduit as a spheroidal particle of nominal diameter dpm and

sphericity p.Then we may write:

dp = dpmp (1)

Where, dp= the spherical particle diameter equivalent

p ≤ 1; thus, when p = 1, the particle is spherical.

Let the particle have a specific pore volume of Spv, a skeletal density of sk, and a mass of mp.

Let us define other particle characteristics as:

SAp= dp2 (2)

And

CSAp = dp2 (3)
4

Where, SAp= particle equivalent surface area; and

CSAp= particle equivalent cross-sectional area.

It follows that we may write:
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Vdp = dp3 (4)
6


part= mp (5)

Vdp

Where, Vdp= the volume of a single spherical particle equivalent; part= the apparent particle density.

Let us define particle porosity as the ratio of free space within the particle to the total free space occupied by the

particle as a whole, thus:

p = Spvpart (6)

Where, p = the particle porosity.

It follows that:

When, p= 1, the particle is devoid of solid matter, i.e., contains only free space;

When, p= 0, the particle is made entirely of solid matter, i.e., the particle is non-porous;

When, 0 ≤ p< 1, the particle is partially porous, i.e., consists of a solid particle skeleton plus internal pores.

2.2 Conduit

Let us define a fluid conduit as a right circular cylinder of length L and diameter D. Then we may write:

Vec = D2L (7)
4

Where, Vec= the volume of free space within an empty conduit.

Let the conduit be packed with np number of particle equivalents of diameter dp.

It follows that we may write:

Vpart = npdp3 (8)
6

Where, Vpart= the cumulative volume occupied by all the particle equivalents within a packed conduit.

Let us define as npq,, the number of particle equivalents whose collective volume is equal to the volume of free space

within an empty conduit.



6

It follows that we may write:

npq = Vec = 3D2L (9)
Vdp 2dp3

Let us define the packed conduit fluidic architecture as:

 = npqD (10)
L

Where,  = the fluidic architectural coefficient for a given packed conduit.

We now turn to conduit porosities.

Let us define the volume of free space within the packed conduit which is external to all the particles as Ve; the

volume of free space which is internal to all the particles as Vi; the volume which is occupied by all the particle

skeletons as Vsk; and Vt as the total volume of free space within the packed conduit which is devoid of solid matter.

It follows that we may write:

0) = np = Vpart (11)
npq Vec

Where, the conduit particle fraction, 0) = the volume fraction of the packed conduit occupied by the particles.

sk = (1-p)np = Vsk (12)
npq Vec

Where, the conduit skeletal fraction, sk = the volume fraction of the packed conduit occupied by the particle

skeletons.

0 = 1-np = Ve (13)
npq Vec

Where, the conduit external porosity, 0 = the volume fraction of the packed conduit external to the particles.

i= p(1-0) = Vi (14)
Vec

Where, the conduit internal porosity, i = the cumulative volume fraction of the pores internal to the particles.

t= 1- (1-p)np = i+ 0 (15)
npq
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Where, the conduit total porosity, t = the sum of the volume fraction of poress external and internal to the particles.



It follows that particle porosity and conduit internal porosity are related as follows:

whenp = 0, conduit internal porosity i = 0 and, thus, the particles are completely solid throughout, i.e., non-porous.

whenp = 1, conduit internal porosity i = (1-0) and thus, the particles are completely devoid of solid matter, i.e.,

totally porous.

Additionally, it follows that reconciling the definitions above for solid matter and lack thereof, i.e., porosity, within a

conduit, [see Eqs. (8) and (11) above], we may now write:

npdp3 =Vecabs(1-0) (16)
6

Equation (16) reconciles the distribution of free space within the conduit according to the conservation Laws of

Nature, whereby all partial volume fractions of the fluid-filled packed conduit, whether occupied by solid matter or

fluid, add to unity.

2.3 The Conservation Laws governing packed conduits

Thus, the Conservation Laws pertaining to packed conduits dictate that we may write:

0 + i + sk = 1 (17)

or

t + sk = 1 (18)

Let us define the packing density of a packed conduit as:

pack= Mp (19)
Vec

Where, pack= the packing density of the packed conduit; Mp = npmp, the total mass of all the particles in a packed

conduit under study.

It follows that we may now write:

= 1-pack(Spv-1/sk) (20)
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or

= 1-npdp3/(3D2L)] (21)

Accordingly, we may write:

p= (t-0) (22)
(1-0)

Substituting for the independently measured components of p in Equation (22), gives

Spvpart= (t-0) (23)
(1-0)

It therefore follows that, empirically, we may define a packed conduit in terms of 4 independent variables (Mp, Vec,

Spv, sk) or, alternatively, (np, dp, D, L), in combination with one dependent variable (0), all of which are measurable.

However, if in addition to measuring the independent variables, one also measures the value of the external porosity,

0 (a dependent variable), both sides of equations (22) and (23) must be reconciled for any given packed conduit

under study, as dictated by the Conservation Laws (sometimes referred to as the Laws of Continuity when their

application involves moving entities like the fluid in this particular application). This dictate from the Laws of

Continuity trumps all measurement techniques, which generally lack the specificity/accuracy to balance either

equation without the need for further reconciliation or modification.

Thus, the lefthand side of equation (23) contains measurements made outside of the packed conduit, i.e.,

independent of the packed conduit under study, whereas the righthand side of equation (23) contains measurements

made within the packed conduit under study. Accordingly, balancing of equation (23) is always necessary to validate

the accuracy of the reported values for the measured parameters of the packed conduit under study.

It follows that, in the case of packed conduits which contain nonporous particles, equation (23) is equal to zero on

both sides of the equalization sign, thus eliminating the need to reconcile column porosity and particle porosity.

2.4 The Q-Porosity Function ()

Let us now collect all the partial fraction (porosity) definitions in the QFFM underlying packed conduits which are

defined in terms of particle size equivalents and view them as dimensionless mathematical functions of np, which we

will designate as Q-Porosity functions. There is a total of 5 such functions, which we view in the context of the

generalized Q-Porosity function .

1. (1-0) = np/npq, Equation (11) above

 sk = (1-p)np/npq, Equation (12) above
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  0 = (1-np/npq), Equation (13) above

 i= p(np/npq), Equation (14) above

  t = 1- (1-p)np/npq, Equation (15) above

It now becomes obvious that the Q-Porosity functions 0 and (1-0) are independent of the value of the particle

porosity, p.

Similarly, it is also obvious that the Q-Porosity functions i, sk and t are dependent on the value of the particle

porosity, p.

Note that when the value of p = 1, the value of sk = 0.

2.5 Solid Particles (0 ≤ p < 1)

Let us now define the conduit packing process in the case of solid particles (0 ≤ p < 1) by viewing the role of our

independent variable, np, within the context of the Q-Porosity function (). This is best accomplished by viewing a

worked example on a plot of the dimensionless Q- Porosity function,, versus the number of particle equivalents, np.

Our chosen worked example consists of 10  particles packed into a conduit of dimensions 10 cm in length and 0.46

cm in diameter, the details for which are presented in Figure 1, for the case in which the particles are nonporous (p

= 0).

As shown in Figure 1 below, our empirical packing process recognizes Kepler’s conjecture regarding the stacking of

solid spheres. Accordingly, the maximum value of the Q-Porosity function (1-0) is approximately 0.74 with the

corresponding minimum value of approximately 0.26 for the Q-Porosity function 0. Kepler’s conjecture is a

consequence of the fact that solid spheres and free space are mutually exclusive and therefore the maximum value of

np achieved empirically must be less than the value of npq. The upper limit of the value of np is always npq since it

represents the most particle equivalents, theoretically, that could be packed into any given conduit under study.

Accordingly, the theoretical domain of the Q-Porosity function () runs from 0 to npq and the ranges of the function

vary between the values of 0 and 1, as shown in Figure 1.
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Figure 1 Q-Porosity Function for Non-Porous Particles (p = 0)

In Figure 1 we only display two of the Q-Porosity functions, i.e., 0 and (1-0), since they are not influenced by the

particle porosity value, p, and, in this particular case (p = 0), i = 0, t = 0 andsk = (1-0). Additionally, we note

that these two functions are reciprocal in nature to the extent that as one increases, the other decreases, all as a

function of np.

We now further refine the definition of the entity np to be that of a vector rather than a scalar quantity and, therefore,

confer upon it a directional component in addition to its mandatory magnitude component.

Let us now define the packing process of a conduit, using our example with solid particles, in terms of our

mathematical Q-Porosity functions, as the direction of increasing positive values of np. Thus, as we move along the x

axis of Figure 1 in the direction of left to right, starting at the origin of the plot at np= 0, the corresponding values on

the y axis represent the changing characteristics of the Q-Porosity function  in the filling (packing) process. At the

starting point of np = 0, the conduit is devoid of particles (contains only free space) and at the maximum value of np
achieved in the filling process, the conduit is fully packed. Accordingly, filling of a “packed” conduit with solid

particles is represented by the increasing positive values of np, i.e., the motion left to right along the x axis of the

plot starting at the value of np = 0.

We shall now consider the more complex packing process in which the particle porosity varies between the values of

0 and 1, i.e., the case of partially porous particles (0 < p <1).

In our worked example shown in Figure 2, we show as our example a packed conduit with particles which have a

particle porosity of 0.6 (p = 0.6). Because the porosity functions of i, t and sk are dependent on the value of p, we

include these functions in our Figure 2.
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Figure 2 Q-Porosity Function for Partially Porous Particles (0 < p < 1)

As displayed in Figure 2, each of the 5 Q-porosity functions,, (1-0), i, t, and sk have discrete and different

values for all values of np.

2.6 Hypothetical Q-Particles (p = 1)

We shall now consider the packing process in the special case when the particles are fully porous, i.e., they are

completely made of free space (p = 1). This scenario is presented in Figure 3.

As shown in Figure 3, our packing process for particles made of free space (p =1), which we designate as

hypothetical Q-particles, is represented by increasingly negative values of np. Accordingly, the domain of the Q-

Porosity function runs from 0 to - npq. Similarly, it follows that the range of the function varies between the values of

-1 and 2, as shown in the plot.

Figure 3 Q-Porosity Function for Fully Porous Particles (p=1)

-npq

npq
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In this scenario the Q-Porosity functions t =1 and sk = 0 for all values of np. The function i has identical values to

the function (1-0) and varies between 0 and -1, whereas the value of the function 0 varies between 1 and 2.

Let us now define the directional component of packing a conduit with hypothetical Q-particles in terms of our

mathematical Q-Porosity functions. As we move along the x axis of Figure 3 in the direction of right to left, starting

at the origin of the plot at np= 0, the corresponding values on the y axis represent the changing characteristics of the

Q-Porosity function  in the filling (packing) process. This direction of filling is the opposite of that for solid

particles. At the starting point of np = 0, we consider the conduit to be devoid of all particles (including particles of

free space) and at the maximum value of np= - npq achieved in the filling process, the conduit is fully packed with

particles of free space (hypothetical Q-particles). Accordingly, filling of a “packed” conduit with hypothetical Q-

particles is represented by increasing negative values of np, i.e., the motion right to left along the x axis of the plot

starting at np = 0.

It follows that in the case of hypothetical Q-particles which are made of free space, Kepler’s conjecture does not

apply, since particles of free space are mutually inclusive with free space, i.e., they are free space. Accordingly, the

maximum value of np achieved empirically is -npq,which corresponds to the conduit being filled with free space, and

is also the upper theoretical limit of np in these circumstances.

We choose to use, advantageously, the absolute value of the porosity function (1-0) in our theoretical development,

which represents the magnitude of the function and is, therefore, always positive, as shown in Figure 4.

Figure 4 Q-Porosity Function for Fully Porous Particles (p = 1)

-npq
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Accordingly, as shown in Figure 4, the ranges of all Q-Porosity functions of interest in this special case have

positive magnitudes, and vary between the values of 0 and 2.

2.7 The Packed Conduit Hypothetical Q Channel Defined

Let us define a hypothetical cylindrical fluid channel within a packed conduit, which we shall call the hypothetical

Q channel (HQC), whose characteristic dimensions are defined as:

dc= dp = dp (24)
abs(1-0) abs(np/npq)

Where, dc = the diameter of the HQC.

It follows that we may write [see Eqs. (7) and (14) ]:

vc= Vect = npqdp3t (25)
6

Where, vc = the volume of the HQC.

It follows that we may also write:

ac= dc2 = npq2dp2 (26)
4 4np2

Where, ac = the cross-sectional area of the HQC.

Similarly, we may write:

lc= vc = 2np2dpt (27)
ac npq

Where, lc = the length of the HQC.

Let us define the Unit Hypothetical Q Channel as a special case of the more general HQC. It is defined as a conduit

filled with hypothetical Q-particles having two fixed boundary conditions: (1), dp = D and (2), np = -npq.

It follows that, since the function 0 = 2 when np = -npq, the function abs(1-0) = 1 = t.
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Accordingly, any “empty” conduit/capillary is represented in the QFFM by what we now term the Unit HQC since,

by definition, its Q-Porosity functions of [abs (1-0)] and t are unity, as shown below in table 4 for our worked

example.

As shown in Figure 5 below, any conduit/capillary when totally filled with hypothetical Q-particles (np = -npq),

whose diameters are equivalent to the diameter of the conduit (dp = D = dc), will always have the constant values

shown below, regardless of what the conduit dimensions are.

Thus, an empty conduit/capillary is defined in the QFFM as a packed conduit containing hypothetical particles with

a particle porosity of unity (p =1), and is represented by the Unit HQC with the following constant values:

p = 1; np = -npq; dp = D = dc; lc = L; vc= Vec; abs(1-0) = 1; 0 = 2; t = 1;  = 0.125 (1/8);  = 1.5 (3/2); = 0.188

(3/16).

To further articulate the characteristics of the Unit HQC in the case of our chosen worked example, we present here

4 graphical representations of the primary channel functions; see Figures 5, 6, 7 and 8.

Figure 5 The HQC (Q-Porosity Function)

Axis of symmetry
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Figure 6 The HQC (dc function)

Figure 7 The HQC (lc function)
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Figure 8 The HQC (vc function)

As shown in Figure 5, the vertical line in the range of the Q-Porosity function np = 0, represents the axis of

symmetry between the half-plane Q-Porosity function for solid particles, on the one hand (right hand side half-

plane), and hypothetical Q particles, on the other hand (left hand side half-plane). Therefore, each of the

mathematical half-planes is the mirror image of one another. Note that the Q-Porosity functions are discontinuous at

the value of np= 0, the axis of symmetry, but are continuous at all other values of np , i.e., -npq≤ np< 0; 0< np≤ npq.

It follows that, as shown in Figure 6, the HQC function dc is correspondingly discontinuous at the value of np = 0,

since at this precise value the diameter of the HQC tends to infinity. Thus, in the QFFM, the “infinite diameter

packed conduit” is prohibited by hypothesis.

Finally, it follows that, as shown in Figure 7, the HQC function lc is zero at the value of np = 0. In addition, the value

of lc is always greater for values of np less than zero, than for values of np greater than zero, a consequence of a value

for external porosity in excess of unity, in this half-plane of the function.

Similarly, it follows that, as shown in Figure 8, the HQC function vc is correspondingly discontinuous at the value of

np = 0, since at this precise value, the volume of the HQC is undefined, but at all values of np less than zero, its

volume is a constant positive value and at all values of np greater than zero, it has a variable positive value.

Finally, it is now obvious that in an empty conduit the Q-porosity conduit function of i becomes part of the

Q-porosity function 0 and there is no particle skeleton fraction.
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3. Methodology

We begin by introducing a methodology used in engineering circles called Hydraulic Conductivity [46]. To put this

term in context for all disciplines, we show the relationship between hydraulic conductivity (H/L) and pressure

gradient (P/L):

H = P (28)
L fgL

We can see from the righthand side of equation (28) that hydraulic conductivity involves, not only, the pressure

gradient across a packed conduit, but also, includes the additional variable, f, the fluid density, and g, the

acceleration due to gravity. Thus, from an empirical perspective, a practitioner need only measure the pressure drop

at any given flow rate, the length of the conduit, and obtain from reference text books the value for the density of the

fluid used in the measurement, as well as the acceleration due to gravity. In addition, since it is customary when

carrying out permeability determinations in packed conduits, to record the measured flow rate corresponding to the

measured pressure drop, as fluid flux through the packed conduit, plotting fluid flux versus hydraulic conductivity is

a popular engineering methodology. Thus, we can write:

s = 4q (29)
D

Where, s= fluid flux, also called linear superficial fluid velocity, q = volumetric fluid flow rate, D = the conduit

diameter.

Accordingly, in order to use the fluid flux parameter, the practitioner must measure, in addition to the fluid

volumetric flow rate, the conduit diameter.

When reporting empirical results of permeability in packed conduits, the Forchheimer fluid flow model is a popular

engineering methodology, especially when the fluid flow regime involves significant kinetic contributions [47]. We

can write the Forchheimer equation as follows:

H = as + bs
2 (30)

L

Where, a, and b, are the Forchheimer coefficients for the viscous and kinetic contributions, respectively.

Thus, we can see from equation (30) that hydraulic conductivity is a quadratic function of fluid flux. It is customary

in engineering circles to make a plot of equation (30), a typical example of which is shown in Figure 9.

Figure 9. Hydraulic conductivity as a quadratic function of fluid flux.
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Figure 9 Hydraulic Conductivity

As shown in Figure 9, the second order polynomial trend line associated with this plot renders the values of a, and b,

both of which are represented as having a constant value, over all flow rate ranges (50).

3.1 Anatomy of the QFFM

Th QFFM applies to all fluid flow regimes. Specifically, it provides a detailed analytical definition of the fluid flow

parameters which make up the numerical values of a, and b, for any experiment under study. Thus, we provide,

herein, the definition for a, and b, as taught by the QFFM:

a = 4rh3 (31)
3fgdc2

b =  (32)
2gdc

In addition, the QFFM also provides all the needed relationships between the measurable fluid flow embodiment

parameters necessary to completely establish the fluid flow relationship. Thus, we include some additional pertinent

equations herein:

 = 1 (33)
03

0 = 1-np = 1-2npdp
3 (34)

npq 3D2L

npq = 3D2L (35)

2dp
3

dc = dp (36)
abs(1-0)
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 = (1+WN) (37)

where, rh = fluid drag normalization coefficient, i.e., 4,  = the fluid absolute viscosity, dp = the spherical particle

diameter equivalent, dc= the diameter of the hypothetical Q-channel, np = the number of particles in the packed

conduit under study, and  = the normalization coefficient for wall effects, generally equal to unity for packed

conduits.

Since the parameter  however, involves a very complex definition involving many different independent and

dependent variables, it is beyond the scope of this paper and, consequently, we refer the reader to the original

publication the QFFM for all the details concerning the components of . Additionally, for the reader’s

convenience, we have included in the addendum to this paper, a comprehensive reference guide which provides,

nomenclature, glossary of terms and all formulae from the original publication of the QFFM.

3.2 Solving the Navier-Stokes Equation for Closed Conduits

The QFFM is the only extant theory of fluid dynamics which includes an equation capable of describing the

relationship between fluid flow rate and pressure drop that is unique in its ability to describe, accurately and

precisely, this relationship throughout the entire fluid flow regime, including all three so-called regions of laminar,

transitional and fully turbulent. This includes all the elements of “wall effects” both primary and secondary. We shall

now explore in detail how this is accomplished.

1. Definition of Parameters.

The QFFM teaches that there are 17 important parameters in the pressure flow relationship in closed conduits,

representing 3 distinct categories which include: (a) constants, (b) independent variables and (c) dependent variables:

a. There are 4 constants:

, rh, k1and k2

b. There are 9 independent variables:

3 Fluid variables: , f and q.

4 Packed conduit variables: D, L, np, and k.

2 Particle variables: dpm,p,.

c. There are 4 dependent variables:

1 Fluid variable: f (, rh,Rem, k, ,)

3 Packed conduit variables: dp = f(dpm,p),

0 = f(,D,L,dp),



20

P = f()

2. Formula

The QFFM formula can be written as:

PQ = k1 + k2CQ, (38)

which is the dimensionless manifestation of Quinn’s Law and is a unique formula which combines the above

identified variables in a manner never before contemplated.

3. Underlying theory

What makes the QFFM unique is that it contains many parameters not identified in other fluid dynamic models, i.e.,

rh, k1, k2, 0, , QN, CQ, etc., etc., and, in addition, combines all the parameters in a unique arrangement not

heretofore available in any other fluid model.

Thus, when the fluid flow rate, pressure drop and conduit diameter are determined by experiment and, accordingly,

the Forchheimer values of a, and b, are known, based upon accurate measurements of these three variables over a

broad range of flow rates, including the non-linear region, where kinetic contributions to measured pressure drop are

significant and, in combination with the fluid property of kinematic viscosity, we can solve the N-S equation using

the QFFM. Thus, we proceed as follows:

It follows from equation (31) above that we may write:

= 3afg (39)
dc2 4rh3

Similarly, it follows from equation (32) above that we may write:

=2bg (40)
dc 

Therefore, in order to solve the N-S equation we must satisfy both equations (39) and (40) simultaneously.

From equation (39), let us assume that:

 = 
dc2
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From equation (40), let us assume that:

 = 
dc

Let us further assume that:

x=

Similarly, let us assume that:

y=


It follows that we may now write the solution to the N-S equation for closed conduits as:

dc = 1 (45)
x(1/6)y(1/2)

 = x(1/6) (46)
y(1/2)

The above simultaneous solution for the values of dc and  depends, not only, upon the independent variables

identified above, but also, upon the value of in equation (32)However  in turn, depends upon the value of

other variables including dc, a dependent variable itself and, accordingly, and problematically, this is the conundrum

of solving the N-S equation. Furthermore, the variable  (conduit external porosity), is clearly the most important

variable amongst all the variables in the pressure flow relationship, since it appears in both the Forchheimer

coefficients a, and b (equations (31) and (32)), and is also present in equations (45) and (46). Additionally, there is

no more sensitive relationship in all of physics between the value of  in the Forchheimer coefficient b, and the

value of the pressure gradient P/L, when the fluid flow profile contains significant kinetic contributions.

Therefore, the QFFM is the only fluid flow model in existence today that can return a valid analytical solution,

based upon pressure drop and flow rate measurements, for the values of dc and , simultaneously, for any

given flow rate, in any given experiment, in a closed conduit, regardless of whether that conduit is packed

with particles or empty, and regardless of where in the fluid flow regime that flow rate may fall, laminar,

transitional or fully turbulent. This unequivocal assertion is a manifestation of the solution to the N-S

equation for fluid flow in closed conduits packed with chromatographic particles (HPLC).
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3.3 Executing the QFFM solution to N-S equation

The QFFM provides the means by which one can overcome this fluid dynamic conundrum in solving the N-S

equation for closed conduits, by establishing an understanding of the value of under three distinct closed conduit

milieus, two of which are self-evident, based upon the underlying theory, and one of which necessitates an

additional measurement of an independent variable.

We digress here to emphasize that the parameter , as defined in the QFFM, is bounded on the lower side by an

asymptote which tends to the value of unity when the packed conduit tortuosity term, , is very large. The definition

of the conduit tortuosity term, in turn, is based upon the architectural makeup of the particular closed conduit

under study. It is, therefore, a totally novel concept for this parameter, amongst all other existing and competing

theories of fluid dynamics. Consequently, the concept of conduit tortuosity, as defined in the QFFM, is what

differentiates the fluid dynamics within different closed conduits and, accordingly, defines the three distinct closed

conduit milieus regarding the values of which arise in the case of fluid flow in packed and empty closed conduits.

These distinct milieus may be catalogued as follows:

1. Packed conduit with low value of the ratio D/dp

The most general case of a packed conduit is when the ratio of D/dp is low, say less than 10. In this scenario, the

QFFM teaches that there is a significant primary wall effect at very low values of the modified Reynolds number

and, consequently, the value of  will not be exactly equal to 1.0 and, together with the value of the Forchheimer

coefficient b, will vary based upon the fluid velocity used in any experiment under study.

It is important to understand, however, that in this milieu, even though the primary wall effect is significant at very

low values of the modified Reynolds number, it will only manifest in the pressure gradient measurements at

moderate values of the modified Reynolds number. This is because all wall effects, and therefore the  parameter,

manifests only in the kinetic term, which has a relatively small contribution to the measured pressure gradient at

very low values of the modified Reynolds number. One could, theoretically, make measurements at very high

modified Reynolds number values, where the value of  would tend to unity as the boundary layer is dissipated, but

this could require large pressure drops, not practical in a typical practitioner’s laboratory. Therefore, alternatively,

one must know, in addition to the values of the Forchheimer coefficients a, and b, at least one more independent

variable, to solve the N-S equation in this milieu scenario at reasonable pressure drops. That independent variable

is np, the number of particles in any packed conduit under study, which must be independently measured in

this scenario of a packed conduit.Again, we point out that in this scenario, the plotting techniques using equation

(30) will not produce accurate values for the Forchheimer coefficients a, and b.

Thus, the QFFM is the only model capable of validating the accuracy and precision of the underlying conduit

variables of dp, and 0, based upon Forchheimer type measurements of fluid flux and hydraulic conductivity,
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and which also include an independent measurement of the value of np, in this milieu, where the primary wall

effect is significant at low to moderate flow rates.

2. Packed conduit with smooth particles and a large value of the ratio D/dp
A packed conduit where the ratio of D/dp is large, say greater than 30. This represents a special boundary condition

in the application of our solution. In this scenario, the QFFM teaches that there is no primary wall effect, because

the value of the packed conduit tortuosity term,  = is very large and when the particles are smooth, there is no

secondary wall effect. Accordingly, the measured values for the Forchheimer coefficients a, and b, will both be

constant at all fluid velocities. Thus, the above solution for the values dc and  is absolute at a value of  =1, since in

equation (32), all the values of the parameters are uniquely defined at this boundary condition. This is typically the

case for most commercially available packed conduits, including most HPLC columns, since they are typically

designed with large ratios of D/dp for performance related reasons. In this scenario, the technique outlined above of

identifying the values of the Forchheimer coefficients a, and b, by plotting equation (30) will yield accurate values

across the full spectrum of modified Reynolds number, if sufficient flow rate measurements are taken both in the

linear and non-linear regions of the flow regime, which includes the region in which kinetic contributions to

the measured pressure drop are significant. Thus, in this new teaching, measurements which include kinetic

contributions are critical to identify an accurate value of the Forchheimer coefficients a, and b, regardless of

what flow regime a particular experimental protocol may be focused, i.e., permeability studies in the laminar

regime are included in this qualification which is the case with most HPLC columns.

We emphasize that in the literature for packed conduits in many applications, and especially in the field of

chromatography, kinetic contributions to measured pressure drop have been totally ignored in favor of just doing

measurements in the laminar regime. This results in inaccurate values for the Forchheimer coefficients a, and b,

which, in turn, means that studies carried out under this set of experimental protocols will not facilitate validation of

any underlying packed conduit variables. Indeed, when other fluid flow models are used in this scenario, such as the

popular Kozeny-Carman model, in the case of packed conduits containing solid particles, and the Hagen-Poiseuille

model, in the case of empty conduits, to back-calculate either the value of D, dp or0, they will provide only crude

estimates of the true value of these parameters.

3. Empty conduits

All empty conduits regardless of the independent variable values which define them, i.e., the conduit diameter, D,

the conduit length L, or the inner conduit wall roughness k, represent another special case of a packed conduit in the

QFFM. Thus, although the QFFM teaches that an empty conduit has a relatively low tortuosity value and,

consequently, a large value for at low flow rates, this is offset by the fact that its value is always constant,

i.e.,, which is a consequence of four limiting boundary conditions for an empty conduit: (a) dp = D, (b)  =

1/8, (c) np = -npq, and (d) p = 1, wherep represents the particle porosity (not to be confused with i, the conduit
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internal porosity), and when its value is unity, as in the case of an empty conduit, represents particles of free space.

Thus, in an empty conduit, which corresponds to a packed conduit filled with particles of free space, there is less

degree of freedom than in a packed conduit filled with particles which have a solid skeleton. This boundary

condition, in turn, results from the Laws of Nature which dictate that solid matter and free space are mutually

exclusive. It follows, therefore, that the values of , dc,  in equation (40) will be uniquely defined when these four

boundary conditions prevail. Thus, setting four boundary conditions in the QFFM for the values of  = 1/8, dp = D,

np = -npq and p =1, establishes a unique value for  at any given flow rate, when the Forchheimer type coefficients a,

and b, are known. We emphasize, however, that the technique outlined above of using plots of equations (30), as

shown in Figure 9, will not produce accurate values for the Forchheimer coefficients a, and b, in the case of an

empty conduit, since they are only capable of returning an average value for these coefficients and, of course, the

value of b in an empty conduit varies as a function of flow rate.

Thus, the QFFM is the only fluid flow model capable of validating the accuracy and precision of the

underlying conduit variables of D, L, and k, in an empty conduit, based upon Forchheimer type

measurements of fluid flux and hydraulic conductivity.

We digress, once again, to explain the significance of the QFFM as it pertains to the independent variable, k, the

roughness of the inner conduit wall in an empty conduit. There are just three variables for an empty conduit, D, L,

and k. The former two variables are easy to measure and, in addition, can usually be measured with a high degree of

accuracy. This is not the case with the latter variable, k which is very difficult to measure, in the first instance, not to

mention the accuracy of the measurement. Accordingly, in the case of an empty conduit, one can use the

Forchheimer equivalent type measurements for an empty conduit, in conjunction with the QFFM, to accurately

back-calculate for the value of k, when the measured data contains pressure drop measurements taken at sufficiently

high values of the modified Reynolds number, where the secondary wall effect, i.e., the wall roughness coefficient,

manifests itself by punching through the ever- dissipating boundary layer. This is a very effective tool for the

practitioner.

Finally, to help visualize how all this information comes together in the QFFM, we show in Figure 10 a plot of

dimensionless permeability  versus fluid current QN over 11 orders of magnitude of Rem.
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Figure 10 Dimensionless permeability

As shown in Figure 10, published data for both conduits packed with solid particles and empty are displayed in the

same frame of reference. Note that packed conduits are differentiated from smooth walled empty conduits and, in

turn, roughened walls empty conduits.

4. Validation
The QFFM, by virtue of its ability to accommodate seamlessly both types of conduits, i.e., empty and packed with

solid particles, enjoys the unique characteristic of being certifiable over the entire fluid flow regime, from creeping

flow to fully developed turbulence. This is because conduits packed with solid particles can be validated at very low

modified Reynolds numbers, whereas empty conduits can be validated at very large modified Reynolds numbers.

This, in turn, is a consequence of operating pressure drops. Accordingly, in Figure 11 we show validation of the

QFFM over 11 orders of magnitude of the modified Reynolds number.
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Figure 11 Quinn’s Law Validation

As shown in Figure 11, the data of Farkas et al validates the QFFM at extremely low values of Rem, whereas the data

of the Princeton Super Pipe study validates it at very high values of Rem. In addition, this plot also demonstrates that

the measured data of all flow embodiments, conduits both empty and packed with solid particles, collapse onto the

same straight line whose intercept on the y axis and slope of the line, represent the value of k1 and k2, respectively,

in equation (38), i.e., Quinn’s Law. The axes of the plot are log-log to show the extremes at both ends of the Rem

values.

5. Conclusions.

In this paper, we have demonstrated a unique “solution equivalent” to the Navier-Stokes equation for closed

conduits, expressed in terms meaningful to a chromatographer who may not be versed in advanced mathematics. In

so doing, our conclusions can be catalogued as follows:

1. The value of the coefficient A in the re-invented Ergun model, i.e., the Q-modified Ergun equation, has the

constant value of 256/3 which is 268.19 approx.

2. The value of the coefficient B in the re-invented Ergun model, i.e., the Q-modified Ergun equation, is a

variable function of the external porosity of the conduit as well as the wall normalization coefficient 

3. The value of B falls in a range from 1.5 to 3.5 for well-packed conduits packed with rigid particles having a

solid skeleton and a large ratio for D/dp.
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4. The value of B for an empty conduit has the constant value of 0.125 (1/8).

5. There is but one unique combination of values for dp, 0 and npwhich will correlate permeability

measurements over the entire range of the fluid flow profile, from creeping flow to fully turbulent flow. This is a

result of the Laws of Nature which dictate that for any given conduit under study, every combination of the packed

conduit values of the variables dp and np represents a unique hypothetical Q channel and, consequently, a unique

pressure gradient/fluid flow rate profile over the entire fluid flow regime.

6. The Conservation Laws dictate that for any given conduit dimensions, i.e., diameter D and length L, packed

with rigid particles of spherical particle diameter equivalent, dp, the value of is not an independent variable but is

defined by the combination of the values of dp and np, i.e., the number of particles present in the packed conduit.

7. In order to accurately define the Forchheimer coefficients a, and b, empirical measurements must be taken

in the nonlinear portion of the fluid flow regime, i.e., where kinetic contributions are significant. This is a result of

the fact that kinetic contributions are much more sensitive to the value of the external porosity parameter, 0, than

are viscous contributions. This prerequisite in determining the value of 0 has not been recognized in

chromatography circles up to this point in time.

8. In most examples studied in the literature, including HPLC columns, the experimental protocols typically

used to measure the values of dp and 0 are not sufficiently accurate or precise to validate the value of these variables

using pressure drop/flow rate measurements. Thus, the values reported in the literature have values for external

porosity which are both too high and too low.

9. The QFFM teaches that when an empty conduit is considered as a conduit packed with particles of free

space, i.e., p =1, there is an apparent increase in the magnitude of the value for the conduit external porosity 0. This

apparent increase results from the phenomenon that, in these circumstances, the particle fraction has a value of -1

and, because the external porosity is defined as the difference between unity and the particle fraction, its value is

always 2, for a filled empty conduit. This counter intuitive phenomenon can be rationalized by a comparison to the

phenomenon embedded in the permeability equation, wherein the fluid velocity has a negative sign, in the

differential form of that equation (Navier-Stokes), and represents the physical reality that liquids flow downhill in

the direction of the pressure gradient, i.e., the flow moves from high pressure to low pressure coordinates, which

means that the variables of resultant pressure, P = (f g L), and consequential velocity, s  D2L/(4q), in the

mathematical milieu of the Navier-Stokes equation, move in opposite directions.

References.

[1] Poiseuille, J. L. (1841). "Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres."

Comptes Rendus, Académie des Sciences, Paris 12, 112 (in French).

[2] H. Darcy, Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris, France, 1856.

[3]J.L.M. Poiseuille, Memoires des Savants Etrangers, Vol. IX pp. 435-544, (1846);. Brillouin, Marcel (1930). "Jean Leonard Marie Poiseuille".

Journal of Rheology. 1: 345. doi:10.1122/1.2116329



28

[4H. M. Quinn, “Reconciliation of packed column permeability data, column permeability as a function of particle porosity,” Journal of Materials,

vol. 2014, Article ID 636507, 22 pages, 2014.

[5] J. M. Coulson; University of London, Ph.D. thesis, “The Streamline Flow of Liquids through beds comprised of Spherical particles” 1935.

[6]A. O. Oman and K. M. Watson, “Pressure drops in granular beds,” National Petroleum News, vol. 36, pp. R795–R802, 1944.

[7] M. Leva and M. Grummer, “Pressure drop through packed tubes, part I, a general correlation,” vol. 43, pp. 549–554, 1947.

[8] F. A. L. Dullien, Porous Media, Fluid Transport and Pore Structure, Acedemic Press, 2nd edition, 1979.

[9]S. W. Churchill, Viscous Flows: The Practical Use of Theory, Butterworks, 1988.

[10] S. P. Burke and W. B. Plummer, “Gas flow through packed columns,” Industrial and Engineering Chemistry, vol. 20, pp. 1196–1200, 1923

[11] J. C. Giddings, Dynamics of Chromatography, Part I, Principles and Theory, Marcel Dekker, Inc. New York, (1965

[12] T. Farkas, G. Zhong, G. Guiochon, Journal of Chromatography A, 849, (1999) 35-43

[13] M. Rhodes, Introduction to Particle technology, John Wiley & Sons, Inc., p. 83 (1998).

[14] G. O. Brown., 1999-2006, Henry Darcy and His Law, www.biosystems.okstate.edu/Darcy.

[15]I. Halasz, M. Naefe, Analytical Chemistry, 44 (1972) 76

[16] F. E. Blake, “The resistance of packing to fluid flow,” Transaction of American Institute of Chemical Engineers, vol. 14, pp. 415–421, 1922.

[17] J. Kozeny, “Uber kapillare Leitung des wassers in Böden,” Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, vol. 136, pp. 271–

306, 1927.

[18] Carman, P.C., “Fluid flow through granular beds,” Transactions of the Institution of Chemical Engineers, vol. 15, pp. 155–166, 1937.

[19] Bird, R. B., Stewart, W. E., Lightfoot, E. N. Transport Phenomena, John Wiley & Sons, Inc., p. 190,

[20] H. M. Quinn, Reconciliation of Packed Column Permeability Data-Part 1. The Teaching Of Giddings Revisited, Special Topics & Reviews in

Porous Media-An International Journal 1 (1), (2010) 79-86

[21] Halasz, R. Endele, K. Unger, Journal of Chromatography, 99 (1974) 377-393

[22] G. Guiochon, Chromatographic Review, 8 (1966)

[23]A. E. Scheidegger, The Physics of Flow Through Porous Media, MacMillan Company, New York, NY, USA, 1957.

[24] J. Kozeny, "Ueber kapillare Leitung des Wassers im Boden." Sitzungsber Akad. Wiss., Wien, 136(2a): 271-306, 1927

[25] J. C. Giddings, Unified Separation Science, John Wiley & Sons (1991)

[26] Halasz, R. Endele, K. Unger, Journal of Chromatography, 99 (1974) 377-393

[27] U. Neue, HPLC Columns-Theory, Technology and Practice, Wiley-VCH (1997)

[28] P.C. Carman, Trans. Instn. Chem. Engrs. Vol. 15, (1937) 155-166

[29] J. M. Godinho, A. E. Reising, U. Tallarek, J. W. Jorgenson; Implementation of high slurry concentration and sonication to pack high-efficiency,

meter-long capillary ultrahigh pressure liquid chromatography columns: Journal of Chromatography A, 1462 (2016) 165-169

[30]L. R. Snyder, J.J. Kirkland, Introduction to Modern Liquid Chromatography, 2nd Edition, John Wiley & Sons, Inc. p. 37 (1979)

[31]G. Guiochon, S. G. Shirazi, A. M. Katti, Fundamentals of Preparative and Nonlinear Chromatography, Academic Press, Boston, Ma, (1994).



29

[32]S. Ergun and A. A. Orning, “Fluid flow through randomly packed columns and fluidized beds,” Industrial & Engineering Chemistry, vol. 4,

no. 6, pp. 1179–1184, 1949.

[33] Ergun, Chem. Eng. Progr. 48 (1952) 89-94.

[34]I. F. Macdonald, M. S. El-Sayed, K. Mow, and F. A. L. Dullien Industrial & Engineering Chemistry Fundamentals 1979 18 (3), 199-208 DOI:

10.1021/i160071a001

[35] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice-Hall, 1965

[36] Reynolds O. 1883. An experimental investigation of the circumstances which determine whether the motion of water in parallel channels

shall be direct or sinuous and of the law of resistance in parallel channels.Philos.Trans.R.Soc.174:935–82

[37]J. Nikuradze, NASA TT F-10, 359, Laws of Turbulent Flow in Smooth Pipes. Translated from “Gesetzmassigkeiten der turbulenten Stromung

in glatten Rohren” VDI (Verein Deutsher Ingenieure)-Forschungsheft 356.

[38] J. Nikuradze, NACA TM 1292, Laws of Flow in Rough Pipes, July/August 1933. Translation of “Stromungsgesetze in rauhen Rohren.” VDI-

Forschungsheft 361. Beilage zu “ Forschung auf dem Gebiete des Ingenieurwesens” Ausgabe B Band 4, July/August 1933.

[39] L. Prandtl, in Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg 1904, A. Krazer, ed., Teubner, Leipzig,

Germany (1905), p. 484. English trans. in Early Developments of Modern Aerodynamics, J. A. K. Ackroyd, B. P. Axcell, A. I. Ruban,

eds., Butterworth-Heinemann, Oxford, UK (2001), p. 77.

[40]Moody, L. F. (1944). "Friction factors for pipe flow." Trans. ASME, 66:671-678.

[41]Studies and Research on Friction, Friction Factor and Affecting Factors : A Review

Sunil J. Kulkarni *, Ajaygiri K. Goswami; Chemical Engineering Department,, Datta Meghe College of Engineering, Airoli, Navi Mumbai,

Maharashtra, India

[42]Technical Note: Friction Factor Diagrams for Pipe Flow; Jim McGovern Department of Mechanical Engineering and Dublin Energy Lab Dublin

Institute of Technology, Bolton Street Dublin 1, Ireland

[43] B. J. Mckeon, C. J. Swanson, M. V. Zagarola, R. J. Donnelly and A. J. Smits. Friction factors for smooth pipe flow; J. Fluid Mech. (2004), vol.

511, pp. 41-44. Cambridge University Press; DO1; 10.1017/S0022112004009796.

[44] Unified fluid flow model for pressure transient analysis in naturally fractured media; Petro Babak1 and Jalel Azaiez; Journal of Physics A:

Mathematical and Theoretical, Volume 48, Number 17

[45]Quinn, H. M. Quinn’s Law of Fluid Dynamics Pressure-driven Fluid Flow Through Closed Conduits, Fluid Mechanics. Vol. 5, No. 2, 2019, pp.

39-71. doi: 10.11648/j.fm.20190502.12

[46] Jan H. van Lopik1 · Roy Snoeijers1 · Teun C. G. W. van Dooren1 · Amir Raoof1 · Ruud J. Schotting; Transp Porous Med (2017) 120:37–66 DOI

10.1007/s11242-017-0903-3

[47] Forchheimer, P.: Wasserbewegung durch boden. Zeit. Ver. Deutsch. Ing 45, 1781–1788 (1901)



30

Appendix

Glossary of Terms

QFFM Reference guide for Fluid Dynamics

Ref: Quinn’s Law of Fluid Dynamics Pressure-driven Fluid Flow Through Closed Conduits. Fluid Mechanics.

Vol. 5, No. 2, 2019, pp. 39-71. doi: 10.11648/j.fm.20190502.12

# Symbol Unit cgs Ref. Formula Description
Particle Independent variable

1 dpm cm Sec 2.2.1 N/A Particle nominal diameter

2 p none Sec 2.2.1 N/A Particle sphericity

3 Spv cm3g-1 Sec 2.2.1 N/A Particle specific pore volume

4 sk gcm-3 Sec 2.2.1 N/A Particle skeletal density

5 mdp g Sec 2.2.1 N/A Mass of the particle

Dependent variable

6 dp cm Eq (1) pdpm Spherical particle diameter equivalent

7 SAp cm2 Eq (2) dp2 Surface area of spherical particle equivalent

8 CSAp cm2 Eq (3) dp2/4 Cross-sectional area of spherical particle equivalent

9 Vdp cm3 Eq (4) dp3/6 Volume of spherical particle equivalent

10 part g Eq (5) mdp/Vdp Particle apparent density

11 p none Eq (6) Spvpart Particle porosity

Conduit Independent variable

12 D cm Sec 2.2.2 N/A Conduit diameter

13 L cm Sec 2.2.2 N/A Conduit length

14 k cm Sec 2.2.2 N/A Conduit wall roughness dimension

15 np none Sec 2.2.2 N/A Number of particle equivalents in conduit under study

Dependent variable

16 Vec cm3 Eq (7) D2L/4 Empty conduit volume expressed in terms of conduit diameter and length

17 Vpart cm3 Eq (8) npVdp Conduit volume occupied by all the particles

18 npq none Eq (9) 3D2L/(2dp3) Dimensionless empty conduit volume (number of spherical particle equivalents)

19  none Eq (10) npqD/L Conduit architectural coefficient

Q porosity Functions Independent variable

20 Ve cm3 Sec 2.2.2 N/A Conduit volume external to the particle fraction

21 Vi cm3 Sec 2.2.2 N/A Conduit volume internal to the particle fraction

22 Vsk cm3 Sec 2.2.2 N/A Conduit volume occupied by the cumulative skeletons of all the particles
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23 Vt cm3 Sec 2.2.2 N/A Conduit volume excluding the volume occupied by the particle skeletons

Dependent variable

24  none Eq (11) np/npq Conduit particle volume fraction

25 0 none Eq (12) (1-np/npq) Conduit external porosity; volume fraction external to particles

26 i none Eq (13) p(1-0) Conduit internal porosity; volume fraction internal to particles (porous)

27 t none Eq (14) pnp/npq Conduit total porosity; sum of external and internal volume fraction (porous)

28 sk none Eq (15) np(1-p)/npq Conduit particle skeletal fraction; volume fraction occupied by skeleton of particle fraction

29 npdp3/6 none Eq (16) Vecabs(1-0) Reconciliation between solids and porosity in packed conduit

Governing Principle Continuity Laws

32 Unity none Eq (17) 0+ i+ sk Conservation Law (porous particles)

33 Unity none Eq (18) t + sk Conservation Law

34 pack gcm-1 Eq (19) Mp/Vec Conduit packing density

35 0 none Eq (20) 1-pack(Spv-1/sk) Conduit external porosity (mass of particles based)

36 0 none Eq (21)  1-npdp3/(3D2L)) Conduit external porosity (number of particles based)

37 p none Eq (22) (t-o)/(1-0) Particle porosity (measurements made inside packed conduit)

38 Spvpart none Eq (23) (t-o)/(1-0) Particle porosity (measurements made outside packed conduit) i.e. independent

39 Hypothetical Q Channel Dimensional parameters (scale factor)

40 dc cm Eq (24) dp/(abs(1-0)) HQC diameter under study

41 vc cm3 Eq (25) npqdp3t/6 HQC volume under study

42 ac cm2 Eq (26) npq2dp2/(4np2) HQC cross sectional area

43 lc cm Eq (27) 2np2dpt/(3npq) HQC length under study

Uniform Circular motion

44 P gcm-1sec-2 Eq (28) P1-P0 Conduit Differential pressure

45  radsec-1 Eq (29) d/dt Angular velocity

46  radians Eq (30) (t + ) Phase of the motion

47 x cm Eq (31) acost  x coordinate displacement

QFFM Dimensionless manifestation

48 PQ none Eq (32) (k1 + QN/h) Viscous normalized friction factor

49 PK none Eq (33) PQ/QN Kinetic normalized friction factor

50  none Eq (34) QN/PQ Dimensionless permeability

51  none Eq (35) 1/(k1/QN +h) Dimensionless permeability

QFFM Reference parameters

52  none N/A 22/7 Universal constant

53 h none Eq (36) 2rh= 8 Drag normalized hydraulic channel circumference

54 k2 Eq (37) 1/h= 1/(8) Fluid kinetic control element normalization coefficient

55 rh none Eq (38) SAp/CSAp = 4 Normalization coefficient of fluid drag

56 k1 none Eq (39) 4/3rh2 = 67 Fluid viscous control element normalization coefficient
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Fluid Dynamics Parameters

57 PQ none Eq (40) QN Viscous normalized friction factor

58  none Eq (41)  Conduit porosity normalization coefficient

59  none Eq (42)  Conduit tortuosity normalization coefficient

60 QN none Eq (43) Rem Fluid current

61  none Eq (44) (1+WN) Fluid current wall normalization coefficient

62 PQ none Eq (45) Remrh Viscous normalized friction factor

63 PQ none Eq (46) WNRemrh Viscous normalized friction factor

64 WN none Eq (47) W1 + W2R Net wall effect

65  none Eq (48) 1/h Dimensionless fluid resistance

66  none Eq (49) k1/(k2QN+k1) Viscous boundary layer (=1)

67 W1 none Eq (50) 0(1/3)/ Primary wall effect

68 kdc none Eq (51) k/dc Relative wall roughness coefficient

69 W2 none Eq (52) 30kdc(1/3) Secondary wall effect

70 W2R none Eq (53) W2-W1(1.2) Residual secondary wall effect (W2R≥ 0)

71 Rem none Eq (54) 4qdcf/(D2) Modified Reynolds number

72 nk gcm-2sec-2 Eq (55) s2f/dc the kinetic hydraulic force exerted per unit element of fluid control volume

73 s cmsec-1 Eq (56) 4q/(D2) Average fluid superficial linear velocity (fluid flux).

74 nv gcm-2sec-2 Eq (57) sdc2 the viscous hydraulic force exerted per unit element of fluid control volume

75 BLT cm Eq (58) dc/(2) Boundary layer thickness

76 PQ none Eq (59) 4rh2/3 + nk/(2rhnv) Viscous friction factor

77 P/(rhnvL) none Eq (60) PQ Drag normalized viscous friction factor

78 P/(rhnvL) none Eq (61) 4rh2/3 + nk/(2rhnv) Drag normalized viscous friction factor

79 P/(rhL) gcm-2sec-2 Eq (62) 4rhnv/3 + nk/(2rh) Drag normalized pressure gradient

80 P/L gcm-2sec-2 Eq (63) 4rh3nv3 + nk/2 Total pressure gradient

81 P/L gcm-2sec-2 Eq (64) 4rh3s(3dc2) +
s2f/dc

QFFM practitioner’s empirical equation

82 P/L gcm-2sec-2 Eq (65) 4rh3nv3 Viscous pressure gradient

83 CQ none Eq (66) QN Wall normalized instantaneous fluid current

84  none Eq (67) k1/(k2CQ+k1) Instantaneous boundary layer

85 PQ none Eq (68) 64+ CQ/(8) Quinn’s Law

86 P/L gcm-2sec-2 Eq (69) 1024q(3D2dc2) +
82qf/(3D4dc)

QFFM expanded equation

87 P/L gcm-2sec-2 Eq (70) 128q(3D4) +
qf/(248D5) QFFM balanced equation for empty conduit

QFFM Dimensional manifestation

88 q cm3sec-1 Sec 2.3.3 dv/dt Fluid volumetric flow rate

89  gcm-1sec-1 Sec 2.3.3 N/A Fluid absolute viscosity

90 f gcm-3 Sec 2.3.3 N/A Fluid density
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91  cm2sec-1 f Fluid kinematic viscosity

92 bc none 3D4dc(P-bq)/(82fLq2) Back-calculated wall normalization coefficient

93 QFFM none Eq (71) aq2+bq+c = 0 Quadratic manifestation

94 c gcm-1sec-2 Eq (72) -P constant

95 P gcm-1sec-2 Eq (73) aq2 +bq Calculated differential pressure drop

96 qbc m3sec-1 Eq (74) -b±√(b2-4ac)/(2a) Back-calculated flow rate from measured pressure differential

97 a gcm-7 Eq (75) 82fL/(3D4dc) Quadratic term coefficient (flow rate based)

98 b gcm-4sec-1 Eq (76) 1024L/(3D2dc2) Linear term coefficient (flow rate based)

99 P/L gcm-2sec-2 Eq (77) 1024(1-0)2q/(3D2dc2) +
8(1-0)q2f/(3D406dc)

Total pressure gradient

100 P/L gcm-2sec-2 Eq (78) 256sdp2+
f s2/(206dp)

Q modified Ergun equation

101 P/L gcm-2sec-2 Eq (79) Asdp2+
Bf s2/(03dp)

Q modified Ergun equation

102 A none Sec. 2.34 256/3 Q modified Ergun (viscous) constant

103 B none Sec. 2.34 /(2e03) Q modified Ergun (kinetic) constant

104 w gcm-1sec-2 Eq (82) PD/(4L) Wall shear stress

Harmonic Oscillator Parameters

Damping Coefficients

105 v cmsec-1 Eq (80) vx +vy + vz Instantaneous fluid velocity

106 t0 sec Eq (81) (D2Lt)/4q Time to displace one (packed) conduit volume

107 f cmsec-1 Eq (83) (w/f)(1/2) Fluid frictional velocity

SHM dimensional parameter equivalents

108 t sec Sec 3 QN Elapsed time

109  radians Sec 3 k1(2/360) Epoch of the motion

110 0 radsec-1 Sec 3 k2 Reference angular velocity (when there is no net wall effect; WN = 0; =1)

111  radsec-1 Sec 3 h Instantaneous angular velocity

112  radians Sec 3 PQ Phase of the motion

113 T sec Eq (84) 2 Period of the motion

114  radsec-1 Eq (85)  Frequency of the motion

115 M0 cm Eq (86) dc/2 Maximum amplitude displacement (scale factor)

116 M cm Eq (87) M0exp(-to) Instantaneous amplitude displacement

Dimensional x-coordinate

117 x cm Eq (88) McosPQ Instantaneous displacement in x direction

118 Vx cmsec-1 Eq (89) -M/hsinPQ Instantaneous velocity in x direction

119 fx cmsec-2 Eq (90) -M(/h)2cosPQ Instantaneous acceleration in x direction

Dimensional y-coordinate

120 y cm Eq (91) MsinPQ Instantaneous displacement in y direction

121 Vy cmsec-1 Eq (92) M(/h)cosPQ Instantaneous velocity in y direction
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122 fy cmsec-2 Eq (93) -M(/h)2sinPQ Instantaneous acceleration in y direction

Dimensional z-coordinate

123 z cm Eq (94) Mcos(/4-PQ) Instantaneous displacement in y direction

124 Vz cmsec-1 Eq (95) -M(/h)sin(/4-PQ) Instantaneous velocity in y direction

125 fz cmsec-2 Eq (96) -M(/h)2cos(/4-PQ) Instantaneous acceleration in y direction

Dimensionless x-coordinate

126 x* none Eq (97) (M0-x)/(2M0) Unit cell displacement in x direction

127 Vx* none Eq (98) Vx/f Unit cell velocity in x direction

Dimensionless y-coordinate

128 y* none Eq (99) (M0-y)/(2M0) Unit cell displacement in y direction

129 Vy* none Eq (100) Vy/f Unit cell velocity in y direction

Dimensionless z-coordinate

130 z* none Eq (101) (M0-z)/(2M0) Unit cell displacement in z direction

131 Vz* none Eq (102) Vz/f Unit cell velocity in y direction


